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Abstract: Carrying out the immediate rehabilitation interventional therapy will better improve the
curative effect of rehabilitation therapy, after the condition of bedridden stroke patients becomes sta-
ble. A new lower limb rehabilitation training module, as a component of a synchronous rehabilitation
robot for bedridden stroke patients’ upper and lower limbs, is proposed. It can electrically adjust the
body shape of patients with a different weight and height. Firstly, the innovative mechanism design
of the lower limb rehabilitation training module is studied. Then, the mechanism of the lower limb
rehabilitation module is simplified and the geometric relationship of the human–machine linkage
mechanism is deduced. Next, the trajectory planning and dynamic modeling of the human–machine
linkage mechanism are carried out. Based on the analysis of the static moment safety protection of
the human–machine linkage model, the motor driving force required in the rehabilitation process
is calculated to achieve the purpose of rationalizing the rehabilitation movement of the patient’s
lower limb. To reconstruct the patient’s motor functions, an active training control strategy based
on the sandy soil model is proposed. Finally, the experimental platform of the proposed robot
is constructed, and the preliminary physical experiment proves the feasibility of the lower limb
rehabilitation component.

Keywords: synchronous rehabilitation robot for upper and lower limbs; human–machine linkage
mechanism; bedridden stroke patient; active training control strategy

1. Introduction

There are currently 13 million cerebral apoplexy patients living with diseases in China,
and about 2 million new cerebral apoplexy patients every year. The disability rate of
survivors is 75%, and has become the leading cause of disability in the adult population [1].
In addition, other neurological diseases also lead to movement impairment of the upper
and lower limbs, such as spinal cord injury [2]. Patients with limb dysfunctions are unable
to complete the basic movements in daily life due to the lack of fine control of the limb
muscles [3]. Meanwhile, the muscle mass of patients’ limbs in the initial stroke stage is
reduced by about 1.6% each day. Carrying out immediate rehabilitation interventional
therapy will better improve the curative effect of rehabilitation therapy and overcome
some secondary complications of stroke-related neurological diseases, after the condition
of bedridden stroke patients becomes stable [4]. Due to the imbalance of the rehabilitation
physician–patient ratio in China, it is difficult for bedridden stroke patients to carry out
timely and standardized rehabilitation treatment, and it is difficult to ensure a certain
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period of rehabilitation training, which will result in the serious sequelae of patients [5].
The effect of a rehabilitation training robot in helping patients is very remarkable [6–8].
It not only improves the basic function of limbs with impaired motor function, but also
reduces the possibility of the patient developing a permanent disability [9,10]. However,
most of rehabilitation robots mainly focus on the affected limbs of patients. For bedridden
stroke patients, their motor function shows symptoms such as limb weakness, poor balance
and uncoordinated movements. The uncoordinated and asymmetric motor function of the
upper and lower limbs also inhibits the recovery process of human limb motor function [11].
Therefore, there is a contradiction between the synchronous movement of upper and lower
limbs and the abnormal coupling of nerves. Moreover, there is often a contradiction
between bed rest and body balance training for bedridden stroke patients. Based on the
mechanism of compatibility design and human–computer interaction, a new synchronous
rehabilitation robot for the upper and lower limbs is studied in this paper, as shown in
Figure 1. The proposed synchronous rehabilitation robot in this paper includes a lower limb
rehabilitation module, upper limb rehabilitation module and multi-posture bed support
module.
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middle- and late-stage rehabilitation of patients with walking ability. As a supplement 
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This paper focuses on the research of the lower limb rehabilitation module. In terms
of how the robot interacts with the patient’s lower limb, the lower limb rehabilitation
training system (LLRTS) can be divided into two types: the exoskeleton ULRR [12,13] and
the end-traction ULRR. The exoskeleton ULRR can drive each lower limb joint through the
independent movement of multiple driving joints [14]. However, most of the exoskeleton
type ULRRs adapt to a serial mechanism structure with a high cost of manufacture. Due to
the outstanding advantages of a simple mechanism, good motion flexibility and low cost,
the end-traction ULRR is a research hotspot. According to the training posture of patients,
the LLRTS for stroke patients can be divided into the standing type LLRTS [15,16], sitting-
lying type LLRTS [17,18] and multi-posture type LLRTS [19,20]. Locomat, as a typical
standing type LLRTS, with the help of the patient bodyweight support system, can accu-
rately match the speed of the mechanical leg with the speed of a treadmill, which can assist
patients with hip, knee and ankle joint movements to receive natural gait training [21,22].
The patients’ lower limbs can restore their natural gait through a single-degree-of-freedom,
mechanized gait trainer with four, six and eight bars, introduced from the perspective
of kinematics [23]. However, the standing type LLRTS is suitable for the middle- and
late-stage rehabilitation of patients with walking ability. As a supplement training device
of the standing type LLRTS, the sitting-lying type LLRTS is mostly used in the early stage
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of rehabilitation when the lower limb muscle strength of stroke patients is relatively weak.
The sitting-lying type LLRTS, such as MotionMaker, can let patients sit on a chair and
adopt different training modes at a patient’s different rehabilitation stages. The length
of the mechanical leg and the width between the two legs can be adjusted to adapt to
patients with different heights and shapes [24–26]. The multi-posture LLRTS combines
the advantages of the sitting-lying type and the standing type LLRTS, and can realize
the posture transformation from the lying to standing posture. Erigo, developed by the
University in Switzerland, adds a passive training strategy on the basis of inclined standing
training to realize the flexion and extension movement of human hip joint, knee joint
and ankle joint [27]. The Flexbot, made in China, can realize the gait training in multiple
postures. It can overcome various physiological problems caused by long-term bed rest [28].
The multi-posture LLRTS is characterized by assisting simple passive training, which is
especially suitable for the recovery training of the basic abilities of early bedridden patients.

