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Abstract: A thorough assessment of Life-Cycle effects involved by vehicle lightweighting needs
a rigorous evaluation of mass-induced consumption, on which energy and sustainability benefits
during use stage directly depend. The paper proposes an analytical calculation procedure to estimate
the weight-related energy consumption of pure Electric Vehicles (EVs), since existing literature
leaves considerable room for improvement regarding this research area. The correlation between
consumption and mass is expressed through the Energy Reduction Value (ERV) coefficient, which
quantifies the specific consumption saving achievable through 100 kg mass reduction. The ERV is
estimated for a number of heterogeneous case studies derived from real 2019 European market EV
models and according to three drive cycles, to consider different driving behaviors. For the case
studies under consideration, ERV ranges from 0.47 to 1.17 kWh/(100 km × 100 kg), with the variability
mainly depending on vehicle size and driving cycle. Given the high uncertainty of mass-related
consumption on car size, an analytical method is refined to estimate accurately the ERV for any
real-world EV model, starting from vehicle technical features. Along with energy assessment, the
research also evaluates the environmental implications of lightweight design by means of the Impact
Reduction Value (IRV), which is estimated for three distinct electricity grid mixes. Finally, the ERV/IRV
modeling approach is applied to a series of comparative lightweight case studies taken from the
literature. Such an application demonstrates the effective utility of the work to reduce the uncertainty
for all cases where no physical tests or computer-aided simulations are available.

Keywords: lightweighting; mechanical design; industrial engineering; automotive; simulation
modeling; energy consumption; sustainability

1. Introduction

Energy-resources depletion and global climate change represent one of the major concerns for
modern societies worldwide [1,2]. The desire for improved energy security and reduced global
climate change has led to many industry and research developments to reduce fossil fuel consumption
due to human activities [3,4]. The road transportation sector accounts for a relevant quota of total
energy demand and air emissions on a global scale [5]. Since operation is the most energy-consuming
phase within car’s Life Cycle, strong efforts have been put to improve the fuel economy of light-duty
vehicles [6]. The literature provides a series of works that investigate a wide range of possible
solutions to achieve this ambitious target, such as the use of alternative fuels, the development of
more efficient propulsion technologies, vehicle downsizing, an increase in powertrain efficiency and
reduction in vehicle size, aerodynamic drag, or rolling resistance [7–9]. Another highly promising
way to provide more sustainable mobility is lightweight design. Lightweighting presents a very high
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potential to decrease use stage consumption, since car mass and energy consumed during operation
are strongly correlated: A 10% weight reduction entails a decrease in fuel consumption of about 3–6%
at comparable functionality levels [10,11]. In the last decade, automotive lightweighting has been
deeply investigated with respect to the most varied options for car mass reduction (redesign of single
components/assemblies, use of weight-efficient materials in substitution of conventional ones, and
optimization of manufacturing technologies and processes), and the implications of these new design
strategies have been evaluated on a Life-Cycle perspective from both an energy and environmental
point of view [12–14]. In this regard, the literature studies seem rather in agreement in affirming that
lightweight materials and innovative manufacturing technologies generally require more energy and
generate more greenhouse gas emissions than traditional solutions in the vehicle-cycle (all processes
needed for vehicle production) [15–17]. On the other hand, mass reduction involves a decrease of
consumption during operation which leads to undeniable energy and environmental benefits in the
fuel-cycle (all processes related to fuel/energy production and consumption) [18–20]. As a result,
the possible trade-offs between vehicle-cycle and fuel-cycle stages require an accurate evaluation of
weight reduction effects on operation consumption to properly assess the effective profitability of
novel design solutions [21–23]. Another relevant point is that studies dealing with the assessment of
lightweight case studies are affected by different assumptions and methods, the most relevant being
the mass-substitution ratio between innovative/conventional materials and the weight-induced fuel
consumption [24–26]. In particular, the latter plays a key role in the estimation of use stage energy
absorption and the chosen approach for the modeling of energy consumption saving can result in
notable variations of results on the overall Life-Cycle perspective [27,28]. Typically, fuel saving from
lightweighting is estimated through two metrics, that are fuel-mass correlations and fuel reduction
values. Fuel-mass correlations express the fuel-mass elasticity in terms of proportional fuel economy
change divided by proportional weight decrease (e.g., 7% consumption reduction for 10% weight
decrease) [29,30], while Fuel Reduction Values (FRVs) provide the saving in specific consumption
achieved through a 100 kg weight saving (e.g., L/(100 km × 100 kg) for an Internal Combustion
Engine Vehicle (ICEV) or kWh/(100 km × 100 kg) for a Battery Electric Vehicle) [31]. However, the
FRV approach appears more appropriate to measure weight-induced energy consumption, since
fuel-mass correlations do not take into account the non-mass related loads (such as auxiliary loads or
aerodynamic drag resistance), which differ strongly among different vehicle models. Currently, the
problem of estimating use stage weight-induced consumption has been mainly investigated for ICE
cars [32]. The studies give a wide range of results with FRV that varies between 0.1 and 0.6 L/(100 km
× 100 kg), depending on several modeling assumptions, such as vehicle class, car model, driving cycle,
and whether powertrain adjustment is performed for performance equivalence [33,34]. However, some
studies provide mathematical models able to derive affordable FRVs for generic car models, starting
from powertrain technical features [35–37].

