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Abstract: In this paper, a novel adaptive control system (NAC) is proposed for a restricted quarter-car
electrohydraulic active suspension system. The main contribution of this NAC is its explicit tackling
of the trade-off between passenger comfort/road holding and passenger comfort/suspension travel.
Reducing suspension travel oscillations is another control target that was considered. Many researchers
have developed control laws for constrained active suspension systems. However, most of the studies
in the works of the latter have not directly examined the compromise between road holding, suspension
travel, and passenger comfort. In this study, we proposed a novel adaptive control system to explicitly
address the trade-off between passenger comfort and road holding, as well as the compromise
between passenger comfort and suspension travel limits. The novelty of our control technique lies in
its introduction of a modeling system for a dynamic landing tire system aimed at avoiding a dynamic
tire liftoff. The proposed control consists of an adaptive neural networks’ backstepping control,
coupled with a nonlinear control filter system aimed at tracking the output position of the nonlinear
filter. The tracking control position is the difference between the sprung mass position and the output
nonlinear filter signal. The results indicate that the novel adaptive control (NAC) can achieve the
handling of car–road stability, ride comfort, and safe suspension travel compared to that of the other
studies, demonstrating the controller’s effectiveness.

Keywords: active suspension; road holding; dynamic landing tire; suspension travel; passenger
comfort; backstepping control system; adaptive neural networks’ control

1. Introduction

A vehicle active suspension is a mechanical vibration system. The active suspension aims
primarily to minimize the transmission of vertical road forces to the sprung mass (passenger comfort)
and to maximize tire–road contact (road holding) [1]. An active suspension system must operate
within safe travel ranges to avoid exceeding the suspension travel limits. Consequently, the hydraulic
actuator of the active suspension generates vertical forces to enable a compromise between ride comfort,
suspension deflection, and road holding. To ensure passenger comfort, the hydraulic actuator can
absorb the road energy transmitted to the sprung mass. Further, the actuator can generate vertical
forces to improve car stability and safety. Although the active suspension is an important system
in the vehicle structure, it must deal with several challenges. For example, the system has several
inherent undesirable dynamic characteristics, such as nonlinear dynamics, parametric uncertainties,
and external perturbations [2]. Moreover, it forces a trade-off between passenger comfort, road holding,
and limited suspension travels.
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Many control strategies have been applied in vehicle systems, which have multiple modeling
systems. A high-precision hydraulic pressure control based on linear pressure drop modulation in
valve critical equilibrium state was developed in [3]. The control methodology in that study was a
sliding mode control based on high-precision hydraulic pressure for an automobile brake system.
The experimental tests and validation system showed improvements in the control performance and
robustness. In [4], a dynamic state estimation for the advance brake system of an electric vehicle was
implemented by using deep recurrent neural networks. In that study, an integrated time series model
based on multivariate deep recurrent neural networks with long short-term memory units was applied
for brake pressure estimation of the electric vehicle system. The test results showed the effectiveness of
the proposed integrated method. In [5], a neuro-fuzzy adaptive control for a full car nonlinear active
suspension with onboard antilock braking system was investigated. A comparative study was done
between the intelligent control system and passive suspension. The method showed an improvement
in control performance.

The vehicle active suspension system is among the systems that have been most studied in recent
years. Active suspensions in vehicles serve mainly to isolate the car cabin from road perturbations
and provide vehicle handling under different operating conditions. Many researchers have developed
control strategies for these systems. Testing and simulation of a motor vehicle suspension were
carried out in [6]. In the study, experiments were done by applying impulse road input perturbation.
The results showed reduction of transmitted road energy to the system. Road profiles on a rig for
indoor vehicle chassis and suspension durability testing were reproduced in [7]. An impulse road input
was applied in the test rig. The results showed control performance improvements. Other studies
have been developed for the active suspension system in a bed to overcome the dynamic nonlinearities
and parametric uncertainties present. In [8], a sliding mode and fuzzy hybrid control system were
developed to overcome dynamic nonlinearities and reduce control chattering for a quarter-car active
suspension. There, a fuzzy hybrid control system was designed to track a force and a position and
reduce the control chattering. The controller provided control performance improvements. On the
other hand, the road holding and the suspension travel limits were not addressed.

Many researchers have also developed control strategies for active suspension systems.
For example, in [9], an adaptive tracking control was developed to overcome the dynamic nonlinearities
for a non-ideal actuator of a quarter-car active suspension. The actuator’s nonlinearities of both
dead-zone and hysteresis were addressed in that study. The experimental results showed a better
balance between isolation performance and energy consumption for the active suspension. Even though
several road case designs were applied, road holding was not clearly indicated in results. An adaptive
neural networks’ control system was designed by [10]. In that study, the road design could not generate
the tire liftoff phenomenon to indicate road holding. In [11], a backstepping control law was investigated
to monitor suspension travel by using a nonlinear control filter. The results showed an improvement
in control performance. However, road holding was not addressed. A multi-objective control system
for a constrained active suspension, designed based on both barrier and quadratic Lyapunov functions,
was developed in [12], with results showing control performance improvements. However, the system
did not address tire liftoff phenomenon. In [13], an adaptive control was developed for nonlinear
active suspension. While the system provided suspension deflection and road holding, its bumpy road
design did not address tire liftoff either. In [14], an adaptive backstepping-based tracking controller
was investigated for nonlinear half-active suspension. In that study, zero dynamics system was applied
to ensure that all dynamic order errors were bounded. Although the results showed improvements in
control performance, tire liftoff was not tested. In [15], an adaptive backstepping tracking control was
developed for an uncertain nonlinear active suspension. The control consisted of a model-reference
control combined with coordinated adaptive backstepping control systems. Simulation results showed
control performance degradation and, once again, tire liftoff was not examined. In [16], a linear
disturbance observer coupled with a sliding mode scheme was developed for an active suspension
with a non-ideal actuator. The results showed compensation improvements despite the presence of a
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dead-zone and hysteresis, as well as modeling uncertainty. In this case as well, the tire liftoff effect
was not considered. In [17], an adaptive neural networks’ control was developed for a restricted
quarter-car active suspension. Both the barrier Lyapunov function and zero dynamics system were
applied to prevent any violation of the system’s constraints. There was an improvement in the control
performance, but the tire liftoff was not evaluated.

As we can see, while previous works showed improvements in control performance, they
universally did not examine tire liftoff. Therefore, the results in previous studies cannot indicate
road-holding robustness.

