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Abstract: Enhanced efficiency of heavy-duty truck powertrains with constraints imposed on noise,
vibration, and harshness requires novel solutions for torsion vibrations attenuation. In the paper,
the weight-vibration Pareto optimization problem for a novel vibration absorber, a triple mass
flywheel, for application in heavy-duty truck powertrains is considered. Global sensitivity analysis
and Pareto optimization method are used to design a novel vibration absorber. The optimization
method attempts to minimize oscillations of the torque at the transmission input shaft as well as
to minimize total mass inertia of the absorber. It is shown that there exists a Pareto front between
the measure of the attenuation of oscillations of the torque and the total mass inertia of a triple
mass flywheel. The optimized design parameters for the absorber are obtained that provide the best
attenuation of oscillations of the torque at the transmission input shaft for different mean values of
the engine driving torque. The analysis shows real evidence of the feasibility of the application of
this concept of vibration absorbers in heavy-duty truck powertrains. It is also shown that optimized
design parameters of a triple mass flywheel put this concept in a superior position in comparison
with a dual mass flywheel.

Keywords: triple mass flywheel; heavy-duty truck powertrain; weight-vibration Pareto optimization;
dual mass flywheel; torsional vibration absorbers

1. Introduction

The demand for higher efficiency of vehicle powertrain systems requires the development of
novel drivetrain functional components. For instance, the heavy-duty truck industry struggles to
develop down-sized and down-speeded engines and higher cylinder pressure. This leads to more
excitation coming to the transmission and requires advancing the available solutions for noise and
vibration attenuation, making the design of efficient vibration absorbers for drivetrains of heavy-duty
trucks a big challenge.

One of the well-known vibration absorbers for drivetrains of ground vehicles is a dual mass
flywheel (DMF). The DMF was a subject of intensive research [1–8], and has been used in passenger
car since the 1980s [9]. To increase the quality of vibration attenuation, the concept of a DMF began
to be modified by incorporating additional spring-mass components by combining with a so-called
centrifugal pendulum vibration absorber, and additional absorbers with smooth and non-smooth
nonlinearities [9–14]. Interesting research is ongoing on the development of controlled DMF for torsional
vibration attenuation in powertrain systems using controllable magnetorheological elastomeric springs
and an appropriate controller design [15–17].

In heavy-duty truck drivetrains, the conventional single mass flywheel is still in use. However,
increasing demand for a higher efficiency of truck powertrains requires novel solutions. The research is
ongoing both in academia as well as in industry to understand if a DMF as well as other multiple-mass
absorbers are suitable for application in powertrains of heavy-duty trucks [18–24]. The idea of tuned
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mass damper, successfully used in a variety of engineering applications [25–29], was also applied
to modify a DMF performance. In recent work [19,21,22], DMFs with and without a tuned mass
damper were studied for application to the powertrain of a heavy-duty truck. It was concluded that an
optimally design tuned mass damper could reduce the amplitude of oscillations of the torque at the
transmission input shaft more than corresponding conventional DMF. Using multiple-mass absorbers,
for example, a DMF with a tuned mass damper, a decrease in the level of vibration in heavy-duty truck
powertrains is feasible. However, most probably, a larger installation space will be needed for novel
absorbers [19,22–24]. The latest calls for optimization of multiple-mass absorbers consider constraints
on installation space, weight, reliability, cost, and so on. Different numerical methods are available
to optimize structure and performance of engineering systems; see, for example, [30–36]. A new
method for optimizing the parameters of torsional vibration absorbers is presented in [32]. Topology
optimization problems with specified eigenfrequencies and eigenmode shapes are considered in [34].
Design optimization for composite structures operating in acoustic environments by using Newton’s
method is studied in [35].

