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Abstract: The advanced steel grades and high productivity requirements in the modern steel
industry subject production machines to increased mechanical stresses, which inflicts losses.
Novel data-oriented solutions to the monitoring of machines have a pivotal role in loss prevention,
but the industrial data with high sampling rates, noise, and dimensions bring challenges there.
This study proposes a new monitoring approach for roller levelers based on vibration measurements
and regression models for estimating steel strip properties including yield strength, width,
and thickness. The regression residuals are monitored based on moving mean and range charts,
which reveal changes from the expected normal operation. A high-dimensional feature set of
144,000 statistical features was studied with various feature selection methods, including filters
and wrappers. Multiple linear regression and generalized regression neural network were applied in
modeling. The approach was validated using data from an industrial roller leveler processing steel
strips with diverse properties. The results reveal that the accurate prediction of the strip thickness from
the strip properties is possible and multiple linear regression was generally the superior model therein.
Additional simulations indicated that the control charts can detect deviant operation. Supplemental
information about the momentary operation of the machine would improve the approach.

Keywords: feature selection; condition monitoring; high-dimensional data; regression; statistical
process control; vibration

1. Introduction

Modern day industry witnesses both the advantages and challenges arising from the extensive
amount of continuously streaming data enabled by the contemporary Information and Communications
Technology (ICT) and initiatives, such as “Industrie 4.0” and “Made in China 2025.” The key objectives
in such initiatives include reaching maximal uptime throughout the production chain and increasing
productivity while reducing the production cost [1]. One of the important approaches supporting such
objectives is the Condition-Based Maintenance (CBM), where the degradation process of the system is
monitored and perhaps even predicted before the breakdown [2]. CBM benefits from the information
contained in the abundant data provided by numerous sensors and other data sources, but on the other
hand, the selection of the useful data remains a challenge. The large data sets are subjected to
substantial selection bias and measurement errors, which have an enormous influence on the decisions
made based on the data [3]. In the fields of CBM and monitoring, a significant part of development
should be directed to data pre-processing including data selection and preparation, feature extraction
and selection, and model selection in order to avoid the “garbage in—garbage out” scenarios.

This study focuses on the condition monitoring of roller levelers which are used in steel factories
to straighten steel strips after final rolling, heat treatment or cooling operations. These machines are
exposed to high mechanical stresses [4] due to the advanced steel grades processed [5] and the increasing
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demands for productivity. Therefore, the monitoring of such machines becomes increasingly important,
but relatively few studies deal with the condition monitoring of such machines [6]. Instead, most of
the studies are concerned with process simulations, parameter analysis, and the behavior of material
in the leveling process [7,8].

Vibration analysis was selected as the technique to be utilized in the monitoring in this study,
because acceleration signals are sensitive to the varying forces inflicted on the machine and have proven
useful in various applications [9]. Other commonly used techniques in industrial monitoring include
acoustic emission, oil debris, ultrasound, and temperature monitoring [10]. The acoustic emission is
often used for similar tasks as the vibration, but it has practical challenges resulting from the lack of
established calibration methods [11,12], the requirement of direct signal path through solid material [12],
and high sampling rates [13]. In addition, the reliability of acoustic measurements [14,15] may be
compromised due to the extensive background noises in factories. For these reasons, the well-established
vibration techniques appear more appropriate for many industrial applications. Instead of analyzing
the individual samples in the signals, vibration signals are commonly monitored based on features
and signal transformations [16,17]. However, the direct use of an autoregressive model [18] and deep
learning algorithms [19] on the signals have been proposed as well. Due to the noisy industrial
environment, the conventional feature engineering approach was considered more appropriate for
the approach studied here. In the case of roller levelers, there is, however, limited information on
which features are useful for the monitoring of structural vibration when the monitoring is not targeted
at a specific component, such as the bearing, shaft, or gear. Correlations between a few vibration
features and machine parameters were studied in [6], but it was not shown how this information could
be used in monitoring.

To get insight into the operation of the machine, an appropriate solution could be the generation
of a large set of features and transformations from the vibration signals, i.e., the production of a
high-dimensional data set for data mining. In order to identify the characteristics or the typical
operation of the machine, the use of statistical features provides a practical solution. In this study,
features such as the generalized norms [20], other features derived from them, and percentiles in short
time windows are used. Such features have proven useful in previous applications in the monitoring
of machine vibration [4,9,21]. Before extracting these time domain features, the complete signals are
also filtered by using various frequency bands with different sizes. Furthermore, the amplitudes
of individual frequency components are computed, and statistical features are extracted from them
in the successive time windows. The use of narrow frequency bands and individual frequency
components could reveal effects masked behind other full or wide bandwidth effects and disturbances,
which can be intensive in industrial surroundings. The flowchart for system identification in Figure 1
illustrates how the signal filtering and feature generation phases relate to the overall data mining
procedure applied.

To make the application of a high-dimensional feature set practical, efficient feature selection
algorithms are required. With such algorithms, the irrelevant and redundant features are removed,
and the predictive qualities and comprehensibility of the selected feature set are improved. A multitude
of approaches has been proposed for the computational feature selection [22]. These solutions are
traditionally categorized as filters, wrappers, and embedded approaches [23]. The significance of
selecting the right solution is pronounced with high-dimensional data, where the building of a global
model with a complete set of features is not practical. In such circumstances, many classical approaches
such as the least squares linear regression [24] or genetic algorithms [25] perform unfavorably due to
the bias-variance trade-off and overfitting. Many of the methods try to find a good set of variables
rather than the optimal set [25], which is also the expected end-result in the case of high-dimensional
data sets. To tackle the problems of high-dimensionality, different solutions have been introduced,
which include narrowing down the search space and the use of simple methods with low computation
costs [26]. These principles are also followed in this study: Two relatively simple wrapper approaches
and the combination of filters and exhaustive search are tested. The wrappers include the sequential
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forward selection [27] and the floating search algorithm proposed in [28]. To narrow down the search
space, several information-theoretic filters [29] were first applied to generate small feature subsets.
The exhaustive search was then applied in the modeling stage to find the optimal feature combination

from the small subsets.
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Figure 1. Flowcharts depicting the system identification and online monitoring procedures of
the proposed approach to roller leveler monitoring.

Numerous data-driven algorithms have been introduced to the condition monitoring of
machines [30]. Quite common targets of application include the automated diagnosis of bearing
faults [31] or gear and shaft damage [32]. Many of these approaches are based on the principle
of supervised classification, which uses the presumption that all the monitored machine states
can be trained to the classifier, which then gives a categorical (qualitative) representation of
the machine condition. Alternatively, regression models can be used to estimate quantitative responses,
such as the relative stress level [4] or other health indicators [33] from the monitored system. However,
the solutions where the signal features are combined with the processed materials such as the steel
strips in roller levelers, as shown in Figure 1, are rare [4]. The machine vibrations are associated
with the processed materials, operational parameters, and external disturbances, which should be
considered, because they affect the success of diagnosis [21] and prognosis [34]. The changes of
operational parameters and operating states in industrial applications make the direct monitoring of
single features challenging. Regression models are practical for combining the feature values with
each operating state and for identifying the typical values in each state. In addition, the features
together provide information that individual features cannot provide, which eventually may increase
the modeling accuracy.