In general, high-frequency bumpy road input can generate tire liftoff phenomenon. Thus, road
holding can clearly be addressed. In [18], an approximation-free control was developed for quarter-car
active suspension. In that study, both a random road and a high-frequency bumpy road designs
were examined. The results showed an improvement in road holding when the random road design
was applied. Even though previous studies were developed, improving in control performance,
the researchers did not explicitly address both a trade-off between ride comfort and road holding, and
a trade-off between ride comfort and suspension travel limits.

In this study, a novel control system was developed to handle the inherent trade-off between
passenger comfort/road holding, passenger comfort/suspension contraction limitation, and passenger
comfort/suspension expansion limitation, as well as to overcome the dynamic nonlinearities and
parametric uncertainties of quarter-car active suspension systems. The novelty of this study lies in its
aim, which is two-fold. On the one hand, it aimed to overcome and prevent the dynamic tire liftoff

phenomenon by implementing a new model of a dynamic landing tire system. On the other hand,
it aimed to avoid exceeding suspension travel limits. We broke down the suspension deflection into two
different suspension travel limits, namely, suspension contraction limitation and suspension expansion
limitation. We then redesigned a nonlinear control filter that was introduced in [11]. The redesigned
filter became three regions, which are a dead zone, a dynamic landing tire nonlinear function, and a
suspension deflection nonlinear function. This design of the nonlinear control filter can accommodate
and improve the trade-off between passenger comfort, road holding, and suspension travel. Therefore,
the novel adaptive control system ‘NAC’ system is an adaptive neural networks’ backstepping control
system coupled with the nonlinear control filter. The adaptive neural networks’ control system can
deal with unknown smooth functions of the modeling system. The summarized contributions of this
article are:

1. The NAC was established to achieve passenger comfort while keeping road holding and prevention
of exceeding suspension travel limits.

2. The NAC was also designed to reduce suspension travel oscillations.
3. A dynamic landing tire modeling system was developed to evaluate a required tire vertical

displacement, which maintains road holding for the car.
4. The suspension travel limits were separately chosen to be suspension contraction limitation and

suspension expansion limitation in order to realize operation conditions.
5. In NAC structure, the adaptive radial basis function neural networks were designed to approximate

nonlinear and unknown bounding functions in the modeling system.

Finally, simulation examples demonstrated the performance of the NAC in enhancing passenger
comfort, maintaining road holding, avoiding reaching suspension travel limits, and reducing suspension
travel oscillation.

The rest of the paper is broken down as follows. Section 2 presents the notations used and the
problem statement. Section 3 describes the control law design, which includes the nonlinear control
filter, the adaptive neural networks’ backstepping control design, and zero dynamics system. Section 4
discusses the illustrated example of a comparative study of a filtered active suspension, an unfiltered
active suspension, and a passive suspension. Section 5 presents the conclusion and future works.
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2. Notation and Problem Statement

The primary purpose of the active suspension is to provide a compromise between ride comfort,
car–road stability, and safety [19]. This suspension is mainly composed of a sprung mass, an unsprung
mass, a spring suspension, a suspension damper, a tire, an electrohydraulic servovalve system,
and other accessories [20], as shown in Figure 1. Passenger comfort definition is to isolate the sprung
mass from road perturbations. Moreover, road holding definition is to handle vehicle–road stability.
The electrohydraulic servovalve system (EHSS) of the active suspension generates hydraulic forces to
provide a compromise between ride comfort and road holding. In Table 1, the nomenclature for the
active suspension system parameters is listed with accompanying descriptions as follows.

Table 1. Active suspension parameters and their descriptions.

Quantity Description Quantity Description

Ap Actuator piston area, m2 Vt Actuator volume, m3

Av Spool valve projected area, m2 XL The landing tire position, m
bj Gaussian function width for RBFNN Xu Unsprung mass position, m
Cd Low discharge coefficient, - Xs Sprung mass position, m
Ctp Coefficient of leakage, m5/(Ns)

.
Xs Sprung mass velocity, m/s

ci Positive constant, -
..
Xs Sprung mass acceleration, m/s2

Csf Parameter for static friction
.
Xu Unsprung mass velocity, m/s

Cs Suspension viscous coefficient, Ns/m
..
Xu Unsprung mass acceleration, m/s2

Ct Tire viscous coefficient, Ns/m Wi an unknown weight vector for RBFNN

fi Unknown function i X̌u
Unsprung mass position nonlinear control filter

output, m
f̂i An approximate smooth function i δ0 Positive constant, -

Fc0 Coulomb friction coefficient σ Parameter for viscous friction
Fs0 Static friction coefficient τv Servovalve time constant, s
g Gravitational acceleration, m/s2 βe Effective bulk modulus, N/m2

gi Unknown modeling function i ρ Hydraulic oil density, kg/m3

Ku min Lower bound control signal gain, m2/V κst Positive constant, -
Ku max Upper bound of control signal gain, m2/V κRh Positive constant, -

Ks Suspension spring stiffness, N/m Adjustable factor for the road holding ratio ‘Rh’, -
Kt Tire spring stiffness, N/m ϕi,j centers of the receptive field in RBFNN
l Number of RFBNN nodes εN Positive designed error of RBFNN

n1,2,m1,2,3,4 Positive constants ∝ A virtual control function
mu Unsprung (wheel) mass, Kg ζ RBFNN compact set parameters
ms Sprung (body) mass, Kg NAC Novel adaptive control
m Number of variables in the compact set ANNC Adaptive neural networks control system
n State-space order system RBFNN Radial basis function neural networks

PL Operational hydraulic pressure, N/m2

Ps Pressure supply, N/m2

Rh Road holding ratio, -
ST Suspension travel, m

STD
Minimum allowable of suspension travel

“contraction”, m

STE
Maximum allowable of suspension travel

“expansion”, m.
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The mathematical modeling of the quarter-car active suspension can be described as shown in
Figure 1, while the sprung mass of the same is described as in [21]:

ms(t)
..
Xs = −Fsu − Ff + ApPL (1)

The unsprung mass dynamic system with tire liftoff can be modeled as [22].

mu
..
Xu =

Fsu + Ff −ApPL + FDt |FDt| ≤ (ms + mu)g

Fsu + Ff −ApPL |FDt| > (ms + mu)g
(2)

The spring-damper forces Fsu can be modeled as:

Fsu = Ks(Xs −Xu) + Cs
( .
Xs −

.
Xu

)
(3)

The dynamic tire force FDt is modeled as:

FDt = −Kt(Xu −Xr) −Ct
( .
Xu −

.
Xr

)
(4)

In this study, we considered friction forces, which consisted of a viscous friction, Coulomb friction,
and a stiction friction phenomenon [23]. The friction forces are undesirable effects on the control
performance. The friction forces F f of the hydraulic servosystem can be presented as in [24].