In the present paper, both the requirement on the level of vibration attenuation and the
restrictions on the installation space and weight are combined by considering the weight-vibration
Pareto optimization (WV-PO) problem of torsional vibration absorbers for application in heavy-duty
truck powertrains. The bi-objective optimization problem is solved using the genetic algorithm—
an optimization technique that has biological origins and works based on probabilistic searching [33].
Two concepts of vibration absorbers are studied: a triplemass flywheel and a conventional DMF.
A triple mass flywheel (TMF) is a novel concept of multiple-mass vibration absorbers with several
advantages in comparison with a conventional DMF [37]. The TMF is described and the mathematical
model of a generic vehicle drivetrain equipped with this absorber is derived in Section 2. The results
of the global sensitivity analysis of a TMF are presented in Section 3, showing the effect of variation
of structural parameters on vibration attenuation, absorber’s total mass inertia, and friction between
the flywheels. The problem of weight-vibration Pareto optimal design of a TMF is formulated with
focus on their application in heavy-duty trucks powertrains and the solution is presented in Section 4.
The obtained results are discussed in Section 5 in comparison with the corresponding results for
weigh-vibration Pareto optimized DMF. The paper is finalized with conclusions and an outline of
future research.

2. Modelling

Figure 1 shows a schematic illustration of a portion of a vehicle drivetrain. The drivetrain includes
an engine (E), a triple mass flywheel (TMF), and a load transmission system (LTS) that receives driving
power from a TMF. The TMF comprises a primary wheel pw that receives rotational driving torque
from engine, a tertiary wheel tw, and a secondary wheel sw that provides the driving power to the
transmission system.

In Figure 1, ϕp,ϕt,ϕs are absolute angles of rotation of the pw, the tw, and the sw, respectively;
Jp, Jt, Js are axial moments of inertia of the pw, the tw, and the sw, respectively; kps, cps, kpt, cpt, kts, cts are
coefficients of torsional stiffness and torsional damping between the pw and the sw, the pw and the tw,
and the tw and the sw, respectively. The crank mechanism inertia is not included in the Jp, and the
inertia of the members located downstream the secondary flywheel is not included in the Js.

Using a free-body diagram, the equations of torsional vibration dynamics of the drivetrain
equipped with a TMF are written as follows:

Jp
..
ϕp = Te(t) − T f ps(t) − T f pt(t), Js

..
ϕs = T f ps(t) + T f ts(t) − Tg(t), Jt

..
ϕt = T f pt(t) − T f ts(t). (1)

Here, in Equations (1) Te(t), Tg(t) are the engine driving torque and the torque at the transmission
input shaft, respectively.
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Figure 1. A schematic illustration of a portion of a vehicle drivetrain with a triple mass flywheel (TMF).
LTS, load transmission system.

To evaluate the friction torques T f ps(t), T f pt(t), T f ts(t) at the stiffness-damping interface between
the wheels of a TMF, it is important to choose the appropriate friction model. Early on, this question
was studied using simulations and experimental data obtained on a test rig with the dual mass
flywheel [18,24]. In simulations, the non-linear LuGre friction model was used [38]. It was shown that
the proposed system model with LuGre friction reproduces the behavior of the dual mass flywheel
sufficiently well, and the viscous part of the friction is dominant for the analyzed cases.

In this work, the torques at the stiffness-damping interface between the wheels of a TMF will be
defined by the following expressions:

T f ps(t) = kps(ϕp −ϕs) + cps(
.
ϕp −

.
ϕs), T f pt(t) = kpt(ϕp −ϕt) + cpt(

.
ϕp −

.
ϕt),

T f ts(t) = kts(ϕt −ϕs) + cts(
.
ϕt −

.
ϕs).

(2)

Equations (1), together with the expressions (2) and the initial state
ϕp(t0) = ϕ0

p, ϕs(t0) = ϕ0
s , ϕt(t0) = ϕ0

t ,
.
ϕp(t0) =

.
ϕ

0
p, .

ϕs(t0) =
.
ϕ

0
s , .

