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Abstract: As a successful solution applied to electrical discharge machining (EDM), powder-mixed
electrical discharge machining (PMEDM) has been proposed as an upgrade of the EDM process.
The optimization of the process parameters of PMEDM is essential and pressing. In this study,
Taguchi methods and analysis of variance (ANOVA) were used to find the main parameters affecting
surface roughness in the EDM process with SiC powder-mixed-dielectric of hardened 90CrSi steel.
The PMEDM parameters selected were the powder concentration, the pulse-on-time, the pulse-off-time,
the pulse current, and the server voltage. It was found that SiC powder exhibits positive effects on
reducing surface roughness. The roughness obtained with the optimum powder concentration of
4 g/L was reduced by 30.02% compared to that when processed by conventional EDM. Furthermore,
the pulse-off-time was found to be the most influential factor that gave an important effect on
surface roughness followed by the powder concentration. The EDM condition including a powder
concentration of 4 g/L, a pulse-on-time of 6 µs, a pulse-off-time of 21 µs, a pulse current of 8 A, and a
server voltage of 4 V resulted in the best surface roughness.
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1. Introduction

Mechanical parts with complex shapes and difficult-to-machine materials are always challenging
with traditional machining methods. In this case, a table-shaped punch is a typical example, as shown
in Figure 1. The face of the punch has a concave profile that is very difficult to cut, or even impossible,
by conventional methods, such as grinding, etc.

Electrical discharge machining (EDM), an advanced machining process, is utilized for the making
of complex geometrical shapes and processing hard materials that are extremely difficult to process
using traditional machining methods [1,2]. As one of the most common non-traditional machining
processes, EDM is capable of removing materials by a short-time electrical discharge of high current
density between the electrode and the workpiece [3–5]. This process is widely applied in the mold and
die industry, automotive industry, aerospace, and so on. EDM can be used for the processing of all types
of conductive materials regardless of their physical properties. The ability of EDM, however, is limited
by the low material removal rate (MRR), high surface roughness, and high tool wear. To overcome these
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obstacles, PMEDM has been introduced as an advanced method to enhance the capabilities of EDM.
During the PMEDM process, the fine powder is added to the dielectric to meet the requirements of EDM
methods, such as high accuracy, good surface quality, and high MRR. The properties and concentration
of the added fine powder significantly affect the discharge gap dimension, discharge transitivity,
breakdown strength, and deionization of dielectric [5,6]. Many researchers believe that a suitable
powdered material mixed with a dielectric causes a decrease in the insulation strength of dielectric,
which is the cause of the increase in the size of the discharge gap between the electrode and the
workpiece in the EDM process [7–12]. This ensures the stability of the EDM process, thereby improving
roughness, MRR, and reducing tool wear [7,13,14].
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The impacts of EDM input factors, as well as the properties and the concentration of added
fine powders on EDM performance, have been investigated in numerous studies. Erden and Bilgin
were the first authors who have studied the effects of impurities such as aluminum, copper, iron, etc.,
on EDM’s dielectric fluid [15]. The authors found that the machining rate is enhanced by a growth in the
concentration of impurities due to a decline in time lag. In [8], Tzeng and Lee confirmed that powder
characteristics such as particle size, density, and powder concentration have considerable influences on
the efficiency of EDM. Optimization of the PMEDM process to increase MRR has been implemented
by Long et al. [16]. The conclusion was that electric current, electrode material, and concentration of
powder were the main parameters that significantly affected the material removal rate. In a study by
Singh et al. [17], the results showed that MRR of PMEDM is highly dependent on the electric current,
the material of the electrode, and the concentration of the powder. In a roughness study in the PMEDM
process [12], Zhao concluded that the appropriate parameter selection improved the roughness when
compared to conventional EDM processes. The Taguchi method was used for optimizing the powder
mixed EDM process in a study of Kansal [18]. As shown in the result section, the adding of a suitable
volume of graphite powder to the dielectric resulted in a noticeable enhancement in MRR, a significant
decrease in tool wear, and an enhancement in the surface roughness. Similarly, when conducting
PMEDM of SKD 61 steel, Kobayashi et al. concluded that the use of a sufficient amount of suspended
silicon powder increases MRR and reduces surface roughness [19].