Ff = σ
( .
Xs −

.
Xu

)
+ sign

( .
Xs −

.
Xu

)Fc0 + Fs0 exp

−
∣∣∣∣( .

Xs −
.
Xu

)∣∣∣∣
Csf


 (5)

In Equation (2), the tire must contact the road surface; otherwise, it loses the road contact (tire
liftoff phenomenon). The following formula is used to express road holding:∣∣∣Dynamic tire force

∣∣∣
Suspension weight

=
|FDt|

(ms + mu)g
≤ 1 (6)
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Suspension travel limitations are other suspension restrictions. The maximum allowable
suspension deflection can be represented as [17]:

|Xs −Xu| ≤ STD (7)

In real operating conditions, both suspension travel limitations do not always equal the same.
In this study, the suspension travel limitations became as following the form:

STE > Xs −Xu > STc (8)

where the STc is a suspension travel contraction limit and the STE is a suspension travel expansion limit.
The electrohydraulic servovalve system for the hydraulic actuator and the servovalve can be

presented as [25]:

Vt

2βe

.
PL(t) = CdAυ(t)

√
Ps − PLsgn(Aυ(t))

ρ
−Ap(Xs −Xu) −CtpPL (9)

.
Aυ =

1
τυ

(−Aυ + Kuu(t)) (10)

In this study, a new modeling for a dynamic landing tire system was developed to avoid the
dynamic tire liftoff phenomenon, as shown in Figure 2.
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Dynamic tire liftoff only occurs if the unsprung mass position Xu is higher than the road position
Xr. However, Equation (6) does not consider this condition. Hence, we can rearrange Equation (6):

Rh =

(
Kt(Xu −Xr) + Ct

( .
Xu −

.
Xr

))
(ms + mu)g

≤ 1 (11)

where Rh is a road holding ratio.
Therefore, the vertical tire displacement (Xu −Xr) can use XL as a required tire landing position.

KtXL + Ct
.
XL ≤ (ms + mu) (12)
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In order to avoid tire liftoff, the tire landing position must be evaluated before the critical road
holding ratio ‘Rh = 1’. Thus, the dynamic landing position XL is created in the following form:

.
XL(t) =

 0 Rh(t) < 1
Kt
Ct

(
XL(t) +

κw(ms+mu)g
Kt

(Rh(t) − 1)
)
κ−1

w ≥ Rh(t) ≥ 1
(13)

where the κw is an adjustable factor for the road holding ratio (0 ≤ κw ≤ 1).
Moreover, the differential road holding

.
Rh is differentially determined, as follows:

Equations (12) and (13) can represent the dynamic landing tire system into the state-space
modeling system.

.
Rh(t) =

Kt
( .
Xu−

.
Xr

)
+Ct

( ..
Xu−

..
Xr

)
κw(ms+mu)g

Rh(t) ≤ κ
−1
w (14)

3. Control Design

This section consists of three subsections: Nonlinear control filter system, adaptive neural
networks’ backstepping control system, and zero dynamic systems.

3.1. Nonlinear Control Filter

In [11], a nonlinear control filter was developed to adjust the trade-off between passenger comfort
and suspension travel for a quarter-car active suspension system. In this study, we redesigned the
nonlinear control filter by modifying a nonlinear tire land function φ(XL). The input filter was the
unsprung mass position Xu. Therefore, the nonlinear control filter was able to compromise between
passenger comfort and road holding and also suspension travel, as follows:

.
X̌u = −(δ0 + κstψ(ST) + κRhφ(XL))

(
X̆u −Xu

)
(15)

where the symbols δ0, κst, and κRh are positive constants, and the suspension travel ST, ST = Xs −Xu.
The nonlinear function of suspension travel ψ(ST) is a positive nonlinear function.

ψ(ST) =


(

ST−m2
m1

)4
, ST < m2

0, m3 ≥ ST ≥ m2( ST−m3
m4

)4
, ST > m3

(16)

where m2 is a chosen constant 0 ≥ m2 ≥ STc, m3 is a chosen constant STE ≥ m3 ≥ 0, and the m1 and m4

are positive constants.
The landing tire nonlinear functionφ(XL) is a positive nonlinear function and evaluates as follows.

φ(XL) =


(XL+n2

n1

)4
κ−1

w ≥ Rh ≥ 1

0 Rh < 1
(17)

where n1 and n1 are positive constants.
It can be concluded that the flow chart of the nonlinear control filter dynamic system is sketched in

Figure 3. When the filter dead-zone (Rh < 1, m3 ≥ ST ≥ m2) was activated, the nonlinear bandwidth
filter became a chosen small constant δ0 to obtain passenger comfort. Otherwise, at least one of
the suspension constraints

(
m3 < ST, ST < m2, κ−1

w ≥ Rh ≥ 1
)

was expected; the nonlinear function
(ψ(ST), φ(XL)) rapidly increased the filter bandwidth. Thus, the suspension travel became stiff:
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The state-space modeling system was built from Equations (1), (2), (9), (10), and (13)–(15). Therefore,
the state-space modeling of the filtered active suspension system had nine variables, as follows.