ϕs(t0) =
.
ϕ

0
s ,

constitute the mathematical model of the vehicle drivetrain equipped with a TMF.
Note that the considered TMF inherently comprises five different concepts of torsional vibration

absorbers. The first concept is depicted in Figure 1 and corresponds to the case when all three flywheels
are interconnected via stiffness and damping components. This concept of the absorber will be
termed as psptsTMF. When the tertiary flywheel is not connected to the secondary flywheel, that is,
for kts = cts = 0, Figure 1 presents the concept of the absorber termed as psptTMF. In the case when the
tertiary flywheel is not connected to the primary flywheel, that is, for kpt = cpt = 0, Figure 1 presents
the third concept of the absorber-pstsTMF. If there is no coupling between the primary and secondary
flywheels, that is, for kps = cps = 0, Figure 1 will represent the fourth concept of the absorber termed
ptsTMF. Finally, if the tertiary flywheel is absent, then the absorber becomes a conventional DMF and
Equations (1), together with the first expression in Equation (2), and conditions of

Jt = kpt = kts = cpt = cts = 0 (3)

describe the torsional vibration dynamics of the vehicle drivetrain with a conventional DMF.
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In addition to the sketch of the TMF depicted in Figure 1, several sketches of the TMF can be
found in [37] with a detailed description of the components, giving an understanding of practical
possible difficulties in the design of triple mass absorbers. In making TMF for applications in vehicle
powertrains, possible practical difficulties can arise owing to limited installation space, reliability of
components, and cost, among others.

Below, all above introduced concepts of the torsional vibration absorbers are subject for
optimization and analysis.

The torsional vibration dynamics of the system in question will be studied on the set of drivetrain
operational scenarios defined by the expression

OSs =
{
Te(t), Tg(t), q(t), t ∈ [t0, t f ], d ∈ Ω

}
, (4)

where
Te(t) = Tm + ae sin(ωn0 t), ωn0 = n0ω , ω = 2πne/60 , (5)

Tg(t) = kv(ϕs −ϕv) + cv(
.
ϕs −

.
ϕv), ϕv(t) = ωvt . (6)

Here, in expressions (4)–(6), the engine driving torque Te(t) is modelled by the constant mean
torque Tm plus harmonic function describing the torque excitation; ωn0 is the n0-engine order vibration
frequency, that is, n0 times the angular velocity ω; and ne is the engine speed in rpm. The torque at the
transmission input shaft Tg(t) is modelled by the expressions (6), and kv, cv are equivalent torsional
stiffness and damping coefficients of the load transmission system, and ϕv,ωv are absolute angle of
rotation and angular velocity of the transmission input shaft. q(t) = [ϕp(t),ϕs(t),ϕt(t)]

T is a vector of
generalized coordinates, d = [Jp, Js, Jt, kps, cps, kpt, cpt, kts, cts]

T is a vector of design parameters of a TMF,
and Ω is a set of admissible values of the design parameters.

The third engine order vibration harmonic is focused on in the analysis as one of the most
significant contributions to the oscillatory response in the drivetrain system of heavy-duty trucks with
four-stroke, six-cylinder engines [24], that is, in all simulations, the engine order vibration frequency
n0 is chosen to be equal to 3. The engine speed ne was chosen in the range of 600 rpm–2000 rpm.
The values for the parameters of the torque Tg(t) at the transmission input shaft are as follows:
kv = 100,000 Nm/rad, cv = 0.1 Nms/rad, and ωv = ωn0 /3.

3. Global Sensitivity Analysis

Consider the vector

d = [Jp, Js, Jt, kps, cps, kpt, cpt, kts, cts]
T = [d1, . . . , d9]

T
∈ Ω, (7)

and the objective functions

F1(d) =

2000∫
600

std(Tg[d, ne])dne, F2(d) = Jp + Js + Jt, (8)

F3(d) =

2000∫
600

std(T f ps[d, ne])dne, F4(d) =
2000∫
600

std(T f pt[d, ne])dne, (9)

F5(d) =

2000∫
600

std(T f ts[d, ne])dne, (10)

as the vector of design parameters and the quality measures of performance of a TMF. The objective
function F1(d) characterizes the standard deviation of oscillations of the torque at the transmission input
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shaft in the operating engine speed range 600 rpm ≤ ne ≤ 2000 rpm The function F2(d) characterizes
the mass inertia of a TMF and is relevant for estimation of the total weight and installation space of the
absorber. The objective functions (9) and (10) characterize the friction torques and energy dissipation
at the stiffness-damping interface of a TMF.

