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Abstract: This study presents an optimal double-pole magnetization brushless DC (BLDC) motor de-
sign, compared to a single-pole magnetization BLDC motor in terms of electromagnetic performance.
Initially, a double-pole model is selected based on the permanent magnet (PM) of the single-pole
model. The pole separation space, which is generated in the magnetization process of the double-pole
PM, is selected based on the pole space of the single-pole model. Moreover, the PM offset is selected
considering the PM volume of the single-pole model. Further, an optimal model is selected using
the multiple response optimal method, which is a type of response surface methodology (RSM).
The objective of the optimal design is to maintain the back EMF and decrease the cogging torque;
the design variables include the pole separation space and PM offset. The experimental points of
the initial model are designed using the central composite method (CCD). Finally, the optimization
is verified by comparing the experimental and analysis results of the single-pole model with the
analysis results of the optimal model.

Keywords: BLDC motor; double-pole magnetization; RSM

1. Introduction

BLDC (brushless DC) motors use electronic rectifying equipment instead of mechan-
ical equipment such as brushes and commutators. Therefore, their maintenance cost is
low compared to DC motors. Moreover, because of the low cost driving devices and the
development of control technology, BLDC motors have been replacing DC motors in vari-
ous fields [1–4]. As a double-pole magnetization permanent magnet (PM) has two poles
in one magnet, even if the number of magnets is halved, the same number of poles can
be obtained. When the number of poles increases in a single-pole magnetization BLDC
motor, it becomes difficult to assemble the PMs due to the magnetic forces between adjacent
PMs; in addition, they become more unstable at high rotational speeds. Thus, halving
the number of PMs using the double-pole PMs not only reduces the assembly time and
manufacturing tolerances, but also provides stability at high rotational speeds [5,6].

In the research field of multi-pole magnetization PM, the majority of studies are on
the ring magnet. In [7], the construction of a magnetization head for 8-poles magnetization
of ring magnets is discussed. In [8], the radial force densities of ring magnet are discussed
depending on the magnetization pattern. In [9], the advantages of multi-pole dielectromag-
nets, allowing the replacement of the multi-pole glued constructions of bipolar permanent
magnets, is presented. In [10], an exact analytical model to compute the magnetic field
generated by a diametrically magnetized cylindrical/ring shape permanent magnet is
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presented. In [11], an easily computable 3D filed solution for axially polarized multi-pole
ring and disk magnets is presented. Although there are several studies on multi-pole
magnetization ring magnets, it is difficult to find studies on double-pole magnetization PM
motors and their optimized magnet shape.

Therefore, this study presents an optimal design for a double-pole magnetization BLDC
motor, compared to a single-pole magnetization BLDC motor in terms of the electromagnetic
performance. Initially, a double-pole model is selected, which is based on the PM of the
single-pole model. All the other structures are identical except for the PMs. Pole separation
space is generated in the magnetization process of the double-pole PM due to the structure of
the magnetizer. This space includes small flux; it is assumed that this flux decreases linearly
in this study. The length of the pole separation space in the initial model is selected based on
this assumption. Moreover, as the number of the PM offset parts is halved in the double-pole
model, the length of the PM offset is selected considering the PM volume. Electromagnetic
analysis results of single-pole and initial double-pole models from finite element methodology
(FEM) were compared and confirmed the need for optimization. An optimal double-pole
model is selected using the multiple response optimal method, which is a type of response
surface methodology (RSM). The objective of optimization is to maintain the back EMF and
reduce the cogging torque; the design variables include the pole separation space and PM
offset. The experimental points of the initial double-pole model are designed using central
composite method (CCD), which is a type of design method for experimental points, and is
generally used in RSM. The quadratic regression model can be obtained from the response
values of each point, and the optimal design variables can be selected from the regression
model [12]. Finally, the optimal design is verified by comparing the experimental and analysis
results of the single-pole model with the analysis results of the optimal double-pole model.
Additionally, the electromagnetic performance is compared, and the results of the experiment
and analysis are discussed.