Concerning advanced powertrain vehicles (electric, hybrid, and fuel cells), the fuel-mass correlation
is dealt with by a limited number of researches [38,39], and the obtained results are compared with
the ones of ICEVs [40–42]. These studies generally find that the marginal energy savings from
lightweighting are lower for advanced technology cars (about 30–50% less than ICEVs) and associate this
to the greater powertrain efficiency (and therefore lower consumption) of vehicles with higher reliance
on electric motors [43]. The study of Kim and Wallington [44] is the only work that investigates FRVs
for different powertrain technologies, including also Battery Electric Vehicles (BEVs): A physics-based
calculation method is applied to specific car models of ICEVs, BEVs, hybrid Electric Vehicles, and
plug-in hybrid Electric Vehicles based on the US Federal Test Procedure (FTP) combined (55-city/45
highway) driving cycle. The outcomes of the study reveal that FRV varies widely depending on car
model features and powertrain type, with BEVs that provide the lowest mass-induced consumption
(comprised within the range of 1.3–2.3 L equivalent per 100 km) with respect to the other propulsion
technologies, especially ICEVs. The authors conclude that, given the large variability of FRV due to car
technical features, general harmonized recommendations for mass-consumption correlation are not
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available and that a model-specific assessment is required to properly evaluate real-life case studies.
The review article of Luk et al. [45] confirms that electric cars offer the lowest energy-saving potential
from lightweight design, but it stresses also that lower consumption allows downsizing the battery
based on the same driving range, thus providing additional valuable mass reduction that further
increases energy saving.

The state-of-the-art shows that while a notable research activity has been carried out on the
analysis of mass-consumption correlation for ICEVs, large margins of investigation still remain for
advanced powertrain cars. First of all, fuel-mass correlations proposed by several studies do not
represent a thorough metric for FRV estimation, since they involve conflating assumptions with respect
to non-mass-related loads when comparing different vehicles. Moreover, most of simulation modeling
activities are based on theoretical cars, with no indications on car model names and model years.
In particular, for BEVs, the literature provides only one study which performs a thorough simulation
modeling of the FRV coefficient based on data of specific car models currently in use. However, the
paper does not provide guidance on estimating mass-consumption correlation for real-world vehicles,
and the large variability of results due to car model makes unreliable the assessment of lightweighting
through generic FRVs. Additionally, the calculations are based on the standardized driving cycle
effective in the geographical area of the study, with no general relevance on a global scale, and the
sustainability implications of mass reduction are not taken into account.

This study presents an analytical calculation procedure for mass-induced energy consumption of
pure Electric Vehicles. The target of the work is providing support in the assessment of energy and
sustainability implications of lightweighting within the BEV field. The estimation of mass-consumption
correlations is based on car model-specific data, in order to minimize the uncertainties of results with
respect to the use of hypothetical vehicles data. The simulation modeling is carried out for a number
of specific case studies belonging to a wide range of car size and class, thus taking into account a
broad range of vehicle technical features. Moreover, the mass-induced consumption is evaluated based
on a set of driving cycles, both developed by international standardization and research activities,
to capture the effects of different driving patterns. Finally, the research includes the sustainability
assessment through the calculation of environmental-impact-reduction values, which are also applied
to a series of the literature case studies.

2. Materials and Methods

The analysis of the correlation between vehicle mass and use-stage consumption/environmental
impact is carried out in two main calculation sections. The first one estimates the energy absorption
for various mass-configurations of a certain number of BEV case studies by a simulation modeling of
car system dynamics. The second section evaluates the effects of weight reduction on both use-phase
consumption and environmental impact through the correlation between mass and energy absorbed in
the different configurations.

2.1. Simulation Modeling of Vehicle Consumption

The calculation of car consumption is carried out through a simulation model developed by the
software MATLAB-Simulink [46]. The refined model simulates vehicle longitudinal dynamics, and it
falls in the category of “forward models”, according to the literature examples [35,36,47]. The modeling
provides the calculation of motor torque required to follow a certain driving cycle by reproducing the
operation of all drivetrain components [48]. The model is composed of four main sections (Figure 1):
driver, powertrain, driveline, and energy management.
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deceleration anticipation (anticipation factor being 1 s) with derivative part set to zero. The PID 
controller is functional to appropriately “smooth” simulated driving when adopting rigid cycles that 
provide suddenly varying acceleration sequences (e.g., the New European Driving Cycle (NEDC), 
for which acceleration is supposed to pass immediately from zero to constant value). The brake 
blending controller (Drv control in Figure 1) regulates the brake request from the user, to provide 
separate torque request from powertrain (regenerative braking torque) and mechanical braking. 

The powertrain section includes the battery and motor sub-models. The battery sub-model 
(Thevenin-based) is built on the characteristics of Mitsubishi i-MiEV cells (used in a 16 kWh battery 
pack [49]), and it is adapted to the specific vehicle case study by scaling on the basis of the effective 
battery capacity. The motor sub-model is based on look-up-tables (Figure 2) functional to define 
traction torque, regenerative braking torque, and efficiency (combined value considering motor and 
inverter). Data are coming from automotive Permanent Magnet Synchronous Motor (PMSM) testing 
[50], and they are rescaled and adapted to vehicle case studies (a typical approach for archetype 
comparison), on the basis of car model specifications (nominal torque, motor speed, and efficiency). 

Figure 1. Layout of MATLAB-Simulink model: driver (a), powertrain (b), driveline (c), and energy
management (d).

The driver section is based on a speed-follower Proportional–Integral–Derivative (PID) controller.
The model includes a look-forward secondary PID for driving cycle acceleration and deceleration
anticipation (anticipation factor being 1 s) with derivative part set to zero. The PID controller is
functional to appropriately “smooth” simulated driving when adopting rigid cycles that provide
suddenly varying acceleration sequences (e.g., the New European Driving Cycle (NEDC), for which
acceleration is supposed to pass immediately from zero to constant value). The brake blending
controller (Drv control in Figure 1) regulates the brake request from the user, to provide separate torque
request from powertrain (regenerative braking torque) and mechanical braking.

The powertrain section includes the battery and motor sub-models. The battery sub-model
(Thevenin-based) is built on the characteristics of Mitsubishi i-MiEV cells (used in a 16 kWh battery
pack [49]), and it is adapted to the specific vehicle case study by scaling on the basis of the effective
battery capacity. The motor sub-model is based on look-up-tables (Figure 2) functional to define traction
torque, regenerative braking torque, and efficiency (combined value considering motor and inverter).
Data are coming from automotive Permanent Magnet Synchronous Motor (PMSM) testing [50], and
they are rescaled and adapted to vehicle case studies (a typical approach for archetype comparison),
on the basis of car model specifications (nominal torque, motor speed, and efficiency).
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Figure 2. Look-up-tables for basic motor characteristics.