In this paper, the global sensitivity analysis (GSA) is used to study how the variation of the design
parameters affect the chosen objective functions Fm(d), m = 1, ...5. The total sensitivity index of the
objective function Fm(d) is determined by the following expression [39]:

ST
i (Fm) ≈

1− α2
i /βi

1−
(∏k

j=1 α
2
j /β j

) . (11)

Here, α j ≈
N∑

l=1
w jlFm

(
d jl, c− jl

)
, β j ≈

N∑
l=1

w jl
[
Fm

(
d jl, c− jl

)]2
, Fm(di, c−i) denotes the function value

for the case that all inputs except di are fixed at their respective cut point coordinates, c = [c1, . . . , ck]
T;

N is the total number of integration points; and d jl and w jl are the lth Gaussian integration abscissas
and corresponding weight, respectively. More details on the algorithm of the GSA and its application
can be found in [19,39–41].

The following problem is formulated.

Problem GSA. For given feasible operational scenario O
~
S ∈ OSs defined by the expressions (4)–(6),

it is required, using relationship Equation (11), to determine the total sensitivity indices ST
i (Fm) of the

objective functions (8)–(10) for all varying design parameters Equation (7), subject to Equations (1),
given the initial state and the restriction d ∈ Ω.

The solution of the Problem GSA was obtained by using in-house developed computer code
SAMO [42]. The SAMO stands for Sensitivity Analysis and Multi-objective Optimization (SAMO)
and is a computer code implemented in MATLAB© to carry out a computationally efficient global
sensitivity analysis and multi-objective optimization of engineering systems. The sensitivity analysis
works based on the multiplicative dimensional reduction method [39]. To carry out the multi-objective
optimization the genetic algorithm is used [33]. More details how simulation is conducted can be
found in SAMO Tutorial [42].

The nominal values of the absorber’s design parameters were chosen as follows:

Jp = 1.8 kgm2, Js = 0.9 kgm2, kps = 12732 Nm/rad, cps = 30 Nms/rad (12)

Jt = 0.3 kgm2, kpt = kts = 2000 Nm/rad, cpt = cts = 30 Nms/rad. (13)

The values of the design parameters (12) are feasible for application of the DMF in heavy-duty
truck drivetrain systems [24].

The analysis was done using nominal values (12) and (13), a normal distribution of the varying
parameters with coefficient of variation equal to 0.1, and the following lower and upper bounds for
design parameters:

Ω =

{
Jp ∈ [0.2, 2.4], Js ∈ [0.1, 1.2], Jt ∈ [0.05, 0.45]
kps, kpt, kts ∈ [2000, 12, 000], cps, cpt, cts ∈ [0, 150]

}
. (14)

The solutions of problem GSA obtained for the psptsTMF in the case of low and high levels of mean
value of engine driving torque Te(t) in the operation engine speed range 600 rpm ≤ ne ≤ 2000 rpm are
shown in Figure 2a,b. The solution is presented by means of mapping between the design parameters
Jp, Js, Jt, kps, cps, kpt, cpt, kts, cts and the values of the total sensitivity indices of the objective functions
(8)–(10).



Machines 2020, 8, 50 6 of 13

Machines 2020, 8, x FOR PEER REVIEW 6 of 13 

 

[0.2,2.4], [0.1,1.2], [0.05,0.45]
.

, , [2000,12 000], , , [0,150]
p s t

ps pt ts ps pt ts

J J J
k k k c c c

∈ ∈ ∈  Ω =  ∈ ∈  ，
 (14) 

The solutions of problem GSA obtained for the psptsTMF in the case of low and high levels of 
mean value of engine driving torque ( )eT t  in the operation engine speed range 
600rpm 2000rpmen≤ ≤  are shown in Figure 2a,b. The solution is presented by means of mapping 
between the design parameters , , , , , , , ,p s t ps ps pt pt ts tsJ J J k c k c k c  and the values of the total sensitivity 
indices of the objective functions (8)–(10). 