It is very necessary to ensure the absolute safety of patients during the training.
Combined with the mechanism design advantage of the lower limb rehabilitation training
systems from the above remarkable studies, the proposed lower limb rehabilitation module
can also electrically adjust the body shape of patients with a different weight and height.
Meanwhile, the innovative design of the weight reduction mechanism can overcome the
weight of human lower limb fixation component during a patient’s training. This paper
is organized as follows: Firstly, the motion gait of human lower limb during walking is
analyzed. Then, the mechanism of the lower limb rehabilitation module is designed and
simplified, the geometric relationship of the structure is deduced, the trajectory planning
and dynamic modeling of the module are carried out, and then the motor driving force
required in the rehabilitation process is calculated to achieve the purpose of rationalizing
the rehabilitation movement of the lower limb.

2. Materials and Methods
2.1. Motion Analysis of Human Lower Limb during Walking

For the lower limbs of the human body, walking, running and ascending and descend-
ing stairs are the main forms of movement which play a vital role in the rehabilitation of
patients and their reintegration into society, while these different forms of human move-
ment are realized by walking. Therefore, it is very important for the mechanism design
of LLRTS to analyze the specific movements of hip, knee and ankle during walking. The
hip joint plays a major role in walking, the knee joint plays a role in control, cushioning
and stability, and the ankle joint regulates the contact of the foot with the ground. The
human walking process is shown in Figure 2. The characteristic parameters of the human
gait mainly include the gait cycle, step length, step width, walking height, gait speed, step
frequency and so on. The related parameters are studied in the literature [29], shown in
Table 1.
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Table 1. Human gait parameters.

Name Stride (cm) Step Width
(cm)

Step Frequency
(min−1)

Step Height
(cm)

Hip Joint
Range (◦)

Parameters 45–90 5–10 90–125 5–10 −20–120

A person’s gait cycle is divided into a swing period and support period. Swing period
refers to the time from one tiptoe off the ground to the foot heel reaching the ground,
accounting for about 40% of the whole gait cycle. Support period refers to the time when
the feet support the human body, accounting for about 60% of the gait cycle. The support
period can be divided into single support period and double support period. Single support
period refers to the time when the sole of one side of the foot contacts the ground, that is,
the interval between one side of the foot heel reaching the ground and lifting the toe off
the ground; double support period refers to the time when both feet are in contact with
the ground at the same time. When the human step speed increases, the proportion of
support period decreases and the proportion of swing period increases. Meanwhile, during
walking the patient’s weak balance and muscle strength in the early stroke stage require
the use of body support devices, including slings or backrest beds.