State-space modeling system:

X1 = Xs, X2 =
.
Xs, X3 = ChPL, X4 = CvAv, X5 = X̌u, X6 = Xu, X7 =

.
Xu, X8 = XL, X9 = Rh

.
X1 = X2

.
X2 = −

Ks

ms
(X1 −X3) −

Cs

ms
(X2 −X4) +

Ap

ms
X5

.
X3 =

2βeCd

Vt
X4

√
Ps −X3 sgn(X4)

ρ
−

2βeAp

Vt
(X2 −X7) +

2βeCtp

Vt
X3

.
X4 =

1
τv

(−X4 + Ku u(t)) (18)

.
X5 = −(δ0 + κstψ(η) + κRhφ(X8))(X5 −X6)

.
X6 = X7

.
X7 =

Ks(X1 −X6) + Cs(X2 −X7) −ApX3 −Kt(X6 −Xr) −Ct
(
X7 −

.
Xr

)
X9 ≤ κ

−1
w

Ks(X1 −X6) + Cs(X2 −X7) −ApX3 X9 > κ−1
w

.
X8 =

 0 X9 < 1

−
Kt
Ct

(
X8 −

κw(ms+mu)g
Kt

(X9 − 1)
)
κ−1

w ≥ X9 ≥ 1
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.
X9 =

1
κw(ms + mu)g

{
−Kt

(
X7 −

.
r
)
−KsCt(X1 −X6) −CsCt(X2 −X7) + CtApX3 + CtKt(X6 −Xr) + C2

t

(
X7 −

.
Xr

)
+ Ct

..
r
}
,

X9 ≤ κ
−1
w

y = X1 −X5

3.2. Adaptive Neural Networks’ Backstepping Control Design

In this section, an adaptive neural networks’ backstepping was developed for the recursive
closed-loop system in Equation (18). Lyapunov’s stability theory was employed to guarantee
control stability. One advantages of this technique is that it allows circumventing the unmodeled
model uncertainties of multiple dynamic systems. Several research studies have applied the
backstepping control technique to overcome the inherent nonlinearities and uncertainties of the
system. The backstepping design complicity is to determine regression matrices of uncertain nonlinear
functions. In order to linearize the state-space modeling and simplify the backstepping control system,
a linear radial basis function neural networks (RBFNN) was implemented, and could deal with
unknown functions. Hence, the state space modeling of the adaptive neural networks’ control (ANNC)
design was reduced to fourth orders.

.
X1 = X2

.
X2 = X3 + g2(X)

.
X3 = X4 + g3(X)

.
X4 = βu(t) + g4(X)

y = X1 −X5 ∀ [X1, X2, X3, X4] ∈ ΩX ⊂ R4

(19)

Thus, the functions g2(X), g3(X), g4(X) and the parameter β are chosen as follows.

g2(X) = −X3 −
Ks

ms
(X1 −X6) −

Cs

ms
(X2 −X7) +

Ap

ms
X3

g3(X) = −X4 +
2βeCd

Vt
X4

√
Ps −X3 sgn(X4)

ρ
−

2βeAp

Vt
(X2 −X7) +

2βeCtp

Vt
X3

g4(X) = −
X4

τv

β =
Ku

τv

(20)

In order to approximate the unknown functions gi(ζ), we needed to know the aspect of the radial
basis function neural network. The radial basis function neural networks (RBFNN) can approximate
nonlinear and unknown bounding functions. In this study, we used a linear RBFNN to approximate
the unknown functions of the modeling system. The linear RBFNN had one hidden layer, a fixed size,
and fixed moving basis functions [26,27]. Therefore, the unknown smooth functions fi(ζ) could be
presented as [28,29]:

fi(ζ) = WT
i Hi(ζ) + εi, i = 1, 2, . . . , n, ∀ ζ ∈ Ωζ ⊂ Rm (21)

where the input vector ζ ∈ Ωζ ⊂ Rm, the εi is the approximation error, the WT
i is an

unknown weight vector, WT
i =

[
W1 W2 . . . Wl

]T

i
, the Hi(ζ) is a basis function vector,

Hi(ζ) =
[

h1(ζ) h2(ζ) . . . hl(ζ)
]
i
, and the hi(ζ), i = 1, . . . , l are hidden Gaussian functions,

which satisfy:

hi(ζ) = e
−{

ζ−ϕi, j
2

2b2
j
}

, i = 1, . . . , l, ζ = [ζ1, ζ2, . . . , ζm] ∀ ζ ∈ Ωζ ⊂ Rl (22)
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where the
{
ϕi, j, bj, i = 1, . . . , l and j = 1, . . . , m

}
are the centers of the receptive field and the width of

Gaussian function, respectively.

Therefore, approximate smooth functions
^
fi(ζ) could be estimated by RBFNN as follows:

f̂i(ζ) = Ŵ
T
i Hi(ζ), i = 1, 2, . . . , n ∀ ζ ∈ Ωζ ⊂ Rm (23)

To minimize the approximation error, the optimal weight value ‘Wi’ of the RBFNN was defined [30]:

Wi := arg min
Ŵi∈R

n

 sup
ζ∈Ωi

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣fi(ζ) − f̂i(ζ)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 , Wi is l×m, ∀ ζ ∈ Ωi (24)

As a result, a tiny positive design error εN could have occurred:

max

∣∣∣∣∣∣
∣∣∣∣∣∣f(ζ) − ^

f(ζ)

∣∣∣∣∣∣
∣∣∣∣∣∣≤ εN (25)

where f(ζ) =
[

f1(ζ) f2(ζ) . . . fn(ζ)
]

and
^
f(ζ) =

[
f̂1(ζ) f̂2(ζ) . . . f̂n(ζ)

]
.

The “centers and widths” of the RBFNN were chosen based on a range of input values. Therefore,
we applied a gradient descent learning algorithm to obtain the optimal RBFNN parameters such as the
centers ϕi, j, widths bj, and number of nodes l.

The backstepping control was organized into four backstepping control steps, as follows.
Step 1: Sprung mass velocity
The control coordinate Z1 was defined as:

Z1 = X1 −X5 (26)

To stabilize the controller, let us consider a quadratic Lyapunov function candidate V1 :

V1 =
1
2

z2
1 (27) (27)

The Lyapunov derivative function
.

V1 of step 1 becomes:

.
V1 = Z1

.
Z1 = Z1

( .
X1 −

.
X5

)
(28)

To stabilize the system, the derivative control coordinate
.
Z1 becomes:

.
Z1 = Z2+ ∝1 −

.
X5 = −c1Z1 (29)

where c1 is a positive constant.
Then, the virtual control function ∝1 is:

∝1=
.
X5 − c1Z1 (30)

Substitute ∝1 into
.

V1: .
V1 = Z1Z2 − c1Z2

1 (31) (31)

Step 2: Sprung mass dynamic acceleration
We can define the virtual control coordinate Zi as:

.
Zi =

.
Xi −

.
∝i−1 (32)
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Lemma 1: The control derivative function
.
∝i−1 produces two parts, namely, a countable part

.
∝(i−1)c

and an
uncountable part

.
∝(i−1)u

[31]. The ∝i−1 is defined.