2. Initial Double-Pole Magnetization BLDC Motor
2.1. Analysis Model

Figure 1 shows the two analysis models and their flux paths. Winding phases and
their direction are marked in the slot of stator core. Figure 1a depicts a single-pole magneti-
zation BLDC motor, with 10 magnets, whereas Figure 1b depicts the initial double-pole
magnetization BLDC motor with 5 magnets. The two models are the outer rotor type BLDC
motors with ten poles each. All the structures are identical except for the PMs. Dimensions
of the analysis model are shown in Table 1. All dimensions except PM embrace are identical
in the analysis models. Moreover, PM specifications are shown in Table 2.
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Table 1. Dimensions of the analysis motor.

Item Single-Pole Model Initial Double-Pole Model

Diameter of outer/inner rotor 155.6/125.8 mm
Diameter of outer/inner stator 124.3/64 mm

16 mmStack length
PM thickness/offset 7/1 mm

PM embrace 0.82 0.91

Table 2. PM (permanent magnet) specification.

Magnet Type Ferrite

Remanence 0.4689 T
Coercivity −340,000 A/m

2.2. Pole Separation Space

Figure 2 shows the schematics of the magnetizer structure for the double-pole PM. A
high current applied to the coil results in the flux path shown in Figure 2. The magnetic
flux generated by the current magnetizes the two poles in a magnet. Magnetic material
is attached to the back of the magnet such that the magnet flux flows well; nonmagnetic
material is attached to the front of the magnet to separate the two poles well. Therefore,
the magnetic flux in the PM and the pole separation space is generated, as shown in
Figure 2. Figure 3 displays the magnetization pattern of the single- and double-pole PMs,
respectively, and their flux density distributions. The pole separation space includes a
small flux. Although it is separated by nonmagnetic material, magnetic flux spreads in the
pole separation space. In this study, we assume that the magnetic flux decreases linearly.
As nonlinear modeling of this space is not only complex and difficult, but this space is also
relatively less for the entire length of the magnet, the error ratio with the manufactured
model is low [5]. Therefore, this space is calculated as twice the pole space of the single-pole
model with a linear assumption and the magnitude of the magnetic flux is almost identical
in the two models.
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2.3. PM Offset

The offset parts of the double-pole PM shown in Figure 4a are halved compared to the
single-pole PM.

Wm =
1
2

Bm HmVPM (1)
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double-pole PM.

Wm is the magnetic energy shown in Equation (1); Bm and Hm are the PM operating
points of the magnetic flux density and magnetic field intensity, respectively; VPM is the
volume of the PM [13]. From Equation (1), we can confirm that the volume of the PM is
proportional to the magnetic energy. Therefore, the volumes of the single- and double-pole
PM should be the same to have the same magnetic energy and the offset length of the
double-pole model PM should be more than that of the single-pole PM. However, the
volume of the double-pole PM is not linearly proportional to the offset length, as shown
in Figure 4b. As it is difficult to arithmetically calculate proper offset length, the PM
offset length of the initial double-pole model was selected to be the same value of the
single-pole model. Figure 5 and Table 3 depict the analysis results of the single-pole and
initial double-pole models, using FEM. Figure 5a,b show the results of the back EMF and
cogging torque, respectively. In Figure 5 and Table 1, although the back EMF is almost
identical and the error ratio is 1%, the cogging torque of the initial double-pole model is
greater than that of the single-pole model and the error ratio of the cogging torque is 23%.
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Thus, it cannot be stated that the two motors are the same in terms of the electromagnetic
performance, and a design to reduce the cogging torque should be additionally performed.
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Table 3. Analysis results of the single-pole and initial double-pole models.

Item Single-Pole Model Initial Double-Pole Model

Back EMF 2.79 Vrms 2.76 Vrms
Cogging torque 53 mNm 69 mNm

3. Optimal Design

RSM is generally used for setting the design variables to optimize the response
values [14]. In this study, the objective of optimal design is to reduce the cogging torque
while maintaining the back EMF. Cogging torque should be decreased to reduce the noise
and vibration, and back EMF should be maintained for the electromagnetic performance.
Therefore, in this optimal design, the response values are the back EMF and cogging torque,
and the design variables are the previously selected pole separation space and PM offset.