The driveline section models inertia (evaluated as vehicle mass in running order corrected by a
factor representing equivalent inertia of main rotating elements in driveline) and friction characteristics
(calculated on the basis of car aerodynamics and tire rolling friction). The section is composed of
the following sub-models: braking (providing braking torque to the wheels), wheels (providing
longitudinal force from braking and traction force, modified according to rolling friction), car body
(modeling longitudinal dynamics including equivalent rotating masses), and auxiliaries (modeling
lighting and basic electric and electronics components, average consumption being about 180 W).

The energy management section estimates the electricity consumption, taking into account the
regenerative braking. The model is based on a simplified blending criteria between electric and
mechanical braking (Figure 3), which is aimed at limiting the regenerative braking torque within the
driveline admissible limits (exceeding braking torque, when needed, is provided by the mechanical
braking system). The selected approach provides over various driving cycles results comparable to
expectations (e.g., regenerated energy over known driving cycles being in the range from 15 to 25%,
depending on cycle characteristics [48]). The section is composed of the following sub-models: battery,
super-capacitor, and range extender. Super-capacitor and range-extender sub-models are not used for
this application, since the energy management provides that power is simply redirected to the battery.
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Figure 3. Brake-blending criteria: typical braking repartition in absence of regenerative braking
capabilities (a) and brake blending for vehicles capable of regenerative braking capabilities on front
axle (b).

The calculation of energy consumption is performed for 10 BEV case studies belonging to A/B,
C, and D/E classes. The choice of a wide spectrum of car size allows us to model the correlation
between mass and electricity absorption, taking into account the strong variation of vehicle technical
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features (mainly mass, motor power, and power-to-weight ratio) that occurs passing from one segment
to another. To obtain realistic values of energy consumption, technical features of case studies refer
to specific vehicle models from the 2019 EV European market. The choice to use real-life cars is
performed in order that the considered case studies are as much as possible representative of the
vast majority of BEVs sold in Europe, thus covering all possible intended uses, from entry level to
high-performance/luxury segments. Table A1 in Appendix A reports the technical features of vehicle
models taken into account in the simulation modeling.

As regards the driving pattern for the estimation of energy consumption, calculations are
performed on the basis of three different driving cycles: New European Driving Cycle (NEDC) [51],
World Light Test Procedure (WLTP) [52], and All-Long Driving Cycle (ALDC) developed within the
European research project “Ageing and efficiency Simulation & TEsting under Real world conditions
for Innovative electric vehicle Components and Systems” (ASTERICS) [53]. NEDC is the driving cycle
that had been adopted for the type-test approval in Europe up to 2017, while the WLTP is the current
European type-test-approval cycle. Despite that the NEDC is no longer in force, it is included to
allow comparison of energy/fuel reduction values with past studies (perhaps dealing with different
powertrain technologies such as ICEV). On the other hand, the choice to adopt the standardized driving
cycle at European level (WLTP) is due to the need for consistency, transparency, and comparability with
present and future works. Finally, the ALDC was selected since it has been specifically developed to
reproduce the real usage conditions of current Electric Vehicles within urban and suburban areas [54].
Table A2 in Appendix A reports the main descriptive parameters of the three drive cycles, while
Appendix Figure A1 reports the speed profile of the ALDC.

2.2. Estimation of Reduction Values for Energy Consumption and Environmental Impact

The evaluation of mass-related energy absorption is carried out on the basis of consumption
values obtained in the simulation modeling step. The calculation procedure provides that, for each
vehicle case study, the energy absorption is estimated for the reference mass configuration and for
four lightweight mass configurations, with respectively 5%, 10%, 15%, and 20% weight reduction
with respect to the reference one. Then the mass-induced consumption is determined as the slope of
the regression line of electricity absorption in function of mass (Figure A2 in Appendix A), and it is
determined by means of the Energy Reduction Value (ERV) coefficient, according to the following
equation:

ERV =
∆EC
∆M

(1)

where ERV = Energy Reduction Value (kWh/(100 km× 100 kg)); ∆EC = reduction in energy consumption
achieved through vehicle mass reduction (kWh/100 km); and ∆M = 100 kg vehicle mass reduction.

Since powertrain resizing has a negligible impact on the energy saving of BEVs [55], the modeling
is performed while assuming primary mass reduction only; that is, all vehicle parameters in the
lightweight configurations remain unchanged with respect to the reference one with the sole exception
of mass. The calculation section closes with the assessment of the environmental implications provided
by mass reduction. Such an assessment is based on the modeling of energy reduction coefficients, and
it provides that the ERVs are converted into Impact Reduction Value (IRV) coefficients by multiplying
the mass-induced electricity consumption by a specific impact factor. The impact factor is defined
as the Global Warming Potential (GWP) involved by the production of 1 kWh electricity through a
specific grid mix, according to the following equation:

IRV = ERV × GWPkWh (2)

where IRV = Impact Reduction Value (kg CO2 eq/(100 km × 100 kg)); ERV = Energy Reduction Value
(kWh/(100 km × 100 kg)); and GWPkWh = Global Warming Potential impact due to the production of
1 kWh electricity (kg CO2 eq/kWh).
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The IRV is calculated by taking into account three distinct electricity grid mixes: Norwegian (NO),
average European (EU28), and Polish (PL). The choice to consider Norwegian and Polish scenarios is
made to have a comprehensive overview on the sustainability effects of the electricity supply chain.
Indeed, these mixes are characterized by diametrically opposed energy and environmental profiles:
Electricity produced through the Norwegian mix is almost completely from renewable resources, while
the Polish grid mix is mainly based on fossil resources.

