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Abstract: The application of line-start permanent magnet synchronous motors (LSPMSMs) is rapidly
spreading due to their advantages of high efficiency, high operational power factor, being self-starting,
rendering them as highly needed in many applications in recent years. Although there have been
standard methods for the identification of parameters of synchronous and induction machines, most
of them do not apply to LSPMSMs. This paper presents a study and analysis of different parameter
identification methods for interior mount LSPMSM. Experimental tests have been performed in
the laboratory on a 1-hp interior mount LSPMSM. The measurements have been validated by
investigating the performance of the machine under different operating conditions using a developed
qd0 mathematical model and an experimental setup. The dynamic and steady-state performance
analyses have been performed using the determined parameters. It is found that the experimental
results are close to the mathematical model results, confirming the accuracy of the studied test
methods. Therefore, the output of this study will help in selecting the proper test method for LSPMSM.

Keywords: electric motors; parameter measurement; mathematical modeling

1. Introduction

In industrial applications, especially in oil and gas plants, induction motors are being gradually
replaced by high-efficiency permanent magnet motors, called line-start permanent magnet synchronous
motors (LSPMSMs). LSPMSM is one of the most efficient synchronous motors [1–4]. LSPMSM is
equipped with a squirrel cage to rotate the rotor from standstill, with the magnets to help the motor to
maintain the synchronous speed. Compared to the traditional three-phase induction motors, LSPMSM
has advantages like higher efficiency and power factor within a wide load range. This kind of motor
can efficiently replace the induction motors for general use [5–8].

Although the information about the parameters of electric machines is very important for
implementing different types of controllers, manufacturers of such available machines usually provide
insufficient information about the electric parameters. Therefore, implementation of high-performance
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control schemes requires the accurate estimation of these parameters. In addition, it is invaluable that
the electric machine manufacturers and designers perform various simulations and analysis before the
prototypes are made. Several researchers have carried out several simulation and experimental works
on parameter estimation [9–15].

There are a lot of models that describe motor behavior, like the finite element method
(FEM) [7,10,16–19], d-q reference frame [8–12,20–22] and magnetic equation [23,24]. Among these
models, the d-q reference frame model provides the optimum combination of analysis time and
parameter requirements along with acceptable results from the analysis. Utilizing the d-q reference
frame in the development process and in optimizing the LSPMSM design gives the required results
in case adequate parameter measurements are obtained. As per the well-known d-q model [20],
the parameters required to be determined include the stator phase resistance, the leakage stator
inductance, d- and q-axis rotor resistance, leakage rotor inductance, rotor leakage inductances, the
mutual inductances in the d- and q-axis and the flux of the permanent magnet referred to stator side.
In this work, the comprehensive testing methods for determining the above-mentioned parameters
is presented. Throughout the process of determining the required parameters, the tests conducted
comprise DC test, Single Phase AC test, Block Rotor test, DC Step test, and Open-circuit test. Afterward,
the parameters were validated using the developed MATLAB® Simulink model. The rest of the paper
is organized as follows. Section 2 describes the mathematical model of the LSPMSM. Section 3 shows
the experimental tests used for parameter identification. Section 4 shows the results of the conducted
tests. While in Section 5, validation of the measured parameters and the developed mathematical
model have been done.

2. Mathematical Model of LSPMSM

The healthy model of LSPMSM in the qd0 reference frame is a well-known model [25–32].
Equations (1)–(10) represent the transient model for the LSPMSM. The stator and rotor voltages
are represented by Equations (1)–(4) while the flux–current relationship is demonstrated by (5)–(8).
Equations (9) and (10) represent the electromechanical system.
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where rs is stator resistance per phase. r′rq is the rotor resistance in q-axis. r′rd is the rotor resistance in
d-axis. vs
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q
′ and vr

d
′ are rotor voltages in

q-axis and d-axis referred to stator side, respectively. is
q and is

d are stator currents in q-axis and d-axis,
respectively. irq ′ and ird

′ are rotor currents in q-axis and d-axis referred to stator side, respectively. ωr

is the rotor speed while λs
q and λs

d are stator linkage fluxes in q-axis and d-axis, respectively. λr
q
′ and

λr
d
′ are rotor linkage fluxes in q-axis and d-axis referred to stator side, respectively. λ′m is the flux

of the permanent magnet refer to stator side whereas L′lrq and L′lrd are rotor leakage inductances in