SiC powder mixed EDM has been in the focus of various studies. In the research of Öpöz et al. [13],
the authors concluded that the concentration of SiC particle was the most influential factor for particle
transfer, followed by the pulse current and pulse-on-time. The effect of the concentration of SiC powder
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on MRR and the tool wear rate in micro-electrical discharge machining of Ti-6Al-4V was investigated
by Kuriachen and Mathew [20]. It was determined that the lower powder concentration gave a higher
MRR and lower tool wear rate. In another study [21], Razak found that applying SiC powder mixed
electrical discharge machining reduced roughness, increased MRR, and reduced production time and
costs. The effect of SiC PMEDM on white layer thickness, heat flux, and fatigue life in machining was
studied by Al-Khazraji [22]. A satisfactory result has been achieved in the machining of AISI D2 steel.

Recently, a new study [23] has introduced a novel active gap capacitance electrical discharge
machining (AGC-EDM) method for high-efficiency processing polycrystalline diamond. In this study,
graphene was first used as an energy storage medium in the EDM process to raise the efficiency and
the performance of the process. It was reported that the MMR in AGC-EDM was higher than that of
the normal EDM by more than 10 times and the electrode wear was reduced by 70%.

In the present work, the influence of input parameters including the powder concentration,
the pulse-on-time, the pulse-off-time, the pulse current, and the server voltage on roughness when
PMEDM cylindrical-shaped parts was investigated by applying the Taguchi method and ANOVA.
Optimal PMEDM conditions have been found to minimize surface roughness. The outstanding
effectiveness in reducing the roughness of the EDM with SiC powder-mixed dielectric has been
demonstrated when compared to conventional EDM.

2. Experimental Design

In this research, the powder concentration, the pulse-on-time, the pulse-off-time, the pulse current,
and the server voltage of PMEDM condition were optimized to improve performance during the
machining of hardened 90CrSi steel with consideration of the roughness. The chemical composition of
90CrSi steel is shown in Table 1.

Table 1. Chemical composition of 90CrSi steel.

Element C Si Mn Ni S P Cr Mo W V Ti Cu

Weight
(%) 0.85–0.95 1.20–1.60 0.30–0.60 Max

0.40
Max
0.03

Max
0.03 0.95–1.25 Max

0.20
Max
0.20

Max
0.15

Max
0.03

Max
0.3

Due to its simplicity and robustness, the Taguchi method has been used by many researchers
in optimizing process parameters to reduce production time and costs [24–26]. In the design of the
experiment of the Taguchi method, the orthogonal arrays are used to achieve the best results with
the smallest number of experiments. The signal to noise (S/N) and the analysis of variance (ANOVA)
are applied for measuring the performance characteristics and calculating the contribution of each
process parameter. The Taguchi method consists of three types of S/N: larger is better, smaller is better,
and the nominal is better. For each specific case, the appropriate S/N format is selected. The goal of this
research is to optimize the PMEDM parameters to get minimum surface roughness. Thus, the “smaller
is better” type was opted and calculated by the following equation:

S/N = −10log
1
n
(

n∑
i=1

y2
i ) (1)

where: yi is the observed data, n is the total of experimental runs.
One of the purposes of this study is to demonstrate the effectiveness of the PMEDM method

compared to traditional EDM. Therefore, the powder concentration parameter will be investigated
with six levels. In addition, the influence of other parameters on roughness was also investigated.
Each parameter will have three levels. Thus, the PMEDM parameters consisting of the powder
concentration (Cp), the pulse-on-time (Ton), the pulse-off-time (Toff), the pulse current (IP), and the
server voltage (SV) are shown in Table 2. The levels of the parameters were represented by numbers
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such as “1”, “2”, “3”, “4”, “5”, and “6”. Together with PMEDM parameters and levels, the L18 array of
Taguchi was selected to design the experiment.

Table 2. The PMEDM parameters with levels.