  
(a) (b) 

Figure 2. Sensitivity indices of the objective functions (8)–(10) for the drivetrain equipped with the 
psptsTMF: (a) for 300Nm, 500Nmm eT a= = ; (b) for 3000Nm, 3000Nmm eT a= = . 

4. Weight-Vibration Pareto Optimization  

The Pareto optimization problem for the vehicle drivetrain equipped with a TMF is formulated 
as follows. 

Problem WV-PO. For given feasible operational scenario s∈OS OS  defined by the expressions 
(4)–(6), it is required to determine the vector of the design parameters of the TMF 

* * * * * * * * * *[ , , , , , , , , ] ,T
p s t ps ps pt pt ts tsJ J J k c k c k c= =d d  (15) 

and the vector of generalized coordinates *( ) ( )t t=q q  that satisfy the system of variational Equations 

{ }

2000 2000
* * *

1
600 600

* * *
max max

1 1( [ ( ), , ]) ( [ ( ), , ]) ( )
,

( ) / ( ) /

min

min

g e e g e e
m m

p s t p s t

std T t n dn std T t n dn F
T T

J J J J J J J J

∈Ω

∈Ω

    = =     
 + + = + +


 
d

d

q d q d d
 (16) 

subject to differential Equations (1), given initial state and the restrictions on the design parameters 
Equation (14). 

The Equation (16) express the requirements on the vector of design parameters *d  and the 
vector of generalized coordinates * ( )tq  to guarantee the best attenuation of oscillation of the torque 
at the transmission input shaft, and at the same time to minimize the total mass inertia of the vibration 
absorber. 

The solutions of the problem WV-PO for all five torsional vibration absorbers, that is, for the 
psptsTMF, the psptTMF, the pstsTMF, the ptsTME, and for the DMF, were obtained using the 
computer code SAMO [42]. The setting of the genetic algorithm for optimization was as follows: 
population size = 100, number of generations = 100, elite count = 4, and Pareto fraction = 1. 

Figure 2. Sensitivity indices of the objective functions (8)–(10) for the drivetrain equipped with the
psptsTMF: (a) for Tm = 300 Nm, ae = 500 Nm ; (b) for Tm = 3000 Nm, ae = 3000 Nm .

4. Weight-Vibration Pareto Optimization

The Pareto optimization problem for the vehicle drivetrain equipped with a TMF is formulated
as follows.

Problem WV-PO. For given feasible operational scenario O
~
S ∈ OSs defined by the expressions

(4)–(6), it is required to determine the vector of the design parameters of the TMF

d = [J∗p, J∗s , J∗t , k∗ps, c∗ps, k∗pt, c∗pt, k∗ts, c∗ts]
T = d∗, (15)

and the vector of generalized coordinates q(t) = q∗(t) that satisfy the system of variational Equations
min
d∈Ω

 1
Tm

2000∫
600

std(Tg[q(t), d, ne])dne

 = 1
Tm

2000∫
600

std(Tg[q∗(t), d∗, ne])dne = F̃1(d∗)

min
d∈Ω

{
(Jp + Js + Jt)/Jmax

}
= (J∗p + J∗s + J∗t )/Jmax

, (16)

subject to differential Equations (1), given initial state and the restrictions on the design parameters
Equation (14).

The Equation (16) express the requirements on the vector of design parameters d∗ and the
vector of generalized coordinates q∗(t) to guarantee the best attenuation of oscillation of the torque
at the transmission input shaft, and at the same time to minimize the total mass inertia of the
vibration absorber.

The solutions of the problem WV-PO for all five torsional vibration absorbers, that is, for the
psptsTMF, the psptTMF, the pstsTMF, the ptsTME, and for the DMF, were obtained using the computer
code SAMO [42]. The setting of the genetic algorithm for optimization was as follows: population size
= 100, number of generations = 100, elite count = 4, and Pareto fraction = 1.