3. Results

Table 1 reports the ERV and IRV coefficients for all vehicle case studies and driving cycles,
while Table 2 characterizes ERV/IRV in terms of minimum and maximum value, range max–min,
arithmetic mean, and standard deviation (for both single classes and totality of car models). Table A3 in
Appendix A provides the electricity consumption of vehicle case studies for each mass configuration.

Table 1. Energy Reduction Value (ERV) and Impact Reduction Value (IRV) for all vehicle case studies.

ERV (kWh/(100 km
× 100 kg) IRV (kg CO2 eq/(100 km × 100 kg))

V
eh
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C
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ss
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e
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N
ED
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C NO Grid Mix EU28 Grid Mix PL Grid Mix

N
ED
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P

A
LD

C

N
ED

C

W
LT

P

A
LD

C

N
ED

C

W
LT

P

A
LD

C

A/B
1 0.47 0.49 0.77 0.01 0.01 0.02 0.20 0.20 0.32 0.47 0.49 0.76
2 0.55 0.60 0.96 0.02 0.02 0.03 0.23 0.25 0.40 0.55 0.60 0.95
3 0.54 0.59 0.95 0.02 0.02 0.03 0.22 0.25 0.40 0.54 0.59 0.94

C

4 0.52 0.57 0.89 0.02 0.02 0.03 0.22 0.24 0.37 0.52 0.57 0.88
5 0.52 0.57 0.90 0.02 0.02 0.03 0.22 0.24 0.37 0.52 0.57 0.89
6 0.53 0.58 0.91 0.02 0.02 0.03 0.22 0.24 0.38 0.53 0.58 0.90
7 0.57 0.61 0.99 0.02 0.02 0.03 0.24 0.25 0.41 0.57 0.61 0.98

D/E
8 0.58 0.62 1.01 0.02 0.02 0.03 0.24 0.26 0.42 0.58 0.62 1.00
9 0.61 0.67 1.13 0.02 0.02 0.03 0.25 0.28 0.47 0.61 0.67 1.12

10 0.63 0.69 1.17 0.02 0.02 0.04 0.26 0.29 0.49 0.63 0.69 1.16

Notes: NO = Norwegian; EU28 = average European; PL = Polish; NEDC = New European Driving Cycle; WLTP =
World Light Test Procedure; ALDC = All-Long Driving Cycle.
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Table 2. Analysis of ERV and IRV per car class/driving cycle in terms of minimum and maximum value, size of range max–min, arithmetic mean, and standard deviation.

A/B Class C Class D/E Class All Classes
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ERV (kWh/(100
km × 100 kg))

NEDC 0.47 0.55 0.08 0.52 0.52 0.57 0.05 0.54 0.58 0.63 0.05 0.61 0.47 0.63 0.16 0.55 0.05
WLTP 0.49 0.60 0.11 0.56 0.57 0.61 0.04 0.58 0.62 0.69 0.07 0.66 0.49 0.69 0.20 0.60 0.06
ALDC 0.77 0.96 0.19 0.89 0.89 0.99 0.10 0.92 1.01 1.17 0.16 1.10 0.77 1.17 0.40 0.97 0.12

IRV
(kg
CO2

eq/(100
km ×

100 kg))

NO
NEDC 0.01 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01
WLTP 0.01 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01
ALDC 0.02 0.03 0.01 0.03 0.03 0.03 0.01 0.03 0.03 0.04 0.01 0.03 0.02 0.04 0.01 0.03 0.01

EU28
NEDC 0.20 0.23 0.03 0.22 0.22 0.24 0.02 0.22 0.24 0.26 0.02 0.25 0.20 0.26 0.07 0.23 0.02
WLTP 0.20 0.25 0.05 0.23 0.24 0.25 0.02 0.24 0.26 0.29 0.03 0.27 0.20 0.29 0.08 0.25 0.02
ALDC 0.32 0.40 0.08 0.37 0.37 0.41 0.04 0.38 0.42 0.49 0.07 0.46 0.32 0.49 0.17 0.40 0.05

PL
NEDC 0.47 0.55 0.08 0.52 0.52 0.57 0.05 0.53 0.58 0.63 0.05 0.60 0.47 0.63 0.16 0.55 0.05
WLTP 0.49 0.60 0.11 0.56 0.57 0.61 0.04 0.58 0.62 0.69 0.07 0.66 0.49 0.69 0.20 0.59 0.06
ALDC 0.76 0.95 0.19 0.89 0.88 0.98 0.10 0.92 1.00 1.16 0.16 1.10 0.76 1.16 0.40 0.96 0.12
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3.1. Variability of Reduction Coefficients on Use Stage Boundary Conditions