The previous approaches to the regression-based estimation of steel properties in steel forming
include yield strength and tensile strength prediction [35] and hardness prediction [36] based on
steel composition and other processing parameters. Additionally, process data have been used to
predict processing parameters, such as force, torque and slab temperature in a rolling process by using
genetic programming [37]. Then again, the modeling applications in roller leveling mostly focus on
the analytical modeling of material behavior [8,38] or the leveling process [39—-41]. Such approaches do
not focus on the vibrations in the process. However, analytical models and vibration measurements
were used in [42,43] to study the polygonal wear on work rolls in a hot leveler. In a recent study [4],
the relative stress inflicted on a roller leveler was estimated based on vibration measurements.
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The reported research on how the structural vibrations during leveling could be used to monitor
the process is incomplete and rare. Therefore, this study proposes a data-driven approach to
the identification of typical vibrations during the leveling process, which is illustrated in Figure 1.
This approach can be used (1) in the online estimation of the strip properties based on regression
models, and (2) in the detection of deviant operation based on Statistical Process Control (SPC) charts
for the regression residuals. Although the residuals are monitored based on the strip properties
as depicted in Figure 1, the deviations reveal more about the vibration response (or operation) of
the machine than flaws in the steel strips. The steel strip properties were selected as the monitored
variables, because the operation of the entire leveling process is dependent on them and no data of
leveling parameters synchronized with the instantaneous vibration were available for this study.

The feature set extracted from the acceleration signals was high-dimensional, and therefore
only relatively simple regression models were tested in order to have manageable computation time
in the model training phase. Multiple Linear Regression (MLR) was used to identify the linear
relationship between the steel strip properties and vibration. The Generalized Regression Neural
Network (GRNN) [44] was used to train models which are free from the linearity assumption.
The moving mean and range charts [45] were selected as the SPC method for roller leveler monitoring
due to their immediate response to new data points and the smoothing effect of the moving mean
which is useful in the case of noisy industrial data.

The remainder of the paper is organized as follows. The roller leveling process, measurements,
and the methods behind the steps illustrated in Figure 1 are presented in Section 2. Section 3 provides
the results and Section 4 discusses the findings and highlights the future research directions. Finally,
Section 5 concludes the paper.

2. Materials and Methods

2.1. Roller Leveling

The leveling process eliminates shape defects in the processed material. Steel strips contain
flatness defects caused by uneven internal stresses and defects caused by variations in strip dimensions.
In roller leveling, the strip is exposed to reverse bending, i.e., the strip is subjected to multiple back
and forth bending sequences with increasing roll gaps, which is sketched in Figure 2. The rolls on
the entry side cause more curvature to the strip than the rolls near the exit. Strains in the strip are
controlled by the set geometry of the leveler. The principle of roller leveling is based on controlling
the plastic deformation through the material thickness. Plastic deformation determines the resultant
flatness and memory and it also affects the required force. The roll force is a function of material
thickness, width, yield strength, roll spacing, and the extent of plastic deformation [46].

The roller leveling process studied is used for strips of cold steel at the SSAB steel mill in Raahe,
Finland. The properties of the 752 steel strips analyzed in this study are diverse, as shown in Table 1.
The yield strength, strip thickness, width, and length were 210-1640 MPa, 1.98-15.21 mm, 861-1875
mm, and 68-1161 m, respectively. Sheets are cut from the strip on the production line after the leveler
simultaneously with the one-pass leveling process by using a flying shear. The cutting of sheets causes
shocks which are conducted to the leveler and emerge as peaks in the monitored acceleration signals.
The number of cut sheets in a single strip was 4-465 during the measurement campaign that lasted
37 days.
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Figure 2. Drawing of roller leveling process with approximate positions of accelerometers on
the supporting structure beneath the lower supporting rolls.

Table 1. Information on process parameters, measurements, and computing resources in the study.

Subject Details
Process
Number of strips 752
Length of strip (m) 68-1161
Yield strength of strip (MPa) 210-1640
Width of strip (mm) 861-1875
Thickness of strip (mm) 1.98-15.21
Number of sheets cut from one strip 4-465
Measurements
Data acquisition NI 9234 & NI CompactRIO
Sensor type SKF CMSS 787A-M8
Number of sensors 3
+3 dB freq. response area of sensor (Hz) 0.7-10,000
Sampling rate (Hz) 25,600
Computing
Computer Two 2.8 GHz 10-core E5-2680v2 Xeon processors, 512 GB
Computing software Matlab® R2019a

2.2. Vibration Measurements

Three accelerometers were stud-mounted on the supporting structure beneath the lower supporting
rolls of the leveler. The acceleration was measured horizontally in the cross direction compared with
the direction of the roller track. The type of the accelerometers used was SKF CMSS 787A-MS8, which
has a frequency response from 0.7 Hz to 10 kHz with +3 dB deviation. The measurement hardware
included an NI 9234 data acquisition card and an NI CompactRIO for data acquisition. The sampling
rate was 25.6 kHz and the only filter used at the hardware level was the built-in antialiasing filter of
the data acquisition card. The measurement system was calibrated using a hand-held calibrator.
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2.3. Data Preparation

Vibration was measured continuously during the measurement campaign, and therefore the data
included the steel strip leveling periods and other insignificant periods. Theleveling events of individual
strips were identified from this data manually by combining the time stamps of the measurements with
the production data of the factory. The data were also cleaned by removing events that included long
periods of inactivity in the leveler and by removing the signal parts distorted by the breaks in the current
feed of the measurement system. A more detailed description for the data preparation is provided
in [4]. The acceleration signals represented in Figure 1 have undergone the data preparation process.

2.4. Signal Filtering and Feature Generation

The frequency domain filtering of acceleration signals by using various frequency bands is
described in Section 2.4.1. The methods for the computation of time domain and frequency domain
features are described in Sections 2.4.2 and 2.4.3, respectively. In this study, the feature values were
first computed in short time windows from the duration of the entire leveling event producing a
time series for each feature. The time series was then further compressed to statistical values to
represent the complete leveling process of each strip. In addition, these statistical values were further
processed with different mathematical transformations to identify possible non-linear correlations
between the vibration features and the properties of steel strips. The lengths of the time windows in
feature calculation and the number of frequency bins in amplitude spectra were selected based on
a preliminary correlation analysis, the results of which are not included here. The full set included
144,000 different features extracted from the acceleration signals.

2.4.1. Filtering

The time domain signals of the complete leveling event were multiplied by Tukey window function
with 10% taper before filtering the signals in the frequency domain. The Fast Fourier Transform (FFT)
was then used to transform the vibration signals into the frequency domain, where the unwanted
frequency components were removed by multiplying the corresponding complex numbers by zero.
This procedure enables the selection of certain frequency range and the removal of all the frequency
components outside the specified range. After this procedure, the signals were transformed back into
the time domain by using the inverse FFT. A similar approach was used in [21], for example.