2.2. Mechanism Design and Analysis of Lower Limb Rehabilitation Module
2.2.1. Mechanism Design of Lower Limb Rehabilitation Module

The lower limb rehabilitation module is designed on the basis of the human basic
walking movement model. The purpose is to drive the patient’s lower limbs to safely and
effectively complete standardized rehabilitation movements. The lower limb rehabilitation
module mainly includes two parts, the somatotype electric adjustment module and the
rehabilitation training module. The somatotype electric adjustment module, as shown in
Figure 3, is composed of four linear modules, and the linear modules in radial direction
are perpendicular to the linear modules in height direction. Its main function is to adjust
the length and width of the rehabilitation training module according to the shape of the
human body.
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The rehabilitation training module includes a hip movement module, an ankle move-
ment module and a frame support module. The hip movement module, as shown in
Figure 3, is composed of a DC motor, a harmonic drive/reduction, rotating arm and leg
brace. A linear guide rail and slider are installed on the rotating arm, and a leg brace is
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installed on the linear guide rail, which will be connected to the human thigh through the
leg brace. The movement and torque of the DC motor is transmitted to the human thigh
through the combination of the harmonic drive/reduction and the rotating arm to realize
the rotating movement of the human hip joint.

Through the analysis of the mechanical structure of the above-mentioned lower limb
rehabilitation module with the human lower limb, a simplified diagram of the human–
machine rigid body linkage model can be obtained as shown in Figure 4. Since the length
of the human thigh is greater than the length of the calf, the human–machine rigid link
mechanism OAB in Figure 4 is a rocker slider mechanism. Therefore, the main function of
the ankle movement module is to aid the driven degrees of freedom of ankle motion to
meet the foot movement needs of patients during lower limb rehabilitation exercises. In
order to ensure the comfort of patients’ rehabilitation training and reduce the self-weight
impact of the ankle movement module on patients’ lower limbs, a weight compensation
mechanism of ankle motion module is also designed, including the weight compensation
part, guide rail, slider, transmission cable and cable sheath, and the foot plate, as shown in
Figure 3. The weight compensation part is installed on the slider, and one end of slider is
fixed with the transmission cable. After passing through the cable sheath, the transmission
cable is fixed with the foot plate. Therefore, the weight compensation part will balance
the gravity of the ankle movement module, which can make the patient’s feet feel more
comfortable when participating in the training.
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2.2.2. Analysis of Human–Machine Simplified Linkage Model

In Figure 4, the points O, M and Q are the hip joint, driving motor and rotating hinge,
respectively. Linkage MQ is the rotating arm, which is perpendicular to the linkage PQ.
Additionally, there is a moving pair between the linkage MQ and linkage PQ. The points O,
P, Q, M will form a four-bar linkage, and the geometric relationship between the motion
angle θ of hip joint and the motion angle σ of connecting rod can be calculated very simply.
As the designed rehabilitation robot is a bed-based rehabilitation robot, the centers of
the patient’s ankle and hip joints can be located approximately on the same straight line
when the patient is lying on the bed, so the mechanism can be simplified into a centripetal
rocker slider mechanism. The rocker bar OA is the original driving part, linkage AB is
the intermediate link, and the slider B is the driven part. The coordinate system O-xy is
established with O as the origin; r and l are the lengths of rods OA and AB, angle θ is
the rotation angle of thigh OA, angle φ is the angle between rod AB and the x axis. The
coordinates of points O, A and B are (x1, y1), (x2, y2) and (x3, y3), respectively. The masses of
linkage OA, AB of the slider are m1, m2, and m3, respectively. The mass of m1 is composed
of two parts, the weight of the human thigh m11 and the weight of the driving connecting
rod m12, and the weight of m2 is the human calf. The weight of m3 is also composed of two
parts, the weight of the human foot m31 and the weight of the pedal m32.
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Based on the coordinates of the linkage OA, linkage AB, and the centroid of the slider
B, the relationship between the coordinate of point B, angle θ and angle φ are obtained as
follows: {

x3 = r cos θ + l cos φ

r sin θ = l sin φ
, (1)

When performing rehabilitation training on the patient, the movement of the patient’s
ankle joint axis is also very worthy of study, so the relationship between the displacement
x3 and the rotation angle θ needs to be calculated:

x3 = r cos θ + l

√
1− (

r
l
)

2
sin2 θ, (2)