Table 1 stresses that the ERV varies widely based on vehicle case study and driving cycle, with an
overall variability range of 0.47–1.17 kWh/(100 km × 100 kg). Figure 4 shows the arithmetic mean of
ERV over vehicle models per car class and driving cycle; the black bars in the section refer to all case
studies that identify the maximum range of variation. The ALDC provides the highest mass-induced
consumption (ERVALDC) for both single segments and the totality of vehicles: The arithmetic mean
over all models is 0.97 kWh/(100 km × 100 kg), with an increase respectively of about 60% with respect
to WLTP and NEDC. Figure 4 also stresses that ERVALDC has the greatest dispersion around the
arithmetic mean (range min–max of 0.77–1.17 kWh/(100 km × 100 kg)) and standard deviation of
0.12 kWh/(100 km × 100 kg), with notably lower variability provided by WLTP and NEDC (Table 1).
Despite the correlation mass-consumption is strongly influenced by technical features of the specific
car model, the generally higher ERVs in the ALDC can be explained by two main reasons. The first
and most important one is that the specific energy consumption (electricity per kilometer) involved by
mass-dependent resistance factors (rolling and acceleration resistance) is greater in the ALDC than in
NEDC and WLTP, due to the more dynamic run of this drive cycle. ALDC, in fact, does not present a
prolonged “high speed” section, in which aerodynamic friction become predominant in comparison
with other mass-related phenomena. The second explanation is the lower average efficiency over the
entire cycle with which the electric motor operates in the ALDC than in NEDC and WLTP. This is
because the car works under partial load conditions for a relevant share of total ALDC duration, due
to the frequent speed fluctuations and the high accelerations that characterize the cycle. In this regard,
simulations data show that the motor base efficiency is lower in the lightweight mass-configurations
than in the reference one and that the efficiency decreases at mass reduction growing: The reason
for this may be found in the lower motor load required by lightweight configurations to follow the
given velocity profile. Therefore, it can be said that the energy-saving potential achievable through
lightweighting is higher in the ALDC than in the other drive cycles.
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Concerning the dependence of ERV on vehicle size, Figure 4 highlights that the mass-induced
consumption grows at car segment level increasing, with a percentage variation comprised within
17% and 24% (depending on drive cycle), passing from A/B to D/E class. This outcome is substantially
confirmed by Figure 5, which reports the reduction values in function of electricity consumption.
The ERV increases at energy-demand-growing and higher-class vehicles have greater consumption
than lower segments: A/B-class provides the lowest electricity absorption (within 9.6–15.7 kWh/km,
depending on vehicle model and driving cycle) and the lowest ERV (0.47–0.96 kWh/(100 km × 100 kg)),
while D/E-class cars have the highest electricity absorption (14.2–23.3 kWh/km) and the highest ERVs
(0.58–1.17 kWh/(100 km × 100 kg)). The growth of ERV with specific consumption generally occurs for
all the drive cycles, and it is more pronounced for the ALDC than WLTP and NEDC.
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As regards the characterization of impact reduction, Figure 6 provides the arithmetic mean of
IRV over car models per vehicle class and driving cycle. The first point is that, due to the analytical
definition of IRV, the reduction values are directly dependent on the electricity grid mix. The choice
to adopt Norwegian and Polish mixes allows us to evaluate diametrically opposite sustainability
scenarios, among which all other possible alternatives are comprised. As a confirmation, the average
IRV over all case studies is between the following:

• 0.02 kg CO2 eq/(100 km × 100 kg) (IRVNEDC) and 0.03 kg CO2 eq/(100 km × 100 kg) (IRVALDC)
when considering the Norwegian grid mix;

• 0.55 kg CO2 eq/(100 km × 100 kg) (IRVNEDC) and 0.96 kg CO2 eq/(100 km × 100 kg) (IRVALDC)
when considering the Polish grid mix.
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Meanwhile, intermediate values are obtained for the average European grid mix. Results highlight
that the variability of IRV based on electricity production is definitely high, especially if compared
with the dependence on vehicle class and driving cycle. From the above, it is clear that the choice
of the specific grid mix represents a decisive point for the effective convenience of a lightweight
design solution.

3.2. Modeling Approach for ERV and IRV Estimation

This paragraph is aimed at refining a modeling method able to provide affordable values of
ERV/IRV for real-world cars, taking into account the variability on the main vehicles’ technical features.
Such an approach was developed by starting from mass reduction values resulting from simulations
performed for the different case studies.

The first section of the paragraph investigates the variability of mass-induced energy consumption
with respect to car technical features mass (M), maximum power (Pmax), and power-to-mass ratio
(P/M). The effectiveness of the correlation is analyzed through regression lines of ERV in function of
the three parameters. Figure 7 reports ERV as a function of M, Pmax, and P/M, with regression lines
and related coefficients of determination for the driving cycles NEDC, WLTP, and ALDC.

First of all, it can be noted that the ERVs increase with the considered parameters and that the
slope of the regression lines in the ALDC is significantly higher than in NEDC and WLTP. These results
appear to be in accordance with average data presented in previous paragraph, as explained by the
following:

• Higher class-level case studies generally have higher M, Pmax, and P/M;
• The greater mass-dependent resistance forces in the ALDC make that the ERV increases more

rapidly at car size increasing with respect to the other driving cycles.

Concerning the correlation analysis, the values of R2 stress that the weaker dependence is detected
for parameter P/M, whose coefficients of determination are around 0.55 for all the drive cycles. Higher
R2 refers to Pmax (about 0.75), while the strongest correlation occurs for M, with R2 abundantly over
0.8 (0.83 for both NEDC and WLTP and 0.87 for ALDC). Based on previous considerations, the chosen
approach for the modeling of mass-induced energy consumption of real-world vehicles is the use of
regression lines of ERV in function of mass. Such a criterion allows us to estimate in a simple way
the ERV for any generic case study only from the knowledge of vehicle weight. However, the model
is composed by three equations (one for each driving cycle), without any indication on the choice of
them. In this regard, the following has to be taken into account:

• The NEDC had been the standardized driving cycle for European type approval tests until 2017,
when it was replaced by the WLTP. However, the cycle is widely criticized to not represent the
driving behavior of current real-world drivers and cars, since numerous studies show that actual
on-road fuel consumption and emissions might be substantially higher than values determined
through the NEDC [56–59].

• The WLTP is a global, harmonized standard for determining the levels of fuel
consumption/pollutants of both conventional and hybrid cars, as well as the range of fully
Electric Vehicles.

• The ALDC can be considered fully representative of actual usage conditions of current EVs, since
it has been developed specifically for fully electric cars through testing campaigns carried out
over urban and suburban driving routes of a large number of real vehicle users.
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Figure 7. ERV for all case studies in function of main vehicle technical features: regression lines. Vehicle
mass (M) (a), maximum power (Pmax) (b), and power-to-mass ratio (P/M) (c).
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In the light of the above, the recommendation when evaluating the energy and environmental
implications of lightweighting for a real-world case study is to assume three separate use-phase
scenarios: One referred to ALDC, and the other ones referred to NEDC and WLTP. The first scenario
should be used as the reference for the study, as it provides the actual and most affordable assessment.
On the other hand, results obtained through the NEDC and WLTP should be considered as means of
comparison with past and current studies that deal with alternative/competing solutions for the same
applications. The equations of regression lines of ERV in function of mass are reported in Table 2 for
the three driving cycles (ERVALDC, ERVNEDC, and ERVWLTP).