∝i−1≡∝i−1

(
X1, . . . , Xi, Ŵi−1

)
Then, the partial derivative of the function ∝i−1 is:

.
∝i−1 =

∂ ∝i−1

∂X1
X2 + . . .+

∂ ∝i−1

∂Xi−1
Xi +

∂ ∝i−1

∂Ŵi−1

.
Ŵi−1

Therefore, the uncountable part
.
∝(i−1)u

consists of unknown smooth functions:

.
∝(i−1)u

=
i−1∑
k=1

∂ ∝i−1

∂Xk
gk(X) +

∂ ∝i−1

∂Ŵi−1

.
Ŵi−1

The countable part
.
∝(i−1)c

is a smooth function described as:

.
∝(i−1)c

=
i−1∑
k=1

∂ ∝i−1

∂Xk
Xk+1

Thus, the total unknown functions at step i-1 are defined:

.
∝(i−1)c

=
i−1∑
k=1

∂ ∝i−1

∂Xk
Xk+1

The unknown function fi(X) can be represented by the RBFNN as follows:

fi(X) = WT
i hi(ζ) + εi , ζ ≡ X, ∀ ζ ∈ Ωζ ⊂ Rm

Therefore, the Lyapunov function candidate V2 design is selected:

V2 = V1 +
1
2

Z2
2 +

1
2

W̃2 Γ−1
2 W̃2 (33)

By applying Lemma 1, the Lyapunov derivative function candidate
.

V2 becomes:

.
V2 =

.
V1 + Z2

(
X3 + WT

2 h2(ζ) + ε2 −
.
∝1c

)
+ W̃2 Γ2

−1
.

Ŵ2 (34)

The adaptive RBFNN law
.

Ŵ2 is defined [32,33]:

.
Ŵ2 = Γ2 Z2 h2(ζ) − Γ2σθ2Ŵ2 (35)

where the Γ2 is a positive definite matrix and the σθ2 is a positive constant.
Therefore, the selected virtual control ∝2 is:

∝2= −Z1 − c2Z2 − Ŵ
T
2 h2(ζ) +

.
∝1c (36)

By substituting Equations (35) and (36) into the Lyapunov derivative function
.

V2:

.
V2 = −c1Z2

1 − c2Z2
2 + Z3Z2 + Z2ε2 − σθ2W̃2Ŵ2 (37)

The function
.

V2 is moved to the next step.
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Step 3: Hydraulic actuator dynamic system
The virtual control coordinate Z3 is:

Z3 = X3− ∝2 (38)

Hence, the Z3 derivative function becomes

.
Z3 =

.
X3 −

.
∝2 = X4 + g3(X) −

.
∝2 (39)

The Lyapunov function candidate Vi design is selected:

V3 = V2 +
1
2

Z2
3 +

1
2

W̃3 Γ−1
3 W̃3 (40)

By applying Lemma 1, the Lyapunov derivative function candidate
.

V3 becomes:

.
V3 =

.
V2 + Z3

(
X4 + WT

3 h3(ζ) + ε3 −
.
∝2c

)
+ W̃3 Γ3

−1
.

Ŵ3 (41)

Therefore, the selected virtual control ∝3 is:

∝3= −Z2 − c3Z3 − Ŵ
T
3 h3(ζ) +

.
∝2c (42)

By substituting Equation (42) into the Lyapunov derivative function
.

V2:

.
V3 = −c1Z2

1 − c2Z2
2 − c3Z2

3 + Z4Z3 + Z2ε2 + Z3ε3 − σθ2W̃2Ŵ2 − σθ3W̃3Ŵ3 (43)

The right-side terms in
.

V3 are moved to the last step.
Step 4: Servovalve dynamic system
In this step, the control signal design u(t) is designed and the overall Lyapunov candidate stability

is guaranteed. The virtual control coordinate Z4 is selected:

Z4 = X4− ∝3 (44)

The time derivative Z4 is: .
Z4 = g4(X) + βu(t) −

.
∝3 (45)

The overall Lyapunov candidate function V is selected as follows:

V = V3 +
1
2

Z2
4 +

1
2

W̃4 Γ−1
4 W̃4 +

1
2µ
β̃

2
(46)

where µ is a positive constant.
By using Lemma 1, the overall Lyapunov derivative function

.
V Equation (46) becomes:

.
V =

.
V3 + Z4

(
WT

4 h4(ζ) + ε4 + β̂u(t) −
.
∝3c

)
− β̃Z4 u(t) +

1
µ
β̃

.
β̂+ W̃4Γ−1

4

.
Ŵ4 (47)

Thus, the design control signal u(t) is selected:

u(t) =
1
β̂

(
−Z3 − Ŵ

T
4 h4(ζ) +

.
∝3c

)
(48)
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The RBF neural network adaptive law
.

Ŵ4 is expressed as:

.
Ŵ4 = Γ4 Z4 h4(ζ) − Γ4σθ4Ŵ4 (49)

The adaptive control law
.
β̂ is designed by the triangularity condition. The triangularity condition

technique of the adaptive law is applied to estimate the unknown coefficient of the control signal β.
The lower and upper bound known values of the uncertain parameter β is defined as βmin and βmax,
which satisfies:

β ∈ Ωβ =
{
β : βmin ≤ β ≤ βmax

}
Hence, to guarantee

(
β̂−β

)(
1
µ

.
β̂−Z4u(t)

)
≤ 0, a projection-type adaptive law

.
β̂ is applied [32]:

.
β̂ = Proj(µ Z4u(t)) =


0 if β̂ = βmax and µ Z4u(t) > 0

0 if β̂ = βmin and µ Z4u(t) < 0

µ Z4u(t) otherwise

(50)

According to the control signal u(t) compact set, the u(t) is a function of the state variables
Xs,

.
Xs, Xu,

.
Xu, PL, Xv, X̌u, XL, Rh. To ensure the Gaussian basis function mapping, the constant scaling

factors of the operational hydraulic pressure Ch and the servovalve area Cv are applied as follows:

ζ1 ≡ Xs, ζ2 ≡
.
Xs, ζ3 ≡ ChPL, ζ4 ≡ CvAv, ζ5 ≡ X̌u, ζ6 ≡ Xu, ζ7 ≡

.
Xu, ζ8 ≡ XL, ζ9 ≡ Rh

∀ ζ = [ζ1, ζ2, ζ3, ζ4, ζ5, ζ6, ζ7, ζ8, ζ9] ∈ Ωζ ⊂ R9

Therefore, the RBFNN input variable m has nine input variables.
The

.
V becomes

.
V = −c1Z2

1 − c2Z2
2 − c3Z2

3 − c4Z2
4 + Z2ε2 + Z3ε3 + Z4ε4 − σθ2W̃2Ŵ2 − σθ3W̃3Ŵ3 − σθ4W̃4Ŵ4 (51)