The acceleration signals were filtered using 39 frequency bands, which are shown in Figure 3.
The objective was to divide the full applicable frequency range into different-sized bands that each
consisted of 5%, 10%, or 20% of the full range. The applicable range (0-10 kHz) was selected based on
the frequency response specifications of the accelerometers introduced in Table 1.
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Figure 3. Illustration of 39 frequency bands used in signal filtering.
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To demonstrate the effects of signal filtering, plot A in Figure 4 shows the acceleration signal from
sensor no. 1 during a leveling event, where a strip with properties (7.01 mm, 1482 mm, 1038 MPa) was
processed. Plots B, C, and D show the corresponding filtered signals using frequency bands 0-0.5, 3—4,
and 7-9 kHz, respectively. The signals reveal the peaks and changes in the amplitude differently when
different frequency bands are applied. For example, the shocks caused by the flying shear, which are
shown by the peaks, are weaker in plot B when compared with plot C. The period with low amplitudes
after 1100 s was presumably caused by a short break in the leveling operation.

A. Original signal B. Filtered signal, 0 - 0.5 kHz
% 20 % °
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2 2
2 2
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@ 2
E £
S0 S0
2 =2
a a
£ £
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Figure 4. Original signal and filtered signals using three frequency bands.
2.4.2. Generation of Time Domain Features

The correlations between steel strip properties and signal characteristics in the roller leveling
process are largely unclear and not widely studied based on our knowledge, but more limited
observations were presented in [4,6]. Therefore, the generation of a relatively large set of candidate
features gives a well-founded basis for the solution in this study. Twenty statistical features were
computed from three original signals and their 39 frequency-filtered versions. These features are
reasonable in practical applications due to their minor requirements for computing capacity. Most of
the features are based on the /;, norm which is also named as the generalized norm [20]. It is defined by

1
KOl = (5 Yo b @F) )

where the real number a represents the order of derivative, x is the displacement, N is the number
of data points in the time window, and the real number p is the order of the norm. In this study,
only the acceleration signals (x@) were used.

The set of twenty candidate features is presented in Table 2. Several I, norms and ratios of I,
norms were computed. Additionally, features which describe the shape of probability distribution,
such as the kurtosis (2) and skewness (3) of signal values, and 95th percentile of absolute signal values,
were calculated. Kurtosis and skewness are defined by

Kt'—lZN x -5\ 2
Uurtosis = N i—1 7 7 ()

Sk _ Ly (n-F) 3
ewress = NZi:l o . ()
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Table 2

8 of 27

. Definitions for twenty features.

Features

Definition

los, 12, 14, lo, Ioo
Io/ho

Iao/l2, lo/l2, 1o/l 120/lo.5, 1o/lo5

Iiflos, s/l Lo/l

Generalized norms, p = {0.5, 2, 4, 10, 20}
Ratio of two high-order generalized norms, p = {10, 20}
Ratios of high-order generalized norms, p = {10, 20}, to low-order
generalized norms, p = {0.5, 1, 2}
Ratios of a relatively high-order generalized norm, p = 4, to low-order
generalized norms, p = {0.5, 1, 2}

loo Maximum of absolute signal values (peak)
loo/ln Crest factor, ratio of peak to root-mean-square
Ioo/los Margin factor, ratio of peak to low-order generalized norm, p = 0.5
Pos(Ix?)]) 95th percentile of absolute signal values
Kurtosis Kurtosis describes the tails of probability distribution
Skewness Skewness describes the asymmetry of probability distribution

The features were computed in 10-s segments (or time windows). After each segment of
the complete leveling event was processed, the median (P5p) and upper quartile (P75) of the features
were computed to get typical values for the leveling event. The values were min-max scaled to range
0-1 based on all the leveling events in the data set. The P5y and P75 values were then also transformed
by using square, cube, square root, and cube root on them. Altogether, 8000 features were therefore
computed from each measurement position (or acceleration signal) with this approach.

Figure 5 illustrates the features lys, I, 10, and l1p/l; calculated from the filtered signal using
the 3—4 kHz band during the leveling event demonstrated also in the previous section. The plots
show that in some cases the median describes the typical operation more appropriately than the upper
quartile, and sometimes vice versa. In plot A, it could be interpreted that the upper quartile of Iy 5
around the value 0.9 represents the typical values during leveling. Then again, the median of /19
around 0.15 in plot C represents the amplitude level of the typical vibration during roller leveling,
whereas the upper quartile around 0.45 is markedly affected by the shocks caused by the operation of
flying shear. The tapered beginning and end of signals (see Figure 4) caused by the windowing of
the complete signals (see Section 2.4.1.) were removed before the feature computation.

| A. Featurel | | B. Fe‘ature 12 |
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Figure 5. Features sensitive to different phenomena in signals are shown together with their median
and upper quartile values. The presented signal was filtered using the 3-4 kHz frequency band.

2.4.3. Generation of Frequency Domain Features

Amplitude spectra were computed in one-second segments (or time windows). The number
of frequency bins in FFT was set NFFT = 2560, which results in 10 Hz frequency resolution with
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the applied sampling rate given in Table 1. The 1000 bins corresponding to the frequencies 10-10,000 Hz
were selected for the analysis based on the accelerometer specifications (see Section 2.2). The length of
segments and the number of frequency bins were selected based on experimenting on different settings
and analyzing correlations between the features and steel strips. Short windows can be justified based
on the dynamic nature of the leveling process.

Eight statistical features including the percentiles (Pys, Psp, P75, Pos), and maximum, mean,
kurtosis, and skewness were computed from each frequency bin resulting in 8000 features. Like in
the approach in the previous section, the features were first scaled to range 0-1 based on all leveling
events and then transformed by using square, cube, square root, and cube root on them as well.
Altogether, 40,000 features were thus computed from each measurement position.

Figure 6 demonstrates the amplitude spectra computed in the successive one-second time windows
from the same signal as in two previous sections. In this signal, relatively high amplitudes were present
at the frequency bins around 1 kHz almost continuously. Some of the shocks inflicted presumably by
the flying shear are manifested especially around 4-5 kHz region in this signal.
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Figure 6. Amplitudes of frequency components (or bins) computed in one-second time windows

during one leveling event.

2.5. Feature Selection Algorithms

Feature selection is one of the most significant parts in the analysis of high-dimensional data.
The irrelevant parts of the feature set are removed while the parts with potentially useful information
are kept. The methods tested in this study can be categorized as filters and wrappers [47]. Section 2.5.1
describes the information-theoretic criteria (filters) used to pre-select a subset before applying
the exhaustive search approach to select the feature combinations for models. Since exhaustive
search is not a practical approach for high-dimensional sets, two wrappers were tested as an alternative
approach to the feature selection using the entire feature set. Section 2.5.2 describes the sequential
forward selection and floating search algorithms. Each algorithm was used to select d = 10 features at
most in this study.