As regards the environmental assessment section, Figure 8 shows IRVs in function of M with
related regression lines and R2 for the considered driving cycles. The figure reports only data in
function of mass because the impact reduction coefficient has the same correlation of ERV with the
considered parameters. The equations of regression lines are reported in Table 3 for the three driving
cycles and the three electricity grid mixes. Another remarkable thing provided by the analysis of
impact reduction coefficients is that the variability on electricity grid mix is notably higher with respect
to the dependence on driving cycle. For example, assuming as reference the regression line of IRV
in the average European grid mix and NEDC (IRVEU28_NEDC), the increase is higher when passing to
the Poland mix while maintaining the driving cycle (IRVPL_NEDC) than when passing to ALDC while
maintaining the grid mix (IRVEU28_ALDC).
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Table 3. Modeling of ERV/IRV: equations of regression lines in function of mass.

ERV (kWh/(100 km × 100 kg))

NEDC WLTP ALDC
ERVNEDC = 1.0 × 10−4 M +

0.3825
ERVWLTP = 1.0 × 10−4 M +

0.3979
ERVALDC = 3.0 × 10−4 M +

0.5363

IRV (kg CO2 eq/(100 km × 100 kg))

NEDC WLTP ALDC

NO IRVNO_NEDC = 3.0 × 10−6 M
+ 0.0116

IRVNO_WLTP = 4.0 × 10−6 M
+ 0.0121

IRVNO_ALDC = 9.0 × 10−6 M
+ 0.0163

EU28 IRVEU28_NEDC = 4.7 × 10−5

M + 0.1591
IRVEU28_WLTP = 5.6 × 10−5

M + 0.1655
IRVEU28_ALDC = 1.2 × 10−4

M + 0.2231

PL IRVPL_NEDC = 1.1 × 10−4 M
+ 0.3798

IRVPL_WLTP = 1.3 × 10−4 M +
0.3951

IRVPL_ALDC = 2.8 × 10−4 M +
0.5326
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3.3. Implementation of Modeling Approach on Real-Word Case Studies

This paragraph provides a practical example of the functionality of ERV/IRV modeling approach
in the assessment of lightweighting within the electro-mobility field. Such an approach is applied to a
series of sustainability case studies provided by Reference [60]:

• These are comparative Life-Cycle Assessments (LCAs) of reference and innovative design solutions
for different modules installed on a C-class EV;

• The lightweight components are based on composites and hybrid materials and they have been
specifically developed for fully electric cars;

• The environmental analysis is carried out considering the entire Life Cycle (LC) of the modules
and it is based on several impact categories, including the Global Warming Potential (GWP).

The comparative case studies are reviewed for the only GWP impact category by quantifying
the LC mileage at which the novel design results environmentally preferable with respect to the
reference one [60]. Such an LC distance is defined as the Break-Even Point (BEP), and it is determined
by quantifying the impact variation in all LC stages involved by lightweighting: The GWP changes
in production and End-of-Life (EoL) are directly taken from Reference [60], while the use phase is
estimated through the ERV/IRV approach, using regression lines reported in Table 2. The following
equation provides the analytical model for the calculation of BEP:

BEP =
10000 × ∆GWPProd+EoL

IRV × ∆Mlight
(3)

where BEP = Break-Even Point (km); ∆GWPProd+EoL = variation in Global Warming Potential impact
due to lightweight design (kg CO2 eq); IRV = Impact Reduction Value (kg CO2 eq/(100 km × 100 kg));
and ∆Mlight = variation in vehicle mass due to lightweight design (kg).

Table A4 in Appendix A reports ∆GWPProd+EoL and ∆M for all the considered sustainability
case studies, including a brief description of baseline and innovative design solutions, as well as the
main technical features of the reference car model for the modules. Figure 9 shows BEP for the five
components taking into account all possible combinations between driving cycles and electricity grid
mixes (numerical data are reported in Table A5 in Appendix A). The considered modules are Front
Module (FM), Front Hood (FH), Front Door (FD), Cross Dashboard Beam (CDB), and Suspension Arm
(SA). The diagram reveals that, when considering the Norwegian scenario, for all case studies, BEP is
greatly higher than the reference LC mileage assumed by [60] (150,000 km), with a variability comprised
between 35 million kilometers (referred to FD module in the NEDC) and 0.93 million kilometers
(referred to CDB module in the ALDC). Therefore, a lightweight designs appear to be definitely not
convenient from an environmental point of view, as weight reduction enables low mass-specific impact
saving due to the very small GWP intensity of the Norwegian grid mix. BEPs are notably lower when
considering the European scenario, even if the only component for which the novel alternative results
preferable (in all driving cycles) is CDB. However, BEP for SA and FM in the ALDC are not so far
from 150,000 km (respectively about 220,000 and 250,000 km). Finally, the analysis based on the Polish
grid mix involves a further decrease of BEP due to the very high fossil energy intensity of the cycle.
Indeed, lightweighting appears to be an effective strategy for CDB (in all drive cycles), SA (in WLTP
and ALDC), and FM (in ALDC), with BEPs just above the LC threshold for the other modules and
driving cycles (within the range 160,000–260,000 km); the only exception is represented by FD, which
provides a BEP notably higher (around 620,000–1,080,000 km).
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Front Door (FD), Crash Dashboard Beam (CDB), and Suspension Arm (SA)).

The environmental section is completed by the analysis of the influence of vehicle model on
BEP. Figure 10 reports BEP in function of car mass for the sustainability case studies FM, FH, and SA,
respectively, for Norwegian, average European, and Polish grid mixes and including all the considered
driving cycles. As the design solutions refer to a C-class vehicle, it is chosen to investigate the mass
range 1250–1650 kg, which is found to be representative of medium-size EV’s segment. Table A6 in
Appendix A reports BEP for the considered case studies, assuming M = 1250 kg and M = 1650 kg.