Machines 2019, 7, 4 3 of 22

q- and d-axis refer to the stator side, respectively. Lls is the leakage stator inductance. Lmd and Lmq are
the mutual inductances in the d- and q-axis, respectively. The electromagnetic torque of LSPMSM is
expressed as:

Tem =
3P
4
(is

qλs
d − is

dλs
q) (9)

The mechanical equation is also expressed as in (10):

ωr(t) =
P
2J

∫ (
Tem + TL − Tdamp

)
dt (10)

where Tem is the Electromagnetic torque, TL is the load torque, Tdamp is the damping torque, J is
the Motor inertial, ωr is the rotor speed and P is the pole’s number. It is worth mentioning that,
Equation (10) is derived using Newton’s second law for rotation on the rotor. Experimentally,
the damping torque in the equation could be the mechanical damping torque in the bearing and
of the load. In simulation we consider the damping torque to be zero. The dynamic equivalent circuits
of the LSPMSM are shown in Figure 1.
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Figure 1. LSPMSM dynamic equivalent circuits (a) d-axis circuit (b) q-axis circuit.

3. LSPMSM Parameters Measurement Using Different Experimental Tests

To investigate, analyze, and predict the performance of LSPMSM using its mathematical model,
an accurate equivalent circuit parameter measurement of the motor is needed. Measuring the
parameters of interior-mount LSPMSM is a challenging task because the rotor configuration of the
motor is very complicated since it consists of a squirrel cage and the interior mount permanent magnets.
Accordingly, a brief description of the experimental tests conducted in the machine laboratory at King
Fahd University of Petroleum and Minerals (KFUPM) on a 1-hp Interior-mount LSPMSM to measure
the electric circuit parameters are given. These tests include; DC test to measure the stator DC
resistance, AC single phase (rotor not included) test to measure stator AC resistance and leakage
inductance, block rotor test to measure the rotor resistance and leakage inductance in both d- and
q-axis, DC step test to measure the magnetizing inductance in d- and q-axis, and lastly the open-circuit
test to measure the flux linkage from the permeant magnets [33–36]. Table 1 shows the parameter of
the tested machine.
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Table 1. The parameters of the tested motor.

Parameter Value

Mean air gap radius 37.35 mm
Number of poles 4

Air gap width 0.3 mm
Permanent magnet thickness 3 mm

Stack length 80 mm
Number of turns per stator phase 86 × 4

Rotor bar resistivity 2.655 × 10−8 Ω·m
Rotor end ring resistance 1 × 10−5 Ω

Angle between two adjacent rotor bars 18 degrees
Number of bars 20

Permanent magnet flux density 1.25 T
Machine rated power 1 hp

Moment of inertia 0.001586 kg·m2

Rated voltage 400 Vrms
Rated frequency 60 Hz

Rated speed 1800 rpm
Bar length 80 mm

Bar cross-sectional area 27 mm2

3.1. DC Test

The dc resistance (Rs) per phase of the stator winding is measured using the DC test [37,38]. In the
case of star-connected stator winding Rs is defined as the resistance between a phase terminal and
the neutral point of the stator windings. To perform this test, two digital multimeters are needed,
in addition to a variable DC power supply as shown in Figure 2.
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Figure 2. DC test setup.

In the DC test, a variable DC voltage is applied between the terminals of two phases, while the
voltage and the corresponding current are recorded as shown in Figure 3. In this case, the effect of
the inductance in the winding is neglected since the applied voltage is DC (zero frequency). Based on
Kirchhoff voltage law, the formula for calculating the stator resistance is given as;

Rs =
VDC
2IDC

(11)

where VDC and IDC denote the measured DC voltage and current, respectively.
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The measured dc resistance obtained using DC test has to be verified using a CPC 100
measurement device as shown in Figure 4.
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3.2. Single Phase AC Test (Rotor Not Included)

In the single phase AC test (rotor not included) both the AC resistance (rs) and leakage inductance
(Lls) per phase are measured [39]. During this test, the rotor of the machine is pulled out while a single
phase of the stator is connected to a variable AC voltage source as shown in Figure 5. Figure 6 shows
the circuit diagram of the test. Based on the circuit analysis, the resistance rs and the leakage inductance
Lls can be calculated by using Equations (12) and (13), respectively, as follows:

rs =
Vφ

Iφ
cos θ (12)

Lls = (
1

2π f
)× (

Vφ

Iφ
sin θ) (13)
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Using Equations (2) and (3), the applied phase voltage (Vφ), the corresponding current (Iφ) and the
phase shift (θ) between them are required to calculate the stator resistance and the leakage inductance.
Therefore, an AC power supply, ammeter, voltmeter, CASSY unit, and a computer were used to
perform the test as shown in Figure 7.
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3.3. Locked Rotor Test