Parameters
Levels

1 2 3 4 5 6

Powder concentration Cp (g/L) 0 2.0 2.5 3.5 4.0 4.5
Pulse-on-time Ton (µs) 6 10 14 - - -
Pulse-off-time Toff (µs) 14 21 30 - - -

Pulse current IP (A) 4 8 12 - - -
Server voltage SV (V) 3 4 5 - - -

In the experiments, the PMEDM processes are conducted by using a sinker EDM model
CNC-AG40L from Sodick Europe Ltd. (UK) at ambient temperature. The workpiece is 90CrSi
alloy steel with a hardness of 58-62 HRC as shown in Figure 2. The electrode material is copper. Figure 3
shows the electrode for the PMEDM process. The dielectric fluid is Total Diel MS 7000 oil. Silicon carbide
powders with the particle size of 500 nm are used to add to the dielectric fluid. The machining process
was done in a 300 mm × 250 mm × 250 mm container, as shown in Figure 4. The stirring rotates at a
speed of 90 r/min to ensure the uniformity of SiC nanopowder in the dielectric fluid. A nozzle and a
pump were used to provide liquid into the machining zone to remove chips and maintain the stability
of the discharge process. The magnetic plate was utilized to collect steel debris generated during
machining to prevent them from re-entering the machining area. The surface roughness was measured
by using a Mitutoyo SV3100 instrument. Roughness data was collected on the cylinder surface of
workpiece—on cylindrical surface ∅10 (Figure 2). The details of the PMEDM processes are given in
Table 3. Each experimental run was repeated three times to lessen the experimental error.
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Table 3. PMEDM process information.

Items Description

EDM machine Sodick A30
Electrode Copper

Workpiece 90CrSi alloy steel; 58–62 HRC hardness
Work-piece dimensions 60 mm × 35 mm × 25 mm

Dielectric fluid Diel MS 7000 oil
Surf-test instrument SV3100

Nanopowder SiC 500 nm
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Figure 4. Experimental setup.

3. Results and Discussions

Table 4 indicates the results of the PMEDM process and S/N ratio. The input PMEDM factors
consist of Cp, Ton, Toff, IP, and SV. The values of the surface roughness (Ra) were collected three times
in each test (trials). The average values of roughness range from 1.670 µm to 5.105 µm. The smallest
roughness value was achieved in “Run 15” and the largest was in “Run 6”. S/N ratios calculated by
Equation (1) were given by Minitab 18 software. The process of experimental design using Minitab
software is indicated in Figure 5.
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Table 4. The results of PMEDM process.

Run Cp Ton Toff IP SV
Ra [µm]

Trial 1 Trial 2 Trial 3 Average S/N

1 0 6 14 4 3 2.960 2.930 2.928 2.939 −9.3651
2 0 10 21 8 4 2.239 2.161 2.383 2.261 −7.0932
3 0 14 30 12 5 5.066 5.117 5.125 5.102 −14.1561
4 2 6 14 8 4 2.411 2.434 2.482 2.442 −7.7567
5 2 10 21 12 5 2.749 2.839 2.601 2.729 −8.7278
6 2 14 30 4 3 4.942 5.200 5.174 5.105 −14.1627
7 2.5 6 21 4 5 2.158 2.232 2.196 2.195 −6.8308
8 2.5 10 30 8 3 3.895 3.882 3.868 3.881 −11.7804
9 2.5 14 14 12 4 3.840 3.733 3.790 3.787 −11.5680

10 3.5 6 30 12 4 2.791 2.620 2.528 2.646 −8.4602
11 3.5 10 14 4 5 3.421 3.559 3.490 3.490 −10.8576
12 3.5 14 21 8 3 2.685 3.068 2.906 2.886 −9.2198
13 4 10 30 4 4 2.959 2.795 2.763 2.839 −9.0673
14 4 14 14 8 5 2.646 2.670 2.785 2.700 −8.6305
15 4 6 30 8 5 1.614 1.655 1.741 1.670 −4.4587
16 4.5 10 14 12 3 3.752 3.613 3.926 3.763 −11.5172
17 4.5 14 21 4 4 4.404 4.298 4.491 4.397 −12.8658
18 4.5 14 30 8 3 2.864 2.732 2.795 2.797 −8.9355