2.5.1. Information-Theoretic Filters

Mutual information is a measure of dependence based on information theory and the notion of
Shannon’s entropy [48]. The mutual information of two discrete random variables is defined as

N N plxij )
I(x;,y) = Zj: 1Zk: 1P(xij/yk)1n m , 4)
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where p(-) denotes the probability distribution function of a discrete random variable or pair of
variables, and N is the number of data points. Variable x; is the ith candidate variable and y is the target
variable. Mutual information measures the quantity of information about the target y that is provided
by the variable x;. This method makes no assumptions regarding the structure of the dependence
between the variables, such as the linearity. The densities p(-) are unknown and difficult to estimate.
The methods used for the estimation include the quantization of variables and the approximation of
their densities with a non-parametric method such as Parzen windows [22]. In this study, the variables
(or features) were quantized in ten bins.

Various filters using heuristic criteria based on the mutual information have been introduced
in the literature [29]. Brown [49] showed that many of them can be expressed by using a common
functional form

J = I(xi,y)-p Z;: i x) +y Z:i i ady), ®)

where  and y are configurable parameters varying in [0,1] and | is the criterion value. While x; is
the ith variable being evaluated, xj represents the already selected variables, and y is the target variable.
The first term I(x;,y) ensures the feature relevance (i.e., mutual information). The second term with
the parameter f penalizes the high correlations (redundancy) between variable itself and the existing
variables. The third term with the parameter y depends on the class conditional probabilities.

Six criteria were evaluated in this study including the mutual information, Mutual Information
based Feature Selection criterion (MIFS) [50] with two parameter settings, Joint Mutual Information
(JMI) [51], Conditional Mutual Information Maximization (CMIM) [52], and Maximum-Relevance
Minimum-Redundancy (MRMR) [53]. Table 3 shows the parameter values which were used in
the tested criteria (5) in this study. CMIM has a slightly different form, which can be written as [29]

J = I(xi,y) —max[I(x;, x) = I(x;, xe|y)], (6)
XkES
where S is the set of currently selected features.

Table 3. Tested parameter values for f and y in different criteria.

Criterion B Y
mutual information 0 0
MIFS 0.5and 1 0

JMI 1/@i-1) 1/@i-1)
MRMR 1/Gi-1) 0

After the dimension of the original feature set was reduced by using the information-theoretic
criteria, all the selected subsets of features (i.e., six sets by six criteria) were tested separately as
the explanatory variables in the models by using the exhaustive search. Exhaustive search finds
the optimal feature subset but suffers from “the curse of dimensionality” [54]. Therefore, its use
is practical on relatively low-dimensional feature sets only. The feature subsets, which optimized
the model performance, were selected as the sets of explanatory variables in the models. The criteria
for model performance evaluation are described in Section 2.6.3.

2.5.2. Wrapper Applications

Two different alternatives were tested in this study. Sequential forward selection [27] is a widely
used suboptimal search procedure for feature selection due to its simplicity and speed. The features are
included in progressively larger subsets so that the prediction performance of the model is maximized.
The selection terminates when the selected subset has the desired number of features. The method
suffers from the “nesting effect,” i.e., the subset of k best features must include also the subset of k — 1
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best features, and so forth. The subset of k features that is the best together in truth may differ from
the selected subset.

The sequential floating search method was presented in [55]. It overcomes the “nesting effect” of
forward selection by dynamically backtracking after each sequential forward step by using the sequential
backward selection. When a new feature is added to the current feature set, the algorithm attempts to
remove one feature at a time to discover a better subset. If the current feature set evaluated includes
more features than wanted (>d), the algorithm stops. Nakariyakul and Casasent [28] further improved
the algorithm by including an additional search step (i.e., replacement step) to check whether removing
any feature in the currently selected feature subset and adding a new one to the resultant subset at each
sequential step can improve the current step. This improved version of the floating search algorithm
was used in this study.

2.6. Regression Modeling

The correlations between the statistical features of acceleration signals and steel strip properties
can be linear or non-linear, and therefore, both assumptions were considered in model identification.
Section 2.6.1 presents MLR, which has the linear structure, and Section 2.6.2 describes GRNN, which is
free from the linearity assumption. The performance of the models was assessed based on Root Mean
Squared Error of prediction (RMSE), Variance Inflation Factor (VIF), and correlation coefficient (Ryy),
which are presented in Section 2.6.3. Finally, Section 2.6.4 introduces the approach to model validation.

2.6.1. Multiple Linear Regression

In multiple linear regression, the response variable of the model is considered as a linear
combination of certain explanatory variables. MLR models the relationship between two or more
explanatory variables and a response variable by fitting a linear equation to observed data. The MLR
model with k variables can be defined by

yj = Bo —i—ﬁlxﬂ +ﬁ2Xj2+...—|—‘8kak+€j, (7)

wherej=1,2,... N, N is the number of observations, y denotes the value of the response variable,
x is the value of an explanatory variable, 8y is the intercept, f1—fk are the regression coefficients to be
estimated, and ¢ is the error term. Least squares fitting is used for model identification.

2.6.2. Generalized Regression Neural Network

The generalized regression neural network is a memory-based network, which includes a one-pass
learning algorithm with parallel structure. GRNN approximates any arbitrary function between input
and output vectors and draws the function estimate directly from the training data. The network
configuration consists of four layers, which include the input layer, pattern layer, summation layer,
and output layer [56]. Each input unit in the input layer corresponds to individual observed parameters.
The input layer is fully connected to the pattern layer, where each neuron represents a training pattern
and its output is a measure of the distance of the input from the stored patterns. The pattern layer is
connected to the summation layer, which has two different types of summation including S-summation
neuron and D-summation neuron. S-summation neuron determines the sum of the weighted outputs of
the pattern layer, whereas the D-summation neuron determines the unweighted outputs of the pattern
neurons. The connection weight between the ith neuron in the pattern layer and the S-summation
neuron is y;, which is also the target output value corresponding to the ith input pattern. The connection
weight for D-summation neuron is unity. The output layer divides the output of each S-summation
neuron by that of each D-summation neuron. Therefore, a predicted value §(x) to an unknown input
vector x can be expressed as [56]

) = Ty
! N ,-D(xx;) '

i=1

®)
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where N and x; represent the number of training patterns (or observations) and the ith training input
pattern stored between the input and pattern layers, respectively. The Gaussian D function is defined as

N2
D(x,x;) = Z?_l(x] Cx”) , 9)

where p indicates the number of elements of an input vector. The x; and x;; represent the jth element of
x and x;, respectively. The parameter C is referred to as the spread parameter, the appropriate value of
which is often heuristically defined. The tested values for C included (0.01, 0.05, 0.1, 0.2, 0.5,0.7, 1, 1.5)
and newgrnn function in Matlab® was used for model training in this study.

2.6.3. Model Performance Evaluation

Three criteria were used to evaluate the models in this study. The predictive performance of
the models was evaluated by using RMSE, which is defined by

1
RMSE = \/ Y o) (10)

where Yj ]}j, and N are the observed value, the predicted value and the total number of observations,
respectively.

Multicollinearity in the models with several explanatory variables can be a serious problem [24].
Therefore, VIF of explanatory variables in the models was assessed by

1

VIF = —,
1-R?

(11)

where R;? is the coefficient of determination from a regression of explanatory variable x; onto all
the other explanatory variables. If R;? is close to one, then collinearity is present and VIF will have a
high value. As a rule of thumb, a VIF value that exceeds 5 or 10 indicates a problematic amount of
collinearity [24].