3.1. CCD

CCD is the most common experimental design method in RSM. When there are two
design variables, the number of the experimental points of the CCD is 15. These include a
central point, four factorial points and four axial points. Table 4 lists all the values of the
experimental points. x1 and x2 are the pole separation space and PM offset, respectively.
The central point is generally the initial value of the design variables. However, because
the initial value of x1 1 mm is much less, a value of 2 mm was re-selected. Factorial points
are determined by the designer based on the initial values and the interval from the central
point means ±1 level. Axial points are at ±

√
2 level based on the central point and are

used to estimate the curvature of the regression model [12].

y = β0 + β1x1 + β2x1 + β11x2
1 + β22x2

2 + β12x1x2 (2)

The above equation is a general form of the regression model and is generally assumed
as a quadratic equation. y is the response value and βij is the coefficient of each terms. βij
can be obtained from the response values of the experimental points through FEM. The final
regression model is obtained by selecting the significant terms of βij through variance analysis
based on 90% reliability [12]. The coefficients of the selected terms are shown in Table 5. Using
the regression model, we can obtain the contour plots of each response, as shown in Figure 6.
The changes in each response, according to the design variables, can be observed.
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Table 4. Experimental points.

Point Order Pole Separation Space (x1) PM Offset (x2)

Central point 1 15 2

Factorial point

2 10 1
3 20 1
4 10 3
5 20 3

Axial point

6 7.93 2
7 22.07 2
8 15 0.59
9 15 3.41

Table 5. Coefficients of the regression model.

Response Value β0 β1 β2 β3

Back EMF (y1) 2.8372 7.853e−3 −0.03091 −7.455e−4

Cogging torque (y2) 312.562 −35.0899 −2.76561 1.11455
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3.2. Multiple Response Optimal Method

The multiple response optimal method, which is a type of RSM, can be applied for
optimizing multiple response values simultaneously [15]. As previously mentioned, in
this study, the objective of optimization is to maintain the back EMF y1 and decreasing
cogging torque y2; the optimization settings are listed in Table 6. The target value of the
back EMF was set to be the same as that of the single-pole model and the maximum and
minimum values were less than 5% of the error ratio of the targeted value. Moreover, the
maximum value of the cogging torque was set to be the same as that of the single-pole
model, as shown in Table 6. The final optimal results are shown in Table 7. We can confirm
that x1 decreases whereas x2 increases in the optimal process.

Table 6. Optimization settings.

Item Unit Objective Lower Limit Target Value Upper Limit

Back EMF (y1) Vrms Target value 2.6 2.7 2.8
Cogging torque (y2) mNm Minimization 30 50
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Table 7. Final optimal results.

Design Variable Initial Model Optimal Model

Pole separation space (x1) 15 mm 14.3 mm
PM offset (x2) 2 mm 3.1 mm

4. Experimental Verification and Discussion
4.1. Experimental Verification

Figure 7a displays the PMs and rotor core of the manufactured single-pole model. The
single-pole PM has an overhang structure and the rotor core is integrated with housing. In
this study, the models were analyzed by converting the 3D structures into 2D, considering
the volume of the PM and rotor core [5,16,17]. Figure 7b shows the experimental setup for
the back EMF measured using a drive motor at 1000 rpm. Figure 7c shows the experimental
setup for the cogging torque measured using the torque sensor. Figure 8 presents the
experimental and analysis results of the back EMF and cogging torque in the single-pole
model, whereas Figure 9 presents the analysis result of the back EMF and cogging torque
in the initial and optimal double-pole model. Table 8 lists the results of the electromagnetic
performance of the single-pole model. Table 9 presents the results of the electromagnetic
performances of the initial and optimal double-pole models. The line current and speed
are measured and analyzed under the same terminal DC voltage and torque generation
condition. We can confirm the FEM reliability from Figure 7 and Table 8. The error ratios
of all the FEM parameters in the experiment are below 5%. Furthermore, we can confirm
the optimization of the double-pole model from Figure 8 and Table 9. Although the back
EMF and the other parameters are almost identical, the cogging torque is reduced. Finally,
comparing the experimental results of the single-pole model with the analysis result of the
double-pole model, the back EMF and the other parameters are almost identical, and their
error ratios are below 3%. However, the cogging torque alone is lower than a wide error
ratio. Thus, if the optimal double-pole model is manufactured, the cogging torque will
be lower than that of the single-pole model, but the other electromagnetic performance
parameters will be the same, as indicated by the high reliability of the FEM results and the
results of optimal design.
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Table 8. Electromagnetic parameter results in the single-pole model.