The main effects plot for roughness is depicted in Figure 6. It can be seen that the roughness
decreases by the increase of SiC powder concentration and reaches the smallest value when the powder
concentration is at level 5 (4 g/L). The roughness, however, increases abruptly when the concentration
is 4.5 g/L. Increased pulse-on-time leads to an increase in surface roughness. The roughness reaches the
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smallest value at level 1 of the pulse-on-time (6 µs). Additionally, surface roughness has the smallest
value at level 2 of the pulse-off-time (21 µs), level 2 of the pulse current (8 A), and level 2 of the server
voltage (4 V).
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Figure 7 shows the S/N response analysis. As shown in Figure 7, the fifth level of the powder
concentration, the first level of the pulse-on-time, the second level of the pulse-off-time, the second level
of the pulse current, and the second level of the server voltage are the optimal levels for parameters in
PMEDM process. Thus, the optimal condition of PMEDM for minimizing the roughness is the powder
concentration of 4 g/L, a pulse-on-time of 6 µs, a pulse-off-time of 21 µs, a pulse current of 8 A, and a
server voltage of 4 V.

Machines 2020, 8, x FOR PEER REVIEW 8 of 12 

 

 
Figure 7. The S/N response analysis 

As shown in Figure 8, it can be noted that SiC powder is mixed with the dielectric in the right 

amount, which significantly improves the surface roughness. The large slope of the chart indicates a 

sharp decrease in roughness with increasing the powder concentration from 0 to 4 g/L. The best 

roughness is achieved when a powder concentration of 4 g/L is applied. Figure 8 shows that the 

roughness obtained with the optimum powder concentration was reduced by 30.02% compared to 

that when processed by conventional EDM (powder concentration of 0 g/L). This result of the 

research is reasonably close to those in other PMEDM studies [7,8,11,27]. It can be explained that the 

stability of the machining process is improved by mixing SiC powder into the dielectric. The added 

SiC powder plays an important role in modifying the plasma channel. The plasma channel is 

enlarged, which leads to a decrease in electrical discharge power density [11,12,21]. The sparking is 

distributed uniformly in the discharge gap. The result is that smooth, uniform surfaces are generated. 

The roughness, however, increased abruptly when the powder concentration applied was 4.5 (g/L). 

The high powder concentration causes continuous discharges at some points on the machining 

surface resulting in increased roughness. 

 

3.434 3.426 3.288
3.008

2.403

3.653

0

1

2

3

4

0 2 2.5 3.5 4 4.5

R
a 

(µ
m

)

Cp (g/L)

Figure 7. The S/N response analysis



Machines 2020, 8, 36 8 of 12

As shown in Figure 8, it can be noted that SiC powder is mixed with the dielectric in the right
amount, which significantly improves the surface roughness. The large slope of the chart indicates
a sharp decrease in roughness with increasing the powder concentration from 0 to 4 g/L. The best
roughness is achieved when a powder concentration of 4 g/L is applied. Figure 8 shows that the
roughness obtained with the optimum powder concentration was reduced by 30.02% compared to that
when processed by conventional EDM (powder concentration of 0 g/L). This result of the research is
reasonably close to those in other PMEDM studies [7,8,11,27]. It can be explained that the stability of
the machining process is improved by mixing SiC powder into the dielectric. The added SiC powder
plays an important role in modifying the plasma channel. The plasma channel is enlarged, which leads
to a decrease in electrical discharge power density [11,12,21]. The sparking is distributed uniformly
in the discharge gap. The result is that smooth, uniform surfaces are generated. The roughness,
however, increased abruptly when the powder concentration applied was 4.5 (g/L). The high powder
concentration causes continuous discharges at some points on the machining surface resulting in
increased roughness.
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surface resulting in increased roughness. 
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Figure 8. Effect of Cp on the roughness.