Pearson’s correlation coefficient was used to evaluate the linear correlation between model
predictions and the observed values in Section 3.2.5. Additionally, the method was used in Section 3.1
to get information on the correlations between the signals and the evaluated steel strip properties.
The correlation coefficient for two variables x and y is defined by

T
v 2 2
\/Z;V_ 1("]‘ - E) Z?‘\]: 1(yi - ?)

(12)

2.6.4. Model Validation

The models were validated using the repeated random sub-sampling validation aka Monte Carlo
cross-validation [57], where the observations in the data set are split randomly into training and test
sets multiple times. The response variables (yield strength, width, and thickness) were min-max scaled
to range 0-1 to make the various models comparable. Feature combinations were selected based on
the lowest mean of RMSE in cross-validation test sets. Thereafter, the combinations that had VIF above
5 were rejected. Moreover, the models that had larger than 0.02 difference in the mean RMSE between
test and training sets were rejected because the models were considered overfitted.

Two approaches to data splitting were tested in the feature selection stage:

1.  When (a) MLR was applied with the forward selection, and (b) MLR and GRNN were applied
with the exhaustive search, the data set was split 50 times into training and test sets, where 80%
of the points were used in the training sets and the rest were used in the test sets.
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2. The data were split 10 times with the same split sizes as in approach 1 when (a) MLR was applied
with the floating search, and (b) GRNN was applied with the forward selection.

These different approaches to data splitting were applied due to the major computational burden
caused by the high-dimensional feature set. The computational times are demonstrated in Section 3.2.2.
After each model had its feature combinations selected, all the models were further compared by using
the same 50 random data splits (80%/20%) to have a fair comparison. The results are presented in
Section 3.2.1.

The GRNN were tested with all the values of  described in Section 2.6.2 and the value of C resulting
in the lowest RMSE was selected. However, initially during the forward selection, only C = 0.05
was used in order to achieve faster computation. Floating search was not used due to its high
computational cost.

After the model structure and features were selected based on both the RMSE and VIF criteria
(Section 3.2.1) and residual analysis was done (Section 3.2.4), the final models were further validated by
selecting 20% of the data to external validation set. This set included temporally successive steel strips.
The rest of data points were used in cross-validation, where 50% of the remaining data points were
used for training and the rest for test sets. As suggested in [58], the random data split was repeated 3N
times, where N is the number of data points (i.e., steel strips).

2.7. Moving Mean and Range Charts

When all the variations in a process arise from random or common causes and none of them
are attributable to assignable, non-random or special causes, the process is in statistical control.
Various control charts have been introduced to process monitoring and the traditional approach is to
use the mean and range charts together [45]. The idea is to monitor the process in samples instead of
single observations of the monitored variable. When these samples appear at warning or alarm zones
defined by limits, anomalous performance in the process could be detected.

In many industrial processes, the nature of production or analytical methods cause long time
intervals between consecutive results. This is valid also in steel strip leveling where the process lasts
several minutes for a single steel strip and there may be breaks between successive strips. Therefore,
a more practical approach is to use moving mean and range charts in the monitoring [45]. The moving
(or sliding) window approach reduces the time to get new monitoring results when compared with an
approach where each sample consists of fully independent observations.

Data from the previous operation when the process was in control are used to identify the limits
for the charts in the presented approach (see Figure 1). In the moving mean chart, the warning
and alarm limits can be defined with various approaches with the assumption that the data follow a
normal distribution during the typical operation. In this study, the monitored variables are residuals of
regression models and they have relatively large variance due to the model and data quality issues.
Therefore, the warning and alarm limits were set to +2¢ and +3¢ (two and three standard deviations)
on both sides of the historical mean of the monitored variable. For the monitoring purpose, the sample
size (n) is commonly selected in the range n = 4-12 [45]. In this study, n = 5.

The control limits in moving range charts are asymmetrical about the mean range (R), which is
defined based on the ranges of separate time windows. Based on the selected sample size, the following
constants given in [45] (p. 348) were used in the charts in this study: D’ gp = 2.34, D’g 25 = 1.81;
D’ 975 =0.37; D’9.999 = 0.16. The upper and lower alarm limits are UAL = D/ .. X R,LAL = D/ 000 XR,

< 0.001 <1 0.999
and the upper and lower warning limits are UWL = Dj ;,s X R, LWL = D 4= X R, respectively.

3. Results

Section 3.1. reveals the highest linear correlations between the steel strip properties and features
computed based on the signals measured from different positions on the machine structure.
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The modeling results are presented in Section 3.2. The approach to the monitoring of the roller
leveling process is demonstrated in Section 3.3.

3.1. Correlation Analysis

Table 4 shows the maximum linear correlations between the steel strip properties and tested
features. The features are grouped into the features calculated from (1) full bandwidth signals,
(2) band-pass filtered signals, and (3) frequency components. Table 5 provides the descriptions for
the features with the strongest correlations.

Table 4. Strongest correlations between features and steel strip properties.

Approach Sensor Yield Strength Width Thickness

1 0.39 0.41 0.52
1. Full bandwidth signals 2 0.71 0.14 -0.58
3 0.34 0.35 0.46

1 0.50 0.58 0.84

2. Band-pass filtered signals 2 0.71 0.37 0.82
3 0.44 0.51 0.82

1 0.61 0.57 0.74

3. Frequency components 2 0.72 0.38 0.71
3 0.53 0.50 0.67

Table 5. Features with strongest correlations to steel strip properties. Py stands for the kth percentile
and X; stands for the amplitude of frequency j.

Approach Sensor Yield Strength Width Thickness
. ' 1 Pzs(l2) (P75(14))'P (Pso(la/lp5)) '
1. Full bandwidth signals 2 (P75(12)"2 (P75(leo/12))' (Pso(los)'?
3 P75(12) (Prs(I)¥3 (Pr5(1a/1p)) Y3
1 (P75(14))?, 3.5-4 kHz (P75(lo5))Y2,5-7 kHz (P75(10/12))*/2, 0-0.5 kHz
2. Band-pass filtered signals 2 (Pr5(los)Y2,7-75kHz  (Prs(lao/ho)¥?, 0-1kHz  (Pr5(leo/la))'?, 0.5-1 kHz
3 (P75(14))?, 3-4 kHz (P75(lo5))"?, 46 kHz  (P75(l/lp5))"?, 0-0.5 kHz
1 (Pa5(X00m2)) 2 (mean(Xspoomz)) > (skewness(X140112)) ">
3. Frequency components 2 (P75(Xes7012)) 2 (skewness(X7op1,)) (skewness(Xgori,)) >
3 Pa5(X30m2) (mean(X500m1)) (skewness(X14011,)) >

The results show that yield strength had the strongest correlations with the features computed
from sensor no. 2. The width of steel strip had stronger correlations with the features from the signals on
the sides of the roller track (sensors no. 1 and 3). However, the correlations were just mediocre (<0.58).
The location of a sensor did not have such a clear effect on the (absolute) correlations with thickness.