Applying inequality [33] for term
4∑

i=2
Ziεi in Equation (51):

|Zi||εi| ≤ |Zi|εN (52)

The RBFNN error function ε1 is satisfied:

||0, ε2, ε3, ε4||≤ εN (53)

where εN is a designed positive error.
Applying Young’s inequality [34]:

|Z|εN ≤
Z2

2δ
+ δ

εN
2

2
, δ > 0 (54)

We apply the completing squares for each step [35] as follows:

σθiW̃iŴi = σθi

(
Ŵ

T
i −WT

i

)
Ŵ

T
i =

1
2
σθi

∣∣∣∣ŴT
i −WT

i

∣∣∣∣2 + 1
2
σθi

∣∣∣Ŵi
∣∣∣2 − 1

2
σθi|Wi|

2 (55)

.
V ≤

n∑
i=1

(−ΠiVi + Ξi) (56)
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where the factors Πi and Ξi are positive values with Πi := min
{
ci,

σθi
ηmax Γ−1

i

}
, Ξi = 1

2σθi|Wi|
2
−

1
2σθi

∣∣∣∣ŴT
i −WT

i

∣∣∣∣2 + δεN
2

2 , and the ηmax being the maximum eigenvalue of the positive definite matrix Γ.

By integrating the overall Lyapunov derivative function
.

V in Equation (56), we obtain:

0 ≤ V(t) ≤
Ξ
Π

+
(
V(0) −

Ξ
Π

)
e−Π t (57)

where the Π and Ξ are the positive matrices.
The

.
Zi is thus bounded. Therefore, Zi, goes to zero automatically when t→∞ .

In conclusion, the
.
Zi guarantee Barbalat’s Lemma [36] and the (Z1, Z2, Z3, Z4, W2, W3, W4) are

uniformly bounded.

3.3. Zero Dynamics’ System

In Section 3.2, the fourth-order error systems Z1, Z2, Z3, and Z4 existed to design the adaptive
neural networks’ backstepping control system. On the other hand, there were nine state-space
modelings for the active suspension system in Equation (18). The zero dynamics system can find the
other five closed-loop systems of the ninth-order error system. In order to obtain the control output
y = 0, the minimization force transmits to the sprung mass can be equivalent, as follows:

FZD = ApX3 = Ks(X1 −X6) + Cs(X2 −X7) (58)

In order to find zero dynamics closed-loop system of the other state-space system
X5, X6, X7, X8, and X9, the control output y and first and second output derivative functions

.
y,

..
y

must be zeros, as follows:
y = X1 −X5 = 0. (59)

Hence, X1 = X5
.
y =

.
Xs −

.
X̌u = 0 (60)

= X2 + (δ0 + κstψ(ST) + κRhφ(X8))(X5 −X6) = 0.

Then,
X2 = −(δ0 + κstψ(ST) + κRhφ(X8))(X5 −X6) (61)

..
y = − Ks

ms
(X1 −X6) −

Cs
ms

(X2 −X7) +
Ap
ms

X3

+
(
κst

∂ψ(ST)
∂ST

.
ST + κRh

∂φ(X8)
∂X8

.
X8

)
(X5 −X6)

+(δ0 + κstψ(ST)
+κRhφ(X8))

{
−(δ0 + κstψ(ST) + κRhφ(X8))(X5 −X6) −X7

}
= 0

(62)

Substitute Equations (59)–(61) into state-space Equation (18). The zero dynamics’ state-space
modeling system becomes:

.
X5 =

.
X̌u = −(δ0 + κstψ(ST) + κRhφ(X8))(X5 −X6) (63)

.
X6 = X7

.
X7 =

ms

mu

{
−

(
κst
∂ψ(ST)
∂ST

.
ST + κRh

∂φ(X8)

∂X8

Kt

Ct
(X8 − κwXus (X9 − 1))

)
(X5 −X6) − ρf

{
−ρf(X5 −X6) −X7

}}
+ κwXusX9 (64)

X8 =

−Kt
Ct
(X8 − κwXus (X9 − 1)) κ−1

w ≥ X9 ≥ 1

0 X9 < 1
(65)
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.
X9 = −1

κw(ms+mu)g
{KtX7

+ Ct
mu

(
ms

(
κst

∂ψ(ST)
∂ST

{
−ρf(X5 −X6) −X7

}
+κRh

∂φ(X8)
∂X8

(
−

Kt
Ct
(X8 − κwXus (X9 − 1))

))
(X5 −X6)

+msρf
{
−ρf(X5 −X6) −X7

}
+ muκwXus X9)−Kt

.
r−Ct

..
r
} (66)

The nonlinear derivative functions of ∂ψ(ST)
∂ST and ∂φ(X8)

∂X8
satisfy:

∂ψ(ST)
∂ST

=


4
(

ST−m2
m1

)3
, ST < m2

0, m3 ≥ ST ≥ m2

4
( ST−m3

m4

)3
, ST < m3

∂φ(X8)

∂X8
=

4
(X8+n2

n1

)3
κ−1

w ≥ Rh ≥ 1

0 Rh < 1

and the Xus is a static tire deflection defined as:

Xus =
(ms + mu)g

Kt

Xus =
(ms + mu)g

Kt
.

The positive nonlinear function %f is a function of the suspension travel and the tire liftoff as follows:

ρf(ST, X8) = δ0 + κstψ(ST) + κRhφ(X8) > 0

Zero dynamic Lyapunov candidate is designed to guarantee its stability. Let us consider the
linearized state-space model as:

.
X = AX + ∅(t). (67)

The Lyapunov candidate V0 is suggested:

V0 = XTPX. (68)

Therefore, the zero dynamics’ Lyapunov candidate derivative function
.

V0 is:

.
V0 =

.
X

T
PX + XTP

.
X

.
V0 = XT

(
ATP + AP

)
X + 2XTP∅(t)

.
V0 = −XTQX + 2XTP∅(t) . (69)

In the previous equation
.

V0, we applied the Young’s inequality for the second term on the
right side:

XTP∅(t) ≤
1
ξ0

XTPPX + ξ0∅
T(t)∅(t), where ξ0 > 0.