The Pareto fronts between the normalized objective functions F̃1(d) = 1
Tm

2000∫
600

std(Tg[q(t), d, ne])dne

and F̃2(d) = (Jp + Js + Jt)/Jmax, obtained by solving the above formulated optimization problem,
are shown in Figure 3a,b.



Machines 2020, 8, 50 7 of 13

Machines 2020, 8, x FOR PEER REVIEW 7 of 13 

 

The Pareto fronts between the normalized objective functions 
2000

1
600

1( ) ( [ ( ), , ])g e e
m

F std T t n dn
T

= d q d  

and 2 max( ) ( ) /p s tF J J J J= + +d , obtained by solving the above formulated optimization problem, are 
shown in Figure 3a,b. 

 
(a) 

 
(b) 

Figure 3. Pareto fronts for the drivetrain with the TMF in operating engine speed range 
600rpm 2000rpmen≤ ≤ : (a) for 300 , 500m eT Nm a Nm= = ; (b) for 3000 , 3000m eT Nm a Nm= = ; 

2
max 4.05J kgm= . DMF, dual mass flywheel. 

The red curves in Figure 3a,b correspond to the results of weight-vibration bi-objective 
optimization of the TMF with respect to all design parameters Equation (15). The green curves are 

Figure 3. Pareto fronts for the drivetrain with the TMF in operating engine speed range
600 rpm ≤ ne ≤ 2000 rpm: (a) for Tm = 300 Nm, ae = 500 Nm; (b) for Tm = 3000 Nm, ae = 3000 Nm;
Jmax = 4.05kg m2. DMF, dual mass flywheel.

The red curves in Figure 3a,b correspond to the results of weight-vibration bi-objective optimization
of the TMF with respect to all design parameters Equation (15). The green curves are the Pareto fronts
of optimization of the TMF in the case of kps = cps = 0. The black curves correspond to the results of
optimization for the drivetrain equipped with the DMF, that is, to the solution of problem WV-PO when
the structure of the TMF satisfies the conditions Equation (3). The blue curves are the Pareto fronts
obtained in case when the tertiary flywheel is connected only to the secondary flywheel. The yellow
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curves represent the results of weight-vibration bi-objective optimization of the TMF with tertiary
flywheel connected only to the primary flywheel.

Every point of the Pareto front corresponds to the vector of the design parameters d∗ and
the respective vector of generalized coordinates q(t) = q∗(t) of the absorber. The obtained
values of the design parameters Equation (15) minimizing the objective function

F̃1(d) = 1
Tm

2000∫
600

std(Tg[q(t), d, ne])dne for the considered vibration absorbers in operating engine

speed range 600 rpm ≤ ne ≤ 2000 rpm with the mean value of the engine driving torque Tm = 300 Nm
and the amplitude of its harmonic excitation ae = 500 Nm, as well as for the Tm = 3000 Nm and
ae = 3000 Nm, are presented in Tables 1 and 2, respectively.

Table 1. Results of the solution of problem weight-vibration Pareto optimization (WV-PO), Tm = 300 Nm,
ae = 500 Nm. TMF, triple mass flywheel; DMF, dual mass flywheel.

Optimized Design Parameters

d*=[J*
p,J*

s,J*
t ,k*

ps,c*
ps,k*

pt,c
*
pt,k

*
ts,c*

ts]
T psptsTMF psptTMF

(kts = cts = 0)
pstsTMF

(kpt = cpt = 0)
ptsTMF

(kps = cps = 0)
DMF
Jt = 0

J∗p, (kgm2) 1.48 1.67 1.98 1.50 2.34

J∗s , (kgm2) 0.11 0.10 0.10 0.11 0.10

J∗t , (kgm2) 0.34 0.08 0.35 0.14 -

k∗ps, (Nm/rad) 2683 3132 3165 - 3938

c∗ps, (Nms/rad) 18 21 27 - 30

k∗pt, (Nm/rad) 6216 7399 - 3033 -

c∗pt, (Nms/rad) 12 74 - 91 -

k∗ts, (Nm/rad) 2764 - 7502 4995 -

c∗ts, (Nms/rad) 12 - 29 9 -

F̃1(d∗), (-) 110 117 114 95 118

J = Jp + Js + Jt, (kgm2) 1.93 1.85 2.43 1.75 2.44

Table 2. Results of the solution of problem WV-PO, Tm = 3000 Nm, ae = 3000 Nm.