Rotor resistance and leakage inductance are measured using the locked rotor test [40,41]. During
the test, the rotor is locked while the stator phases are connected to a low three phase voltages as shown
in Figure 8. Under these conditions Lmq and Lmd are considered to be open-circuit. Also, all dependent
sources in the equivalent circuits of the motor in d- and q-axis are shorted. Figure 9a,b show the final q-
and d-axis equivalent circuits during the locked rotor test, respectively. Where r′rq is the rotor resistance
in q-axis, L′lrq is the rotor leakage reactance in q-axis, r′rd is the rotor resistance in d-axis and L′lrd is the
rotor leakage reactance in d-axis.

Machines 2019, 7, x FOR PEER REVIEW 7 of 23 

 

 
Figure 7. Experiential set-up for single phase AC test without rotor. 

3.3. Locked Rotor Test 

Rotor resistance and leakage inductance are measured using the locked rotor test [40,41]. During 
the test, the rotor is locked while the stator phases are connected to a low three phase voltages as 
shown in Figure 8. Under these conditions mqL  and mdL  are considered to be open-circuit. Also, all 
dependent sources in the equivalent circuits of the motor in d- and q-axis are shorted. Figure 9a,b 
show the final q- and d-axis equivalent circuits during the locked rotor test, respectively. Where '

rqr  

is the rotor resistance in q-axis, '
lrqL  is the rotor leakage reactance in q-axis, '

rdr  is the rotor resistance 
in d-axis and '

lrdL  is the rotor leakage reactance in d-axis. 

 
Figure 8. The schematic diagram of locked rotor test. Figure 8. The schematic diagram of locked rotor test.



Machines 2019, 7, 4 8 of 22
Machines 2019, 7, x FOR PEER REVIEW 8 of 23 

 

 
Figure 9. LSPMSM circuit under locked rotor conditions (a) q-circuit (b) d-circuit. 

To measure the rotor parameters in d- and q-axis, the rotor is locked in two different positions 
by using a DC voltage source. In the first position, the rotor d-axis is aligned with phase-a of the 
stator. To do that, the stator phase-a is connected to the positive terminal of the DC voltage source 
while the b- and c- phases are connected to the negative terminal of the same source. In this position, 
both the rotor resistance and leakage inductance in d-axis can be measured. In the second position, 
the rotor q-axis is aligned with phase-a of the stator. To do that, the stator phase-a is kept floating, 
phase-b is connected to the positive terminal of the DC voltage source whereas phase-c is connected 
to the negative terminal of the same source. In this position, both the rotor resistance and leakage 
inductance in q-axis are measured. 

 
Figure 10. Locked rotor test experimental set-up. 

To measure the rotor d-axis parameters ( '
rdr  and '

lrdL ), the rotor is locked in the first position, 
and three-phase low voltages are subsequently applied at the stator phases as shown in the 
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To measure the rotor parameters in d- and q-axis, the rotor is locked in two different positions by
using a DC voltage source. In the first position, the rotor d-axis is aligned with phase-a of the stator.
To do that, the stator phase-a is connected to the positive terminal of the DC voltage source while the
b- and c- phases are connected to the negative terminal of the same source. In this position, both the
rotor resistance and leakage inductance in d-axis can be measured. In the second position, the rotor
q-axis is aligned with phase-a of the stator. To do that, the stator phase-a is kept floating, phase-b
is connected to the positive terminal of the DC voltage source whereas phase-c is connected to the
negative terminal of the same source. In this position, both the rotor resistance and leakage inductance
in q-axis are measured.

To measure the rotor d-axis parameters (r′rd and L′lrd), the rotor is locked in the first position, and
three-phase low voltages are subsequently applied at the stator phases as shown in the experimental
set-up in Figure 10. The applied voltage per phase Vφ, the current Iφ and the angle θ between them are
recorded. By using these results from the locked rotor test, the input resistance (Rid) and the input
reactance (Xid) of the stator side for the equivalent d-axis circuit can be calculated using Equations (14)
and (15). Finally, the rotor resistance and the leakage inductance are calculated.