Applying inequality, for term ∅T(t)∅(t) in Equation (69):

∅
T(t)∅(t) ≤ ‖∅‖2∞.



Machines 2020, 8, 38 16 of 27

Therefore, the Lyapunov derivative function
.

V0 becomes:

.
V0 ≤ −XTQX +

1
ξ0

XTPPX + ξ0‖∅‖
2
∞ (70)

where ξ0 is a positive tunable factor:

.
V0 ≤

[
−λmin

(
P−0.5QP−0.5

)
+

1
ξ0
λmaxP

]
V0 + ξ0‖∅‖

2
∞ . (71)

.
V0 ≤ Π0V0 + Ξ0 (72)

By integrating the overall Lyapunov derivative function
.

V into Equation (72), we obtain:

0 ≤ V0(t) ≤
Ξ0

Π0
+

(
V0(0) −

Ξ0

Π0

)
e−Π0 t. (73)

Hence,
.
Xi , i = 5, . . . , 9 is uniformly bounded.

Finally, the flow pattern of the NAC design is sketched in Figure 4. There were four control paths,
which combined together to build the NAC system.Machines 2020, 8, 38 16 of 25 
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Figure 4. Sketch paths of the novel adaptive control ‘NAC’ system.

The path blue is the nonlinear control filter. The operational backstepping control system is
shown in the orange bath. The unknown functions f2(ζ), f3(ζ), and f4(ζ) are approximated by using
the green path for the radial basis function neural networks ‘RBFNN’ system. The fourth path is the
adaptive control law to estimate β̂.

4. Simulation and Results’ Discussion

To carry out the NAC control target successfully, we applied a comparative simulation between a
filtered active suspension, an unfiltered active suspension, and passive suspension. By definition, the
filtered active suspension was controlled by the novel adaptive control system (NAC), while for the
unfiltered active suspension, the active suspension was only controlled by the adaptive neural networks
control system (ANNC) with no coupling with the nonlinear control filter. To illustrate the comparative
study, we considered several road perturbation designs and the active suspension simulation data.
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The simulation data of the active suspension system are presented in Table 2. The ANNC and the
active suspension setup data were selected from the control sensitivity and the literature review.
The nonlinear control parameters were manually adjusted.

Table 2. Simulation data values of the active suspension mathematical model.

Data Setup

ms = 290 Kg. mu = 59 Kg Cs = 1000 Ns/m Ct = 800 N/m

Ps = 10,340,000 N/m2 βe = 7.995× 108 N/m2 Ks = 16,812 N/m Kt = 190,000 N/m

Cd = 0.63 Vt = 135.4× 10−13m3 Ap = 3.35× 10−4 m2 Ctp = 9.047× 10−13m5/(Ns)

Ku = (2.72− 3.33) × 10−6 m2/mA ρ =867 kg/m3 τv=0.01 s

The NAC setup is shown below

c1 = 200 c2 = 201 c3 = 203 c4 = 202

Γ2 = 27.773 Γ3 = 88.33 Γ4 = 117.01 σθ2 = 0.000108

σθ3 = 0.00095 σθ4 = 0.0097 m2 = −0.0375 m3 = 0.035

m1 = 0.02 m4 = 0.045 n1 = 0.004 n2 = 0.00001

Cv = 1× 105 Ch = 1× 10−6 δ0 = 1.27 m = 9

STc = −0.06 m STE = 0.08 m l = 5 κw = 0.7

First, we analyzed a comparative study about control performance between the filtered active
suspension NAC and another control system, which was investigated in [37]. In [37], a high
gain observer-based integral sliding mode control ‘HGO’ was developed for quarter-vehicle active
suspension. A bumpy road input design that was used in [37] was applied for the comparative study.
Figure 5 shows the output nonlinear control filter X̌u, the estimated sprung mass position Xs, and their
error. The maximum error of the NAC output was −0.009 m and its percentage of 10% at 1.2 s. In [37],
the results showed a high control performance that was less than 1% tracking position error.
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In Figure 6, the estimated sprung mass velocity
.

Xs, nonlinear filter output time derivative
.

X̌u,
and their error are displayed. The maximum absolute error was 0.01 m/s at 1.15 and 1.25 s. In [37],
the velocity tracking error was about 40 m/s at initial time and 18 m/s at 1.25 s. Table 3 explains the
control performance for both of the NAC and the HGO.
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Table 3. Control performance comparative study.

NAC HGO Notes

Maximum position error percentage % 10 >1

Maximum velocity error percentage % 13 18

Noise No Yes There was a noise at initial time estimation

Even though the NAC had tiny tracking error in position compared with that in HGO, the NAC
had better performance of tracking error velocity, as in Figure 6.

Second, we implemented four road design cases in this study, as follows.

Case 1: Road design excitation “bumpy input” had an amplitude of a = 2.5 cm and a frequency of 8π Rad
S

Xr =

a(|1− cos 8π t|) 0.5 ≤ t ≤ 0.75 s.

0 otherwise

This case has been used by many researchers in order to stimulate active and passive suspensions.
In Figure 7, the maximum amplitudes of the dynamic tire force of the filtered active suspension,
unfiltered active suspension, and passive suspension are smaller than the suspension weight by
68%, 48%, and 69%, respectively. Also, there was a 39% oscillation reduction in the filtered active
suspension versus in the unfiltered active suspension. As result, all dynamic tire forces did not exceed
the suspension weight; the filtered and the unfiltered active suspensions and passive suspension held
on the road surface.
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The comparative transient response of both filtered and unfiltered active suspensions are shown
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Figure 8. Sprung mass position of Case 1.

Also, the filtered active suspension provided 75% improvement compensation of that in passive
suspension. Therefore, passenger comfort was improved as compared to the case with the passive
suspension. In Figure 9, there is an improvement in suspension travel for the filtered active suspension
versus the unfiltered suspension, in which the maximum values of the filtered and unfiltered suspension
travels were −0.052 m at 0.62 s and −0.059 m at 0.62, respectively. The filtered suspension travel
oscillation was reduced by 85%, versus 50% with the passive suspension.
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Figure 9. Suspension travel of Case 1.