Optimized Design Parameters

d*=[J*
p,J*

s,J*
t ,k*

ps,c*
ps,k*

pt,c
*
pt,k

*
ts,c*

ts]
T psptsTMF psptTMF

(kts = cts = 0)
pstsTMF

(kpt = cpt = 0)
ptsTMF

(kps = cps = 0)
DMF
Jt = 0

J∗p, (kgm2) 1.44 1.43 1.98 1.30 1.88

J∗s , (kgm2) 0.11 0.11 0.10 0.11 0.11

J∗t , (kgm2) 0.40 0.07 0.35 0.08 -

k∗ps, (Nm/rad) 2843 3201 3334 - 3069

c∗ps, (Nms/rad) 25 25 37 - 33

k∗pt, (Nm/rad) 6332 7190 - 4309 -

c∗pt, (Nms/rad) 17 71 - 124 -

k∗ts, (Nm/rad) 3786 - 7349 5142 -

c∗ts, (Nms/rad) 18 - 29 14 -

F̃1(d∗), (-) 94 98 96 86 99

J = Jp + Js + Jt, (kgm2) 1.94 1.61 2.43 1.49 1.99
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5. Discussion

The chosen objective functions (8)–(10) are appropriate to focus the design process for the vibration
absorber on the best attenuation of the oscillation of the torque at the transmission input shaft,
to minimize total mass inertia, as well as to analyze the energy dissipation in the stiffness-damping
interface of the absorber.

The results of the GSA of the performance of TMF, presented in Section 3 (Figure 2a,b), make it
possible to conclude the following. For the drivetrain system in the operating engine speed range
600 rpm ≤ ne ≤ 2000 rpm , with both low and high mean values of the engine driving torques,
the moment of inertia of the primary flywheel, Jp, as well as the stiffness between the primary and
secondary flywheels, kps, mostly affect the oscillation of the torque at the transmission input shaft
and the energy dissipation of the vibration absorber (Figure 2a,b, sensitivity indices for F1(d) and
F3(d)). The energy dissipation in the stiffness-damping interface between the primary and the tertiary
flywheels, and between the tertiary and the secondary flywheels, are mostly affected by the moment
of inertia of the tertiary flywheel, Jt, and the parameters kpt,cpt and kts,cts , respectively, (Figure 2a,b,
sensitivity indices for F4(d) and F5(d)).

The solutions of the Pareto optimization problem, presented in Section 4, show that there exists a
trade-off between the measure of the oscillation attenuation of the torque at the transmission input
shaft and the total mass inertia characteristic of the drivetrain system equipped with the TMF in the
operating engine speed range 600 rpm≤ ne ≤ 2000 rpm for both low and high mean values of the engine
driving torques (Figure 3a,b). Analysis of the obtained Pareto fronts shows that at least two concepts
of the TMF, namely the ptsTMF (green curves) and the psptTMF (yellow curves), are in significant
superior positions in comparison with the optimized DMF (black curves). As follows from the values
of F̃1(d∗) for the ptsTMF and the DMF (Tables 1 and 2), the use of the optimized in the drivetrain
system improves up to 20% the attenuation of the oscillations of the torque at the transmission input
shaft in comparison with the attenuation of the oscillations of the torque in the case of using the
optimized DMF.