Tables 4 and 5 reveal that especially the low frequency range (0-500 Hz and 500-1000 Hz) in
the signals correlated strongly with the strip thickness. Yield strength had the strongest correlations
with the features computed from the frequency components, whereas the thickness had the strongest
correlations with the features from band-pass filtered signals. The strip width had almost equal
correlations with the features from band-pass filtered signals and the features from frequency
components. In general, these results indicate that the band-pass filtered signals and single frequency
components correlated with the steel strip properties stronger than the full bandwidth signals. Figure 7
shows the scatter plots for each steel strip property and the feature that had the strongest correlation
with it.
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Figure 7. Scatter plots between the studied steel strip properties and the features with the strongest
correlations with them.

3.2. Estimation of Steel Strip Properties

3.2.1. Performance Criteria in Feature Selection

The left side in Figure 8 shows the RMSE of test sets in cross-validation during the selection of
1-10 features with each of the tested methods. The estimation of yield strength based on MLR with
floating search was ended on the sixth feature due to the high computation time and the increased VIF
values, as shown in Figure 9. The right side of Figure 8 shows the difference in RMSE between the test
and training sets. The difference higher than 0.02 was considered as a sign of overfitting. In general,
GRNN with forward selection resulted in the lowest RMSE, but as shown on the right, these models
had the symptoms of overfitting already with 3—4 features. The same effect was present in GRNN
when features were selected based on the information-theoretic filters and exhaustive search. MLR did
not suffer from overfitting and the best performing models were obtained by using the floating search
or forward selection algorithms.

Yield strength estimation, test sets Difference between test and training results

w 0.10
2 8 Soos|
g ©0.06 ¢ g—— .
p @ 0.04 - = e
g9 £ 002
= [ | () [ ——————————— e =

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Number of features Number of features
W Width estimation, test sets Difference between test and training results
T T 010 T T

29 8 0los
o 0 [ 0.06 -
c D 0.04 -
§ 8 7‘5: 0.02
£ . . ! . 0 —

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Number of features Number of features

0 Thickness estimation, test sets 010 Difference between test and training results
Q0 Soos
7 g 5 0.06 "
c @ 0.04
g9 £ 0.02
£ | I | | 0 " " " .

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Number of features Number of features

—Filters & MLR with exhaustive search
-- - MLR with forward selection

""" MLR with floating search

---Filters & GRNN with exhaustive search
—— GRNN with forward selection

Figure 8. RMSE of the best performing models in feature selection on the left. The difference between
test and training results on the right gives indications about overfitting in model training.
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Figure 9. Maximum variance inflation factor (VIF) in the feature subsets selected by different approaches.

Figure 9 illustrates the maximum VIF in each model with the selected features when it was
computed based on the complete set of 752 steel strips. In this approach, VIF < 5 gives an indication of
the acceptable amount of collinearity in the explanatory variables of the models. MLR with forward
selection reached the VIF threshold already when 5-6 features were selected. In the modeling of
yield strength, also the floating search and GRNN with forward selection reached the limit already
with four and five features, respectively. In thickness estimation, GRNN with the combination of
filters and exhaustive search exceeded the limit on the fifth feature too. In the width and thickness
estimation, some of the feature subsets selected by different approaches never reached the threshold with
the combinations of 2-10 features. This suggests that even a higher number of features could perhaps
be selected without compromising the objective of low multicollinearity in explanatory variables.

3.2.2. Computation Time in Feature Selection

Figure 10 illustrates the computation time spent in the feature selection using the methods
described. The results are not exactly commensurate, because the load on the server used for
computations was not fixed. The server includes two 2.8 GHz 10-core E5-2680v2 Xeon processors with
512 GB memory. The wrapper methods were applied by using 12 workers for parallel computing to
speed-up the cross-validation iterations. The information-theoretic criteria were computed by using a
single processor.

The results indicate that forward selection was generally the fastest method. It was slightly faster
with MLR than GRNN although these methods had 50 and 10 cross-validation iterations in the selection
stage, respectively. In addition, only one spread parameter (C = 0.05) was tested in GRNN in the feature
selection stage to reduce the computation time, as explained in Section 2.6.4.

The computation time with the information-theoretic selection and exhaustive search was
almost the same using both the MLR and GRNN. This is explained by the relatively small set of
candidates (i.e., ten features) in the exhaustive search. The presented computation time is the sum of
the computation times spent in the exhaustive search using the feature sets given by each of six criteria
separately. If only one information-theoretic criterion had been tested, the computation time would
have been markedly lower.

The floating search algorithm was clearly the slowest one. This can be explained by
the time-consuming replacement steps. The number of replacement steps also varies based on
the studied data set, and therefore, its prediction is difficult. The presented results for floating
search describe the average computation times of the feature selection for the strip thickness
and width estimation. In the other feature selection approaches, the estimated variable does not
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influence the computation time. The computation time for the selection of 10 features with floating
search took approximately two weeks, which indicates it is the least practical method considering
the computational burden.

100 IFilters & MLR with exhaustive search

BMLR with forward selection

90 "mEMLR with floating search .
[Filters & GRNN with exhaustive search

80 —GRNN with forward selection

A o
o o
I I
1 1

30~ 7

1OJ..rﬂnlﬂﬂlllﬂFl.Ih 1 | Halll | Rl
1 2 3 4

5 6 7 8 9 10
Number of features

Figure 10. Computation times in feature selection. Computation times above 105 h are omitted
for clarity.

3.2.3. Selected Features

As shown in Section 3.2.1, the features were selected by minimizing the test RMSE and limiting
the difference between test and training RMSE to 0.02 and the VIF to less than five. Therefore, each of
the selected models was MLR, the selected features of which are provided in Table 6.

Table 6. Features used as explanatory variables x;—x1p in MLR models. S1, S2, and S3 stand for
the sensors no. 1, 2, and 3, respectively.

Var. Yield Strength Width Thickness
X1 (P75(Xeg70812))?, S2 (P75(14/12)'3, 4-6 kHz, S3 (Pys(l10/ln))?, 0-0.5 kHz, S1
X2 P25(X7490HZ)/ S3 (P75(X4900Hz))%/ S1 (P75(l4/12))3, 0-2 kHZ, S1
x5 max(Xoa100z), S2 (skewness(Xgg))/3, S1 Psy(ls), 0.5-1 kHz, S2
Xy (Pso(Xa00112))?, S1 (Pa5(X52012))?, S2 Pyz5(l10), 2-4 kHz, 52
X5 (Pa5(Xo40m2)), S2 (P75 (skewness))?, 2—4 kHz, S2
X6 (Pos(Xess0r12)) /3, 52 (P75(l/lp5))'3, 3-3.5 kHz, S2
X7 (Pa5(Xa00112))?, S3 (P75(Xs30m,)) 3, 52
xg (Pgs (X2370Hz))1/13/ S3 Pso(X1110H2), 513
X9 (mean(Xg10Hz))2, S3 (skewness(X19nz))2, S3
X10 (kurtosis(Xs0001,)) 2, S3 (skewness(X14011,)) >, S3

The model for yield strength included four features selected based on the forward selection
algorithm. The feature selected first was the one with the highest linear correlation with the yield
strength (see Tables 4 and 5). All the selected features were computed from separate frequency
components and each of three sensors were included.