In conclusion, both filtered and unfiltered active suspensions obtained good transit responses.
The filtered active suspension provided better suspension travel oscillation and a smaller suspension
travel compared to the unfiltered active suspension. Also, the reduced suspension travel oscillation
with the filtered active suspension was improved by 35% over what was seen in the passive suspension.
The vehicle road stability could not be indicated by Case 1, which cannot generate tire liftoff phenomenon.
Therefore, we introduced Case 2 for bumpy and pothole impulse road design. The frequency of this
case was 16π rad/s, and its amplitude was the same as that in Case 1.

Case 2: Road design excitation “bumpy input” had an amplitude 2.5 cm and a frequency 16π rad/s.

Xr =


a(|1− cos 16π t|) 0.5 ≤ t ≤ 0.625 s

−a(|1− cos 16π t|) 2.0 ≤ t ≤ 2.125 s

0 otherwise

In Figure 10, the filtered active suspension kept tire contact with the road surface despite tiny
periods of tire liftoff at 0.68 and (2.12–2.13) seconds. On the other hand, the dynamic tire force of the
unfiltered active suspension was greater than the suspension weight at four time periods (0.56–0.61),
(0.68–0.72), (2.12–2.18), and (2.24–2.26) seconds. The passive suspension dynamic tire force was higher
than the weight suspension at (0.57–0.61) seconds’ period.
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Thus, both the unfiltered active suspension and passive suspension had tire liftoff phenomenon
that may lose car–road stability. The sprung mass position of the filtered active suspension was
compensated by 75% on bumpy road and by 88% on the pothole road, and smoothly decayed to origin,
despite the road-holding compensation, as shown in Figure 11.
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On the other hand, the passive suspension was roughly compensated by about 60%. A frequency
response estimation was applied to show the steady state of the filtered and unfiltered active suspension
systems. The frequency response was estimated by using the Simulink tool frequency estimation with
the sinusoidal road profile, as shown in Figure 12.
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Figure 12. Sprung mass acceleration against the road frequency for both filtered and unfiltered active
suspension systems of Case 2.

The sensitive human frequency was about 18–50 rad/s [38]. In Figure 12, there is a compromise
between road holding and passenger comfort, with the sprung mass acceleration of the filtered active
suspension being higher at the sensitive human frequency domain. The reduction in suspension
travel oscillation was also our control target. The suspension travel of the filtered active suspension
oscillation was reduced by 87% as compared to 57% with the unfiltered active suspension, as can be
seen in Figure 13.
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The benefits of reducing suspension travel oscillation include the possibility of preventing the
suspension travel from reaching its limit, reducing wear in the mechanical suspension system, and
saving energy.

The third control objective was to prevent hitting the suspension contraction limit. Hence, we
proposed a suspension contraction limit STc of −6 cm. The bumpy road design had an amplitude of
3.5 cm and a frequency of 8π rad/s, as in the following case.
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Case 3: The road excitation “bumpy input” had an amplitude 3.5 cm and a frequency 8π rad/s.

Xr =

a(|1− cos 8π t|) 0.5 ≤ t ≤ 0.75 s

0 otherwise

Although there was a trade-off between passenger comfort and suspension deflection, the sprung
mass position was compensated by 72% and smoothly decayed to its original position, as shown in
Figure 14.
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The unfiltered active suspension provided the best compensation, of about 99%. In Figure 15, the
suspension travel analysis is scoped to indicate the filtered active suspension performance.
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Figure 15. Suspension travel of Case 3.

Accordingly, the filtered active suspension prevented hitting the suspension travel limit of−0.06 m,
as shown in Figure 15; otherwise, the unfiltered active suspension hit the suspension travel limit at the
(0.58–0.68) seconds’ period.

Finally, the fourth control objective was the constrained suspension expansion. The suspension
travel expansion limit was rarely addressed in previous studies. In particular, depending on how
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the vehicle is loaded, the suspension travel expansion limit may not be the same magnitude of the
suspension travel contraction limit. The suspension travel expansion limit STE is 0.08 m. Therefore,
we proposed a suspension travel expansion limit of 8 cm. In Case 4, there were a pothole road
perturbation magnitude at −3.5 cm and the frequency of 8π rad/s, as follows:

Case 4: The pothole perturbation road design had an amplitude of −4.0 cm and a frequency of 8π rad/s.

Xr =

a(|1− cos 8π t|) 0.5 ≤ t ≤ 0.75

0 otherwise

In Figure 16, the filtered active suspension compensation is 75.5% and 22.5% for the
passive suspension.
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Even though the unfiltered active suspension had the best control compensation of 99%,
the unfiltered active suspension travel hit its limitation at about (0.6–0.67) seconds’ period, as shown in
Figure 17. The suspension travel of the filtered active suspension avoided hitting the suspension travel
expansion limit STE of 0.08 m.
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On the other hand, the suspension travel of the unfiltered active suspension hit the suspension
travel limitation at the (0.06–0.062) seconds’ period.

In conclusion, the sprung mass position of the filtered active suspension was smoothly compensated
by 75% in Case 1. The suspension travel oscillations were reduced as compared to the unfiltered active
suspension. In Case 2, the filtered active suspension provided both passenger comfort and road holding,
as shown in Figure 10. On the other hand, the unfiltered active suspension and passive suspension
failed to maintain road holding. The filtered active suspension prevented reaching the suspension
travel limitations in both Case 3 and Case 4. Hence, the control objectives were successfully addressed.

5. Conclusions

This paper presented a novel adaptive neural networks’ control system ‘NAC’ for a restricted
active suspension in the presence of several road excitations and dynamic nonlinearity and uncertainty
systems. A new control strategy was developed to explicitly address active suspension road holding
and suspension travel limits. The NAC consisted of a nonlinear control filter combined with the
adaptive neural networks’ backstepping control system to accommodate conflicts between passenger
comfort, road holding, and suspension travel. Furthermore, the dynamic modeling system had inherent
nonlinearities and uncertainties, which were overcome by the adaptive neural networks’ backstepping
control system. The results in Case 1 showed that the proposed controller provided a 35% better
suspension oscillation than did the passive suspension. In Case 2, the proposed controller explicitly
managed the trade-off between passenger comfort and road holding. The NAC provided 75% and
88% compensation based on the bumpy road and the pothole road inputs effects, respectively. In
Cases 3 and 4, the suspension travel was displaced by the NAC within allowable displacements. Also,
the NAC obtained 72% compensation in Case 3, 75% compensation in Case 4 and smooth decay, and a
22.5% reduced oscillation for the passive suspension.

Future work will focus on the adaptive control design for a full-car active suspension.
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