Rid =
Vφ

Iφ
cos θ = rs + r′rd (14)

Xid =
Vφ

Iφ
sin θ = Xls + X′lrd (15)

To measure the rotor q-axis parameters (r′rq and L′lrq), the rotor is locked in the second position,
and three-phase low voltages are applied at the stator phases. The same process done in the first
position is then repeated while the input voltage and current waveforms for the locked rotor test are
recorded. It is worth mentioning that during the locked rotor test the measured current should not
exceed the rated current of the machine in order to prevent the stator winding from damage. In this
case, the applied voltage will be of small values compare to rated values.
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3.4. DC Step Test

The purpose of the DC step response test is to measure the d- and q-axis synchronous inductances
(Ld and Lq) [42,43]. During this test, the rotor of the motor is locked in the two positions as in the case
of the locked rotor test. In the first position, the synchronous inductance in d-axis is measured while in
the second position, the synchronous inductance in q-axis is measured. Figure 11 shows the schematic
diagram of the DC test conducted in this study. It is worth mentioning that the most used test for
measuring the synchronous reactance for synchronous motor in d- and q-axis is the slip test. in the slip
test, the field winding is open-circuit (the excitation is removed) and the rotor is derived by a prime
mover. However, the slip test is not applicable to LSPMSM since we cannot remove the excitation.
Therefore, this is why we used the DC test where the rotor is locked (rotor stationery) no flux variation
from the PMs on the rotor bars and stator windings.

Based on circuit theory, the equivalent circuit of the tested motor during the test is a resistance-
inductance circuit, as shown in Figure 12. Therefore, the current in the circuit can be described by
Equation (16) as follows:

i(t) = V
R (1− e−

t
τ )t ≥ 0

τ = Lt
R

(16)

where V is the DC source voltage, τ is the time constant, R is the equivalent resistance seen by the
source which is equal to 1.5Rs, Lt is the equivalent inductance seen by the source which is equal to
1.5L, Rs is the DC resistance measured in the DC test presented above. L is the inductance of the motor
which is a function of the rotor position. L can be replaced by Ld if the rotor d-axis is aligned with
phase-a or replaced by Lq if the rotor d-axis is aligned with phase-a. Accordingly, by using the step
response plot, the time constant can be measured, which is then used to calculate Ld and Lq using
Equation (16).
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The magnetizing inductance (Lmd and Lmq) can be calculated using Equations (17) and (18)
as follows:

Lmd = Ld − Lls (17)

Lmq = Lq − Lls (18)

3.5. Open-Circuit Test

In the open-circuit test, the linkage flux of the rotor permanent magnets (λ′m) on the stator side is
measured [44,45]. During the open-circuit test, the tested machine is treated as a prime mover (DC
Machine), whereby no AC supply is connected to the motor stator phases as shown in Figure 13.
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Therefore, an induced voltage which is related to the speed of the rotor and the flux of the permanent
magnet on the stator side is created in the stator winding.Machines 2019, 7, x FOR PEER REVIEW 11 of 23 
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machine. Therefore, there is no induced current through the rotor bars. Accordingly, under these
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Figure 14 shows the experimental set-up of the open-circuit test.
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4. Results and Discussion

4.1. DC Test Results

Table 2 shows the DC test results for the tested motor. Ten sets of test results are presented, which
were used to find the average value of DC stator resistance. The measured dc resistance obtained using
DC test has also been verified using a CPC 100 measurement device (Rs by CPC 100 equal 5.326275 Ω).

Table 2. DC test results.

VDC (V) IDC (A) Rs (Ω)

5.3 0.495 5.35353
6.61 0.62 5.33064
7.56 0.71 5.32394

8.443 0.8 5.27687
9.53 0.89 5.35393
5.3 0.495 5.35353

10.96 1.03 5.3203
11.94 1.14 5.2368
12.72 1.19 5.3445
13.91 1.293 5.3789
14.93 1.394 5.3550
10.96 1.03 5.3203

Average Value 5.3274

It should be noted that the value of the stator resistance in the DC test is not the same as the one
used in AC simulation. Hence in DC test, the skin effect that occurs when an AC voltage is applied to
the windings is neglected [38,46].

4.2. Single Phase AC Test (Rotor Not Included) Results

Figure 15 shows a sample of the voltage and current waveforms acquired with CASSY and from
which the angle between the voltage and current is measured.
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The results of the test are displayed in Table 3. The values of AC stator resistance and leakage
inductance are 5.5527 Ω and 22.268 mH, respectively. It is clear that these values are also close to the
values measured by the CPC 100 device when the rotor is pulled out (rs = 5.456 Ω and Lls = 22.55 mH).
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Table 3. Single phase AC without rotor test Results.