The standard deviation of the torques at the transmission input shaft as a function of the engine
speed ne in the range of 50 rpm ≤ ne ≤ 2000 rpm are depicted in Figure 4a,b for the DMF with nominal
design parameters (12) (dashed curve), and for the weight-vibration optimized DMF (solid black
curve), the ptsTMF (green curve), and the psptsTMF (red curve). Zoomed plots of these curves are
presented in Figure 5a,b, respectively.
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Figure 4. Engine speed history of standard deviation of the torques at the transmission input shaft for
the DMF with nominal values of design parameters (12) and for vibration absorbers with obtained
optimized design parameters: (a) for Tm = 300 Nm, ae = 500 Nm; (b) for Tm = 3000 Nm, ae = 3000 Nm.
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Figure 5. Zoomed plots of the engine speed history of the standard deviation of the torques at the
transmission input shaft for the DMF with nominal values of design parameters (12) and for optimized
vibration absorbers: (a) for Tm = 300 Nm, ae = 500 Nm; (b) for Tm = 3000 Nm, ae = 3000 Nm.

Analysis of Figures 4 and 5 shows that, using weight-vibration optimized absorbers, the efficiency
of the attenuation of the oscillations of the torque at the transmission input shaft in the drivetrain
system has significantly increased in comparison with the performance of the DMF with nominal
design parameters. Both resonance peaks of the dashed curves are significantly reduced in the case of
using the weight-vibration optimized DMF, the ptsTMF, as well as the psptsTMF. The best attenuation
of the oscillations of the torque at the transmission input shaft in the drivetrain system is provided by
the weight-vibration optimized ptsTMF (green curves in Figures 4 and 5).

Figure 6a,b present the time history of the torques at the transmission input shaft in the drivetrain
system for operating engine speed ne = 1200rpm, illustrating how much the weight-vibration
optimized DMF (solid black curve), the ptsTMF (green curve), and the psptsTMF (red curve) enhance
the attenuation of the torque oscillations in comparison with the DMF with nominal design parameters
(12) (dashed curve).
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Figure 6. The torques at the transmission input shaft for operating engine speed ne = 1200 rpm for the
DMF with nominal values of design parameters (12) and for vibration absorbers with obtained optimized
design parameters: (a) for Tm = 300 Nm, ae = 500 Nm; (b) for Tm = 3000 Nm, ae = 3000 Nm.

The quantitative analysis of the obtained values of the design parameters shows that the
weight-vibration Pareto optimization of all five concepts of the TMF resulted in much lower values of
the total mass inertia J = Jp + Js + Jt of the optimized absorbers in comparison with the total mass
inertia of the nominal DMF (see the last rows in Tables 1 and 2, and the design parameters (12)).
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For instance, the total mass inertia of the optimized pstTMF is up to 28% less in comparison with the
total mass inertia of the optimized DMF (see Table 1). The above mentioned is a significant advantage
of the weight-vibration optimized TMF for its implementation in real drivetrain systems.

6. Conclusions and Outlook

The results obtained demonstrate the efficiency of the methodology based on global sensitivity
analysis and Pareto optimization for the design of novel multiple-mass torsional vibration absorbers
for vehicle powertrains. The methodology can also be used for multi-objective optimal design of
torsional vibration absorbers for other rotor-dynamical systems subjected to oscillatory excitations.
The following concluding remarks can be drawn.

• There exists evidence of feasibility of the application of weight-vibration optimized triple mass
flywheels in heavy-duty trucks powertrains.

• For a heavy-duty truck powertrain equipped with a triple mass flywheel, there exists the
weight-vibration bi-objective optimized mass inertia, as well as stiffness and damping parameters
providing the trade-off between the level of attenuation of the oscillations of the torque at the
transmission input shaft and the total mass inertia of the absorber in the operating engine speed
range 600 rpm ≤ ne ≤ 2000 rpm when the third engine order vibration harmonic is in focus.

• The weight-vibration optimized design parameters of a triple mass flywheel providing the best
attenuation of oscillations of the torque at the transmission input shaft can put this concept in a
superior position in comparison with the weight-vibration optimized dual mass flywheel.

The above-mentioned points highlight the advantages of triple mass flywheels for technology of
torsional vibration attenuation in vehicle powertrains.

Design optimization problems for a triple-mass flywheel within a complete model of a drivetrain
system of a heavy-duty truck, as well as validation of the results obtained using experimental data, are
important steps for future research [18,43].
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