The diagrams reveal that, beyond the inherent features of the specific modules, the Norwegian mix
(Figure 10a) provides the highest absolute variability of BEP with respect to car mass (BEP variability
comprised within 350,000 and 750,000 km based on case study and drive cycle). The reason for this is
that BEPs are very high due to the definitely low embodied GWP of electricity production. Indeed, the
Break-Even is comprised between two and nine million kilometers, thus evidencing that the lightweight
options are far from an effective profitability, even for cars with great mass. As regards the average
European mix (Figure 10b), BEPs are significantly lower than the Norwegian one. However, the
Break-Even is not reached within the 150,000 km threshold for any of the innovative design alternatives.
That said, BEP for SA module in the ALDC with a 1650 kg car is about 200,000 km, which could be
also reached by an EV. Lastly, Figure 10c shows that the Polish electricity grid mix involves the lowest
absolute variability of BEP with the mass (BEP variability comprised within 10,000 and 25,000 km,
depending on case study and drive cycle). As the Break-Even mileages have the same order (within
the range of 80,000–270,000 km) than the assumed LC distance, the dependence on vehicle model
becomes decisive to establish the effective environmental convenience of the lightweight solutions. As
a confirmation, BEP for the SA module in the WLTP and the FH module in the ALDC results above
150,000 km when considering low-mass cars (respectively about 155,000 and 158,000 km for 1250 kg
EVs), while high-mass vehicles provide a BEP which is below the LC limit (respectively around 141,000
and 139,000 km for 1650 kg cars). This means that these solutions result in being environmentally
advantageous for high-size models, while they are not when applied to entry-level C-class vehicles.
Concerning the other modules/driving cycles, the variability of BEP with car weight does not involve
a threshold crossing. Two opposite examples for this are the FH module in the NEDC and the SA
module in the ALDC. When passing from lower to upper mass limit, the BEP for the FH reduces by
about 22,000 km, without, however, approaching significantly the 150,000 km (BEP varies from about
270,000 to 248,000 km). On the other hand, the change for the SA module (around 12,000 km) entails a
significant increase in the convenience of the lightweight solution (BEP ranges from about 98,000 km to
86,000 km). In the light of previous considerations, it can be concluded that the variability of BEP on
vehicle model represents a key factor when engaging with the following:
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• Dealing with lightweight case studies characterized by a low mass-specific GWP increase in
production and EoL (∆GWPProd+EoL/∆Mlight);

• Assuming fossil-intensive electricity grid mixes and driving cycles with highly dynamic run.Machines 2020, 8, x FOR PEER REVIEW 16 of 24 
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Figure 10. BEP in function of car mass for sustainability case studies FM, FH, and SA. Norwegian grid
mix (a), average European grid mix (b), Polish grid mix (c).
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4. Conclusions

To date, fuel-mass correlation has been widely studied for ICE light duty vehicles, while great
margins of investigation still exist for advanced powertrain technologies, especially for pure electric cars.
The study refines a comprehensive framework for the estimation of EVs’ mass-induced consumption
to provide support in the energy and sustainability assessment of lightweight design solutions when
physical tests or computer-aided simulations are not available. A simplified method to estimate
consumption-weight correlation is proposed based on the calculation of ERV coefficients, expressed
in kWh/(100 km × 100 kg). The simulations are performed for a set of car case studies, using
technical features of specific 2019 European market EV models, chosen as a representative of different
segments (A/B, C, and D/E). The ERV coefficients are estimated according to three driving cycles, both
internationally standardized and developed in research activities (NEDC, WLTP, and ALDC), to assess
the influence of different driving styles on mass-induced consumption. The ERV is finally converted
into the IRV coefficient, which expresses the GWP saving achievable through a 100 kg mass decrease
and it is quantified for Norwegian, average European, and Polish grid mixes. The ERVs obtained for
the different case studies show that there is a wide variability based on vehicle model and driving
cycle, with values in the range of 0.47–1.17 kWh/(100 km × 100 kg). Beyond the influence of the specific
car model, results stress that ERV is closely related to car consumption (economy) and it grows at
car size increasing: For example, the average ERVALDC in the A/B class is 0.89 kWh/(100 km × 100
kg), while it reaches 1.10 kWh/(100 km × 100 kg) for the D/E segment, with intermediate value for
C class. As a result, a given amount of lightweighting (kilograms saved) provides the most benefit
when applied to upper-level class EVs with high energy consumption. Concerning the influence of
driving cycle, the ERV is notably higher for the ALDC than NEDC and WLTP, because of the great
dynamics of the cycle (high acceleration/deceleration), which makes bigger the mass-induced energy
consumption. The analysis of the dependence of ERV on the main vehicle technical features highlights
that there is a strong correlation with car mass, based on which an analytical method is refined for
providing affordable values for any real-life case study. Such a criterion allows us to thoroughly assess
weight-related consumption when dealing with the comparison between reference and lightweight
solutions from both energy and sustainability point of view. The ERV/IRV modeling approach is finally
applied to a series of lightweight case studies from the literature, where the profitability of innovative
solutions is assessed through the quantification of BEP. These case studies refer to several design
solutions that strongly differ both in terms of technical features (materials and technologies used)
and application field/boundary conditions (car size, driving cycle, and electricity grid mix). Results
show that BEP is strongly influenced by vehicle model, especially when assuming fossil-intensive
electricity grid mixes and driving cycles with highly dynamic run. This leads to the conclusion that a
careful car model-specific approach is recommended, thus highlighting the utility and usability of the
refined method.
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Abbreviations

ALDC All-Long Driving Cycle

ASTERICS
“Ageing and efficiency Simulation & TEsting under
Real world conditions for Innovative electric vehicle
Components and Systems”

BEV Battery Electric Vehicle
CDB Crash Dashboard Beam
EoL End-of-Life
ERV Energy Reduction Value
EV Electric Vehicle
FD Front Door
FH Front Hood
FM Front Module
FRV Fuel Reduction Value
FTP Federal Test Procedure
GWP Global Warming Potential
ICEV Internal Combustion Engine
IRV Impact Reduction Value
LC Life Cycle
LCA Life-Cycle Assessment
NEDC New European Driving Cycle
PID Proportional–Integral–Derivative
PMSM Permanent Magnet Synchronous Motor
SA Suspension Arm
WLTP Worldwide Harmonized Light-Duty Test Procedure

Appendix A

Table A1. Technical features of BEV models assumed as reference for the considered case studies.