Vφ (V) Iφ (A) θ (Deg) rs (Ω) Lls (H)

15.31 1.529 56.6329 5.5071 0.0221
17.71 1.7687 56.6329 5.5071 0.0221
21.154 2.108 56.6329 5.5193 0.0222
23.811 2.363 56.6329 5.5421 0.0223
26.98 2.671 56.6329 5.5555 0.0223
29.44 2.9 55.9442 5.6849 0.0223
15.31 1.529 56.6329 5.5071 0.0221

Average Value 5.5527 0.0222

4.3. Block Rotor Test Results

The results of the test are displayed in Table 4. By using these results from this test, the input
resistance (Rid) and the input reactance (Xid) from the stator side for the equivalent d-axis circuit were
calculated using Equation (14) and (15). Subsequently, the rotor resistance and the leakage inductance
were calculated, and the results are also recorded in Table 4.

Table 4. The locked rotor test result (rotor d-axis aligned with phase-a).

Iφ (A) Vφ (V) θ (deg) Rid (Ω) Xid (Ω) r
′

rd (Ω) L
′

lrd (H)

0.722 13.59 50.20 12.048 14.465 6.4955 0.0161
1.036 20.19 50.20 12.462 14.962 6.9102 0.0174
1.493 29.16 50.20 12.502 15.010 6.9502 0.0175
1.79 36.18 50.20 12.916 15.506 7.3632 0.0188
2.55 48.997 50.20 12.273 14.735 6.7204 0.0168

Average Value 6.8879 0.0173

For the locked rotor test result, with rotor q-axis aligned with phase-a, the results of this test
are given in Table 5. Based on the modified Equations (14) and (15) by replacing subscript “d” with
“q”, the calculated input resistance (Riq) and input reactance (Xiq) from stator side for the equivalent
q-axis circuit are also indicated in Table 5. It is clear from these results that the q and d rotor leakage
inductances are very close to each other. It is worth mentioning that the results obtained from the
block rotor test are close to the those measured by CPC 100 (r′rd = 7.12123 Ω, L′lrd = 16.7134 mH,
r′rq = 8.9213 Ω and L′lrq = 18.1225 mH). The input voltage and current waveforms for the locked rotor
test are plotted as indicated in Figure 16.

Table 5. The locked rotor test result (rotor q-axis aligned with phase-a).

Iφ (A) Vφ (V) θ (deg) Riq (Ω) Xiq (Ω) r
′
rq (Ω) L

′

lrq (H)

0.74 15.97 45.412 14.993 15.210 9.4407 0.0180
1.05 22.52 45.412 14.984 15.202 9.4321 0.0180
1.5 33.38 45.412 15.621 15.848 10.069 0.0197

2.11 41.85 45.412 13.925 14.127 8.3731 0.0152
2.51 50.69 45.412 14.177 14.3825 8.6243 0.0158

Average Value 9.187 0.0173
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4.4. DC Step Test Results

Figure 15 shows the step response of the tested machine for the two locked rotor positions. The test
is repeated for a set of DC source voltages, whereby the time constant is recorded from the plots as
shown in Figure 17. The calculated values of Ld and Lq are listed in Tables 6 and 7.
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In this test, the rotor is locked (q-axis of the rotor is aligned with phase-a of the stator). Therefore,
the measured inductance will be of the same value which is maximum at this location. When the
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rotor rotates, the inductance between the rotor and stator will vary based on the position of the rotor.
The magnetizing inductances values Lmd and Lmq were calculated using Equation (17) as 71.496 mH
and 260.355 mH, respectively.

Table 6. Step DC test result rotor d-axis aligned with phase-a.

V (v) τ (s) R (Ω) Ld (H)

1.4 0.0163 7.991 0.0868
3.2 0.0171 7.991 0.0910

5.07 0.0188 7.991 0.1001
7.15 0.0172 7.991 0.0916
9.43 0.0166 7.991 0.0884
10 0.0178 7.9912 0.0948

10.5 0.01811 7.991 0.0964
11 0.01889 7.991 0.1006

Average Value 0.09376

Table 7. Step DC test result- rotor q-axis aligned with phase-a.