The features for strip width and thickness were selected by using the floating search algorithm.
Both models included 10 features, but interestingly none of them were the same between the models.
The strip width model included mostly features computed from the frequency components, whereas
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the thickness model included six features from the band-pass filtered signals and four features
computed from the frequency components. The selected features in each model were computed from
the signals produced by all three sensors. In addition, none of the models included features computed
from the full bandwidth signals.

3.2.4. Residual Analysis

Figure 11 shows the RMSE of the selected models fitted on the complete data set of 752 steel strips
by using the original dimensions of the strip properties divided into specific intervals shown as bins.
The bin sizes are 50 MPa, 50 mm, and 0.5 mm for yield strength, width, and thickness, respectively.
The bars show the RMSE in each bin and the crosses show the number of strips belonging to these bins.
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Figure 11. RMSE of models fitted on the complete data set of 752 steel strips in bins.

The yield strength had relatively high RMSE in general and it was slightly magnified with the higher
yield strengths. The strip width had the highest RMSE with the narrow strips and the singular bin
with three strips centered at 1850 mm. The strip thickness had high RMSE on the bin corresponding to
the lowest thickness (up to 2 mm).

To improve the selected models, the steel strips with 1200 mm width or less and the strips with
2 mm thickness or less were removed from the data set in the next stage. Figure 12 shows the scatter
plots between the reference values and estimated values as black triangles based on the models trained
by using all 752 strips. The remaining 690 strips after the removal of the strips mentioned are illustrated
by the triangles with red dots inside. Figure 13 shows the normal probability plots of the residuals
for the models trained based on the remaining 690 strips. The plots show that most of the residuals
are relatively close to normal distribution but the points at both ends deviate from the dashed line
indicating normal distribution.

3.2.5. Validation of Selected Models

The 690 steel strips used in model validation had the yield strength 210-1639 MPa, width
1223-1875 mm, and thickness 2.04-15.21 mm. The strip properties were min-max scaled to range 0-1 in
order to get comparable modeling results. Table 7 shows the results of the cross-validation and external
validation. The data split was done as explained in Section 2.6.4. The results reveal that the model
for thickness estimation had the best performance from the models based on both RMSE and Ry,
The model for yield strength had slightly higher Ry, than the width model, whereas the model for
width had slightly lower errors based on RMSE. The performance on the external validation set was
slightly better when compared with the cross-validation sets in general.
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Figure 12. Scatter plots between the reference values and estimated values using the full set of 752 strips
and the strips remaining after the removal of narrow (<1200 mm) and thin (<2 mm) strips.
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Figure 13. Normal probability plots of the residuals based on models fitted on the remaining 690 points
after the removal of narrow and thin strips.

Table 7. RMSE and R,y criteria (4 + 0) in cross-validation (CV) and external validation sets for each

strip property by using multiple linear regression.

Yield Strength Width Thickness
RMSE Ruy RMSE Ry RMSE Ry
Training sets (CV) ~ 0.14+001 084001  013£001  082+002  011+£001  0.93+0.01
Test sets (CV) 015+001  084+001  014+001  081+002  012+001 093001
External 013+000  088+000  012+001  087+001  010+000  0.94 = 0.00
validation

Table 8 provides the model coefficients when the complete cross-validation set (552 strips) was
used in model training. The 138 strips in the external validation set were not used in model training,
because these strips were selected as the independent data set for the demonstration of roller leveler
monitoring shown in Section 3.3. The significance test for linear regression [24] indicated that p-values
for the regression coefficients were low (p-value << 0.05) apart from the intercept (8y) in the yield
strength model (p-value = 0.18). Therefore, the regression coefficients can be considered significant for
the models.
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Table 8. Model coefficients (Bg—f19) for the estimation of each strip property.

Coefficient Yield Strength Width Thickness
Bo -0.03 0.48 -0.23
B1 0.62 -0.61 0.57
B2 —-0.60 0.89 —-0.34
B3 0.57 0.25 0.40
Ba 0.51 0.50 —-0.48
Bs —-0.60 0.22
Bs —-0.68 0.52
B7 —-0.52 —-0.47
Bs 1.04 0.53
Bo -0.52 0.46
B1o 0.17 0.35

3.3. Statistical Process Control in Roller Leveler Monitoring

3.3.1. Demonstration with Industrial Data

The moving mean and range charts were used to monitor the difference between the estimated
and reference values with the goal to detect deviations from the expected operation. The MLR models
were trained and the limits for the charts were identified based on the cross-validation set of 552 steel
strips presented in the previous section. The alarm and warning limits for each model are illustrated in
Figure 14 using thick and thin dash lines, respectively.
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Figure 14. Roller leveler monitoring based on moving mean and range charts using the external
validation points.

Figure 14 demonstrates the monitoring based on the 138 steel strips in the external validation set
using the original values of the steel strip properties. Based on the mean charts, the operation remained
inside the warning limits and was therefore in control. In the range chart of yield strength, the upper
alarm limit was crossed around strips number 45 and 100, which indicates that the process was not in
control. In the range charts of strip width and thickness, only the lower warning limit was exceeded by
a few samples. However, it is questionable if the lower limits for range are useful in practice because
the monitored variable is a sample of residuals: The low range in a sample due to low residual values
indicates that the model has a good predictive performance. Furthermore, some crossings of limits can
be expected as the data were not exactly normally distributed, as shown in Figure 13.
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3.3.2. Simulation of Anomalies with the Thickness Model

Two types of anomalies in the signals, including drifts and temporary anomalies, were simulated
with the thickness model to demonstrate the monitoring performance in case the signals give signs of
deviating operation. The positive drift was simulated by multiplying the actual value of variable x; by
a constantly increasing value starting from the 6th point and ending at the last point of the period (138th
point). The applied coefficient increased from 1.01 to 2.33 with the step size 0.01. The negative drift
in xq was simulated similarly by using a decreasing coefficient from 0.99 to —0.33 with step size 0.01.
Moreover, the simultaneous positive drifts in all explanatory variables were simulated by multiplying
all the variables with the increasing coefficients. The positive and negative drifts in variable x; are
illustrated in Figure 15.

T
——Actual value
1.8H Drift upwards —
--------- Drift downwards
1.6 H X Temporary anomalies upwards 7
* Temporary anomalies downwards

Value
o
[e°]

B S —_

10 20 30 40 50 60 70 80 90 100 110 120 130 140
Steel strip

Figure 15. Different anomalies in the explanatory variable x; of thickness model.

In addition, temporary anomalies were simulated with three approaches. In this case, the values
of variable x for the strips number 20, 55, 90, and 135 were multiplied by 1.2, 1.5, 2, and 2.5 to produce
anomalies upwards, and the values were multiplied by 0.8, 0.5, 0, and —0.5 to produce anomalies
downwards, respectively. In the third case, the values of all ten explanatory variables for the same
strips were multiplied by 1.2, 1.5, 2, and 2.5, respectively. The temporary anomalies in variable x; are
illustrated in Figure 15.