Case Study Vehicle Model Mass (kg) Power (kW) Power-to-Mass
Ratio (W/kg)

1 Mitsubishi
I-MIEV 1005 47 47

2 BMW i3 1170 125 107
3 Renault Zoe 1380 68 49
4 Hyundai Sonic 1320 88 67

5 Renault Kangoo
ZE 1383 44 32

6 Volkswagen
e-Golf 1440 100 69

7 Nissan Leaf 1448 80 55
8 Mercedes B-class 1625 132 81
9 Tesla model-S 2050 285 139

10 Tesla model-X 2252 237 105
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Table A2. Main descriptive parameters for the considered drive cycles.

Descriptive Parameters of Driving Cycles

NEDC WLTP ALDC

General

Duration (s) 1180 1800 1536
Distance (km) 11.03 23.27 11.57

Mean velocity (km/h) 33.6 46.5 27.1
Max velocity (km/h) 120.0 131.3 85.6
Stop phases (null) 14 9 11

Durations

Stop (s) 280 226 210
Constant driving (s) 475 66 114

Acceleration (s) 247 789 624
Deceleration (s) 178 719 588

Shares

Stop (%) 23.7 12.6 13.7
Constant driving (%) 40.3 3.7 7.4

Acceleration (%) 20.9 43.8 40.6
Deceleration (%) 15.1 39.9 38.3

Dynamic

Mean positive
acceleration (m/s2) 0.59 0.41 0.55

Max positive
acceleration (m/s2) 1.04 1.67 3.25

Mean positive “vel *
acc” (acceleration
phases) (m2/s3)

4.97 4.54 4.56

Max positive “vel *
acc” (m2/s) 9.22 21.01 29.29

Mean deceleration
(m/s2) −0.82 −0.45 −0.58

Min deceleration
(m/s2) −1.39 −1.50 −4.78

Relative positive
acceleration (m/s3) 0.111 0.153 0.271
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Table A4. Main technical and sustainability features of the considered sustainability case studies.

Case Study Materials Technologies

∆GWPProd+EoL
(GWPRef −

GWPLight)
(kg CO2 eq)

∆Mlight (MRef
−MLight) (kg)

FM
Reference Aluminum; steel

Stamping and
bending;

deep drawing 130.2 −13.1

Lightweight

Aluminum;
high-strength
steel; PA410

Carbon Fiber
reinforced; steel

Extrusion and
forming;

thermoforming;
airborne winding;

deep drawing
and drilling;

bending

FH
Reference Steel Stamping and

bending 71.6 −5.1

Lightweight

Aluminum;
epoxy resin

Carbon Fiber
reinforced

Metal stamping;
compression

molding

FD
Reference Steel; aluminum Stamping and

bending 83.9 −1.4

Lightweight

Aluminum;
Polyamide410
Carbon Fiber

reinforced

Metal stamping;
CF-airborne;

thermoforming

CDB
Reference Steel Stamping and

bending 11.5 −4.3

Lightweight

Aluminum;
Polyamide410
Carbon/Glass

Fiber reinforced

Metal stamping;
injection
molding;

thermoforming

SA
Reference Steel Forging

19.0 −2.2

Lightweight
Aluminum; Vinyl

Ester Carbon
Fiber/reinforced

Forging;
advanced sheet

compression
molding

Reference car model

Volkswagen e-Golf
Mass = 1440 (kg)

Power = 100 (kW)
Power-to-mass ratio = 69 (W/kg)

Table A5. BEP for the considered sustainability case studies.

Break-Even Point (BEP) (km)

Electricity
Grid Mix

Driving
Cycle

Modules

FM FH FD CDB SA

NO
NEDC 6,005,141 8,468,388 35,432,544 1,623,002 5,252,987
WLTP 5,541,154 7,814,078 32,694,849 1,497,601 4,847,115
ALDC 3,446,079 4,859,625 20,333,137 931,368 3,014,452

EU28
NEDC 438,837 618,844 2,589,301 118,604 383,872
WLTP 404,930 571,029 2,389,239 109,440 354,212
ALDC 251,829 355,126 1,485,883 68,061 220,287

PL
NEDC 183,843 259,254 1,084,743 49,687 160,817
WLTP 169,639 239,223 1,000,930 45,848 148,391
ALDC 105,499 148,774 622,485 28,513 92,285
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Table A6. BEP for the considered case studies assuming M = 1250 kg and M = 1650 kg.

Break-Even Point (BEP) (km)

Electricity
Grid Mix

Driving
Cycle

Modules

FM FH SA

M = 1250 kg M = 1650 kg M = 1250 kg M = 1650 kg M = 1250 kg M = 1650 kg

NO
NEDC 6,250,466 5,931,622 8,814,343 8,364,712 5,467,585 5,188,676
WLTP 5,789,971 5,466,963 8,164,958 7,709,456 5,064,768 4,782,217
ALDC 3,655,753 3,384,774 5,155,305 4,773,174 3,197,864 2,960,826

EU28
NEDC 456,765 433,465 644,125 611,267 399,554 379,173
WLTP 423,113 399,509 596,670 563,383 370,118 349,470
ALDC 267,151 247,349 376,734 348,809 233,690 216,368

PL
NEDC 191,354 181,592 269,845 256,080 167,386 158,848
WLTP 177,256 167,367 249,964 236,020 155,054 146,404
ALDC 111,918 103,622 157,826 146,127 97,900 90,644
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