V (v) τ (s) R (Ω) Lq (H)

1.76 0.0524 7.991 0.2791
3.44 0.0515 7.991 0.2743
5.6 0.0513 7.991 0.2732
7.2 0.0529 7.991 0.2818

9.02 0.0572 7.991 0.3047
9.7 0.056 7.991 0.2983

10.3 0.0501 7.991 0.2669
10.8 0.053 7.991 0.2823

Average Value 0.2826

4.5. Open-Circuit Test Results

The test is done for a set of different rotor speeds (nm), from which the line voltage Vab is measured
and the results are listed in Table 8. By using the measured data in addition to Equation (21), the flux
linkage (λ′m) was calculated. Figure 18a shows the induced voltage waveform in the stator winding
at 1060 rpm rotor speed, while Figure 18b shows the relationship between the rotor speed and the
induced voltage in the stator during open-circuit. In the tested motor, the stator winding is not
sinusoidally distributed. Therefore, the waveform is not pure sinusoidal; however, in the derivation of
the mathematical model, we assume that the flux is sinusoidally distributed.

Table 8. Open-circuit test results.

nm (rpm) Vab (V) λ
′
m (Wb)

418 63.1 0.58850
494 74.5 0.58792
536 81.2 0.59059
630 95.7 0.59219
697 106 0.59288

1308 199 0.59311
1404 213.4 0.59254
1506 228.8 0.59227
1601 243.4 0.59268
1701 258.3 0.59199
1800 272.8 0.59083
1847 280.9 0.59289

Average Value 0.59153
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4.6. Summary of Parameter Measurement Results

Using the above-described experimental tests, the measured values are listed in Table 9. However,
the listed parameters are approximate values due to human errors, instrumentation errors, and
environmental condition.

Table 9. Tested motor measured parameters.

Parameter Value Parameter Value

rs (Ω) 5.5525 L′lrq (H) 0.0173
Lls (H) 0.0222 Lmd (mH) 71.496
r′rd (Ω) 6.8879 Lmq (mH) 260.355
L′lrd (H) 0.01735 λ′m (Wb) 0.591538
r′rq (Ω) 9.1879

5. Parameters/Dynamic Model Testing and Validation

To test the principle of operation of the LSPMSM and measured parameters, the mathematical
model has been implemented and simulated using MATLAB under different loading conditions.
The stator current and the motor speed obtained from the MATLAB model and the experimental
setup, under no-load, 2 N·m load and full-load conditions are shown in Figures 19–21, respectively.
The Figures demonstrate that both the simulation results of the developed mathematical model and the
experimental results are in good agreement. The torque response of the motor has been investigated
experimentally and simulated using MATLAB for no-load and full-load conditions as shown in
Figure 22. It is clear from the figure that the torque response during steady-state is almost the same for
simulation and experiment. The oscillatory nature of the torque response at steady-state is due to the
interaction between the rotor magnets and the stator supply current as well as the cogging torque [30].
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Additionally, it is clear that at steady-state, the motor runs at a synchronous speed (1800 rpm).
Therefore, there is no relative speed between the rotational magnetic field of the stator and the rotor.
Hence, there is no induction torque during this state. Both the excitation torque and reluctance
torque (in salient pole machine) are driving the motor shaft at steady-state. At starting, the main
torque component which forces the motor to rotate is the induction torque whereas the excitation
torque is considered as a braking torque. Although the excitation torque (braking torque) is out of
phase of the induction torque during starting, the induction torque is larger, and hence the machine
is self-starting. Figure 23 shows the electromechanical torque of the motor and its components at
full-load for MATLAB simulation.Machines 2019, 7, x FOR PEER REVIEW 20 of 23 
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Moreover, the results show that the inrush current (transient current) of the motor at the start is
about 7–9 times the rated current during steady-state. It should be noted that during the starting of the
motor, the current is the sum of both the stator and rotor winding currents while at steady-state it is only
the current in the stator winding. Hence, no current is induced in the rotor bars. Therefore, the starting
current of the LSPMSM is similar to that of an induction motor. Alternatively, the steady-state current
of the LSPMSM is similar to that of a permanent magnet synchronous motor.

6. Conclusions

In this paper, the electrical parameters of a 1-hp interior mount-LSPMSM have been measured
experimentally using several tests in the machine laboratory at King Fahd University of Petroleum and
Minerals. The tests include the dc test, single phase ac test without rotor, locked rotor test, dc step test,
and open-circuit test. The measured parameters have been used in the developed dq-mathematical
model to validate the experimental results. The developed model has been implemented using
MATLAB software and simulated under different loading conditions. The results from the simulation
of the model include the speed and stator current of the machine. The simulation results were compared
with the experimental test results under the same loading conditions. It has been observed that the
simulation results from the model are in good agreement with the results obtained from experimental
tests; hence, proving the accuracy of the calculated parameters. Therefore, the results of this study will
help in selecting the appropriate test method for interior-mount LSPMSMs.
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