The effects of the drifts are demonstrated in Figure 16. Based on the charts, the process got out of
statistical control in each simulation. The warning limits were exceeded in the moving mean charts
earlier during the drifts upwards in comparison to the drift downwards. The drifts in all explanatory
variables resulted in the clearest deviation outside the chart limits. In the range charts, the drifts on all
explanatory variables caused several events where the upper alarm limit was exceeded. The drifts
on x; alone caused several crossings of the upper warning limit and one period of samples above
the upper alarm limit around the 110th strip in the case of drift downwards.

Figure 17 shows the effects of the temporary anomalies on the monitored sample means and ranges
on the charts for the thickness model. This type of anomaly was not indicated as clearly as the drifts in
Figure 16. However, out-of-control events emerged in the range chart around the strip number 90 in
the case of the anomaly upwards. The samples in the mean charts remained between the warning
limits. These results confirm that the moving mean is not sensitive to the relatively small momentary
changes. Instead, this suggests that the approach is more suitable for the monitoring of long-term
changes such as the drifts.
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Figure 16. Control charts for the strip thickness in cases with drift upwards in the first explanatory
variable (left), drift downwards in the first explanatory variable (middle), and drift upwards in all ten

explanatory variables (right).
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Figure 17. Control charts for the strip thickness in cases with temporary anomalies upwards in the first
explanatory variable (left), temporary anomalies downwards in the first explanatory variable (middle),
and temporary anomalies upwards in all ten explanatory variables (right).

4. Discussion

4.1. Significance of Selected Features

The features were selected computationally without previous knowledge on their exact relation
to the monitored steel strip properties. However, the results suggest that the steel strip properties
and the characteristics of the vibration signals had strong correlation with each other. The clearest
indication was given by the correlations of individual features especially with strip thickness in
Table 4 (Section 3.1). The strip width generally had the lowest correlations with individual features,
but the signals from the sides of the track had slightly stronger correlations than the one in the middle.
This indicates that the sensor location is important for the width estimation. On the contrary, the signal
from the sensor in the middle had stronger correlations with yield strength compared with the signals
from the other two sensors. These correlations are perhaps affected more by the measurement procedure
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than by the physical properties of the steel strips. When the features were combined from all signals by
using MLR, the correlations were improved as shown by the results in Table 7. This indicates that
the features were relevant for the statistical modeling purpose, but more research is required on their
practical application.

The tested feature selection approaches were suboptimal, which has a great influence on the selected
combinations in high-dimensional data sets. The size of partitions in cross-validation and the selected
performance criteria have some influence on the features selected based on the wrapper methods.
The selected feature combinations are therefore case-specific to the approach used.

The results reveal that the approach benefitted from the frequency filtering and from the use of
frequency bins before calculating the statistical features. The explanatory variables for strip thickness
included many features sensitive to shocks, such as 10/, I, and I1p, which also indicates that the shocks
caused by the flying shear influenced the trained models. The shocks caused by cutting presumably
improved the model accuracy, because the effects of shocks in the signals correlate strongly with strip
thickness; see also [6].

4.2. Practical Challenges

In the presented approach, complete leveling events were analyzed without information on
the momentary parameters of the machine. The leveling process is not stationary, and it has different
stages, as shown by the signal in Figure 4. The computed feature values, which describe the whole
event in its entirety, thus have a relatively high variance. This was shown by the model performance
and especially the overfitting of GRNN (see Section 3.2.1) can be partially explained by such variation.

The duration of the whole leveling event can be relatively long, which is shown in Figure 4.
This causes computational burden to signal filtering and feature extraction. Therefore, the practical
monitoring should be done based on short segments, in the order of a few seconds. To identify
the appropriate segments reliably, additional variables of the machine operation would be needed.
Moreover, signal downsampling techniques [59] or efficient algorithms for data stream processing [60]
could provide alternative solutions if the loss of essential information carried by the signals can
be avoided.

Moreover, the regression coefficients in MLR with opposite signs (see Table 8) may cancel
the detection of deviating operation manifested by many features simultaneously. However, this is
not necessarily a major disadvantage, as shown in Section 3.3.2 where the values of multiple features
increased in the drift simulation and the deviation was nonetheless detected. It is also possible to
define the typical operational ranges for the explanatory variables based on the steel strip properties
and other machine parameters which might help in such contradictory situations.

4.3. Suggestions and Future Considerations

The approach could be complemented by acquiring additional information about the operation,
such as motor power, rotational speed, or torque signals, which are synchronized with vibration signals.
The variance in the features used as explanatory variables in the models (see Figure 7) could be reduced
as a result of the more precise identification of the different operational states of the machine. It could be
advantageous to identify different models for the start, middle part, and the end of the leveling process.
The use of models specific to different rotational speeds or ranges of the strip properties could further
improve the modeling accuracy, and tighter control limits could then be defined on the SPC charts.
However, the improvement in the accuracy could lead into an increased need for the model updating
due to the changes in the machine operation or processed materials. Therefore, the techniques for
the model adaptation to different local operating regimes [61], concept drift adaptation [62], and soft
sensor adaptation [63] could be useful for the practical application.

The measurements were done only in the horizontal direction. The measurement of vertical
acceleration could improve the accuracy of the method, because the forces in that direction are highly
dependent on the processed material. Moreover, the correlations in Table 4 showed that the sensors on
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the side of the track had stronger correlations with strip width than the one in the middle. Additional
sensors positioned crosswise across the roller track could improve the width estimation.

The principal target of application for this kind of monitoring would be in the condition monitoring
of the machine supporting the CBM approach. If the operation deviated from the expected, a more
detailed diagnosis could be initiated. Moreover, the method could be supplemented by the typical
operational ranges of the explanatory variables at specific strip width, yield strength, and thickness areas.
This would reveal the characteristics of vibration which are deviating from the expected. Increased
values on features sensitive to shocks could be the result of local defects in rotating components,
for example. An additional target could be the detection of an incorrect steel strip or strip property if
the variation in the data was reduced and model accuracy further improved.

5. Conclusions

An approach to the monitoring of industrial roller levelers based on regression models was
proposed. The models were used to estimate steel strip properties based on statistical features computed
from acceleration signals. The residuals of the models were monitored using moving mean and range
charts, the limits of which were identified based on the previous operation of the machine. The results
indicate that the approach benefitted from frequency filtering the acceleration signals—either using
specific bands or singular frequency bins—before feature calculation. The mathematical transformations
of these features further improved their correlation with the steel strip properties, including the yield
strength, width, and thickness of the strips. The best feature combinations were identified with
wrapper algorithms, but especially the floating search algorithm required a long computation time,
which limits its applicability on high-dimensional data sets, such as the used one with 144,000 separate
features. The generalized regression neural network suffered from overfitting presumably due to
the noisy input data, i.e., the unexplainable variation in the features, whereas multiple linear regression
performed well in this respect. The approach to roller leveler monitoring could be further improved
with additional information on the momentary operation of the machine, such as motor power or
rotational speed. The tested approach could be applicable also on other types of machines, which
process materials or have operational parameters that correlate strongly with the measured vibration.
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