Table 5 shows the analysis of variance for Ra. As shown in Table 5, the pulse-off-time and the
powder concentration are the most remarkable factors impacting the surface roughness in SiC powder
mixed electrical discharge machining of hardened 90CrSi steel. They account for 26.63% and 21.17% to
the total effect, respectively. Other parameters have a smaller impact on the roughness. The server
voltage, the pulse current, and the pulse-on-time have effects of 15.26%, 12.47%, and 7.11% of the total
effect, respectively.

Table 5. ANOVA for Ra.

Source DF Seq SS Adj SS Adj MS F P %C

Cp 5 24.018 24.018 4.804 0.98 0.524 21.17
Ton 2 8.067 8.067 4.033 0.82 0.503 7.11
Toff 2 30.207 30.207 15.103 3.07 0.156 26.63
IP 2 14.147 14.147 7.074 1.44 0.339 12.47
SV 2 17.310 17.310 8.655 1.76 0.283 15.26

Residual Error 4 19.694 19.694 4.924 - - -
Total 17 113.443 - - - -
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Figure 9 describes the normal probability (Figure 9a) and the probability plot (Figure 9b) of the
surface roughness. It is reported from the figure that the data points of surface roughness are distributed
close to a center straight line. This confirms that the factors selected in the research have a significant
effect on the response. Additionally, it can prove that the experimental results are accurate enough.
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The predicted average surface roughness (RaOP) is calculated by Equation (2):

RaOP = Cp5 + Ton1 + To f f 2 + IP2 + SV2 − 4 ∗ TRa (2)

where Cp5 is average surface roughness for Cp at level 5, Ton1 is average surface roughness for Ton at
level 1, To f f 2 is average surface roughness Toff at level 2, IP2 is average surface roughness for IP at level
2, SV2 is average surface roughness for SV at level 2, TRa is average surface roughness.

Based on Table 4, the values of Equation (2) can be calculated as follows:

Cp5 = 2.403 µm

Ton1 = 2.804 µm

To f f 2 = 2.618 µm

IP2 = 2.817 µm

SV2 = 2.772 µm

TRa = 3.202 µm

By Equation (2):

RaOP = 2.403 + 2.804 + 2.618 + 2.817 + 2.772− 4× 3.202 = 0.606 µm

A verification experiment was carried out with the PMEDM parameters, such as a powder
concentration of 4 g/L, a pulse-on-time of 6 µs, a pulse-off-time of 21 µs, a pulse current of 8 A, and a
server voltage of 4 V. The roughness obtained from the verification experiment is 0.656 µm. This result is
8.25% different from the predicted average surface roughness determined by Equation (2). This proves
that the results of this study are completely reliable. The results also express that the roughness
achieved by applying the optimal PMEDM process is significantly improved when compared to
conventional EDM.

4. Conclusions

In this work, the effect of PMEDM parameters including the powder concentration,
the pulse-on-time, the pulse-off-time, the pulse current, and the server voltage on roughness were
investigated by applying the Taguchi method and ANOVA. Further, the optimization of PMEDM
parameters was performed to minimize the surface roughness in EDM of hardened 90CrSi steel.
The following conclusions can be:

X The pulse-off-time has the strongest impact on the roughness followed by the powder
concentration. They account for 26.63% and 21.17% to the total effect, respectively.
Other parameters have a smaller impact on roughness. The server voltage, the pulse current,
and pulse-on-time have effects of 15.26%, 12.47%, and 7.11% of the total effect, respectively.

X The optimal parameters of PMEDM for lower roughness are a powder concentration of 4 g/L, a
pulse-on-time of 6 µs, a pulse-off-time of 21 µs, a pulse current of 8 A, and a server voltage of 4 V.

X The predicted average surface roughness is presented with an 8.25% deviation from the
verification test.

X The outstanding effectiveness in reducing the roughness of the PMEDM process has been
demonstrated when compared to conventional EDM. The roughness obtained with the optimum
powder concentration of 4 g/L was reduced by 30.02% compared to that when processed by
conventional EDM (powder concentration of 0 g/L).
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