Parameters Experiment FEM (Error Ratio)

Back EMF [Vrms] 2.77 2.79 (0.71%)
Cogging torque [mNm] 50 53 (5.66%)
DC terminal voltage [V] 13.5 13.5

Line current [Arms] 58.17 58.96 (1.34%)
Torque [Nm] 2.38 2.42 (1.65%)
Speed [rpm] 2594 2670 (2.85%)

Efficiency [%] 90.91 92.28 (1.48%)

Table 9. Electromagnetic parameter analysis results in the double-pole model.

Parameters Initial Model (Error Ratio) Optimal Model (Error Ratio)

Back EMF [Vrms] 2.76 (0.36%) 2.78 (0.36%)
Cogging torque [mNm] 69 (27.54%) 44 (13.54%)
DC terminal voltage [V] 13.5 13.5

Line current [Arms] 59.15 (1.66%) 58.96 (1.34%)
Torque [Nm] 2.43 (2.06%) 2.43 (2.06%)
Speed [rpm] 2679 (3.17%) 2678 (3.14%)

Efficiency [%] 92.18 (1.37%) 92.19 (1.38%)
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4.2. Discussion

In this section, the analysis of the back EMF and cogging torque results is discussed.

eabc = keφabcωm (3)

eabc is the phase back EMF, as shown in Equation (3). In Equation (3), ke is the coeffi-
cient of the back EMF, φabc f is the phase flux by PM and ωm is the angular speed [8]. When
ωm is constant at 1000 rpm in all the models, eabc is proportional to φabc f in Equation (3).
x1 and x2 are inversely proportional to φabc f . Although x1 of the optimal double-pole
model is less than that of the single-pole model and initial double-pole model, x2 is greater.
Figure 7a displays the PMs and rotor cores of the manufactured single-pole model. The
single-pole PM has an overhang structure and the rotor core is integrated with housing.
Therefore, x2 and the back EMF of the optimal double-pole model are almost identical
to those of the single-pole and initial double-pole models. Tcog is the cogging torque, as
shown in Equation (4), and < is the reluctance [18].

Tcog =
1
2

φ2
abc f

d<
dθ

(4)

As mentioned above, φabc f is almost identical in the single-pole model and in the initial
and optimal double-pole model. However, as x2 is inversely proportional to d<

dθ [18] and x2
in the optimal double-pole model is greater, the cogging torque of the optimal double-pole
model is less than that of the manufactured single-pole model and the initial model.

5. Conclusions

This study presented an optimal design for a double-pole magnetization BLDC motor.
An initial double-pole model was selected based on the single-pole model’s PM. The pole
separation space was selected as twice of the single-pole model’s pole space due to linear
decreasing assumption of flux in the pole separation space. The same PM offset was
selected because it was difficult to arithmetically calculate the correct offset length due to
the nonlinear relationship between the PM volume and offset. The analysis results of the
single-pole and initial double-pole models indicated that the back EMF was almost the same
but the cogging torque of the initial double-pole model was greater. Therefore, a suitable
pole separation space and PM offset were selected as per the optimal design; the multiple
response optimal method was used in this study. The objective of the optimal design was
to maintain the back EMF and decrease the cogging torque. The optimization results were
verified by comparing the experimental and analysis results of the single-pole model with
the analysis results of the optimal double-pole model. Additionally, the electromagnetic
performance was also maintained. Consequently, the double-pole model can provide
almost same or better electromagnetic performance compared with the single-pole model
using the optimal method. Moreover, the double-pole model has driving stability and
manufacturing advantages compared to the single-pole model. Therefore, the double-pole
magnetization BLDC motor can sufficiently replace the single-pole magnetization BLDC
motor which has many poles.
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