2.2.3. Design and Analysis of Speed and Acceleration of Human–Machine Linkage Model

In order to avoid the impact caused by sudden changes in speed and acceleration
during the rehabilitation training of the patient, which affect the patient’s training expe-
rience, it is necessary to plan a smooth and continuous speed and acceleration trajectory.
Based on the design requirements [30], the lower limbs stepping speed of the rehabilitation
robot is adjustable from 20 to 60 steps/min, and the angle range of hip joint θ(t) is 0 to 40◦,
and the comfort of the patient during training is considered comprehensively. A quintic
polynomial to plan the trajectory is adopted:

θ(t) = a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5, (3)

The starting training position, end training position, starting training speed, end
training speed, starting acceleration and end acceleration of the rehabilitation robot’s
training trajectory is set in Equation (4): θ(0) =

·
θ(0) =

·
θ(2) =

··
θ(0) =

··
θ(2) = 0

θ(2) = 2
9 π

, (4)

Substituting the above initial and final constraint conditions of the trajectory into
Equation (3), the quintic polynomial can be solved. The displacement, velocity and acceler-
ation of the hip joint can be obtained as shown in Figure 5. From the analysis of the curves
in Figure 5, it can be seen that the obtained angular displacement curve, angular velocity
curve, and angular acceleration curve of the hip joint are continuous and smooth, and there
is no impact due to sudden changes in speed or acceleration, which ensures the comfort of
the patient during the rehabilitation process.
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θ π
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
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, (4) 

Substituting the above initial and final constraint conditions of the trajectory into 
Equation (3), the quintic polynomial can be solved. The displacement, velocity and accel-
eration of the hip joint can be obtained as shown in Figure 5. From the analysis of the 
curves in Figure 5, it can be seen that the obtained angular displacement curve, angular 
velocity curve, and angular acceleration curve of the hip joint are continuous and smooth, 
and there is no impact due to sudden changes in speed or acceleration, which ensures the 
comfort of the patient during the rehabilitation process. 
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Figure 5. The simulation of the hip joint. (a) Angular displacement curve (b) Angular velocity curve; (c) Angular acceler-
ation curve. 
Figure 5. The simulation of the hip joint. (a) Angular displacement curve (b) Angular velocity curve; (c) Angular acceleration
curve.
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The length of the thigh is 402~505 mm, and the length of the calf is 313~403 mm [20].
Then, r = 465 mm and l = 369 mm are selected as the human body size data. The
simulation curves of the axis of the ankle joint can be obtained as shown in Figure 6.
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2.2.4. Dynamic Analysis of Lower Limb Rehabilitation Module

The term τ is the torque of the motor, and FB is the friction force on the slider. The
kinetic energy of the rocker, the connecting rod and the slider can be obtained, and the
total kinetic energy of the human–machine linkage model can be obtained:

T = T1 + T2 + T3

= 1
6 m1r2

·
θ

2
+ 1

6 m2l2
·
φ

2
+ 1

2 m2r2
·
θ

2
sin2 θ + 1

2 m2rl
·
θ
·
φ sin θ sin φ + 1

2 m3r2
·
θ

2
sin2 θ + m3rl

·
θ
·
φ sin θ sin φ + 1

2 m3l2
·
φ

2
sin2 φ

(5)

where, T1, T2 and T3 represents the kinetic energy of the linkage OB, linkage AB and the
slider B.

The total gravitational potential energy of the proposed human–machine linkage
model is obtained:

W = W1 + W2 + W3 =
1
2

m1gr sin θ +
1
2

m2gl sin φ, (6)

where, W1, W2 and W3 represent the gravitational potential energy of the linkage OB,
linkage AB and the slider B.

In order to facilitate subsequent formula writing, define:

c =
√

l2 − r2 sin2 θ

The total is then applied by the motor and friction force can be obtained by:

δW =
(

τ − FBr sin θ
(

1 +
r
c

cos θ
))

δθ, (7)

By referring to the product manual of HIWIN Technologies Corp. (www.hiwin.tw,
accessed on 20 June 2012), the formula for calculating the frictional of the linear guideway
can be obtained as shown below:

FB = µ×W + S, (8)

where FB is the friction (N), S is the friction resistance (N), µ is the coefficient of friction,
and W is the normal load (N).

Then, the kinetic equation can be obtained:

M(θ)
··
θ + B(θ)

·
θ

2
+ G(θ) = τ − TFB, (9)

where:

www.hiwin.tw
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

M(θ) =
[
(2m3 + m2) +

m3
c r cos θ

]( r3

c cos θ sin2 θ
)
+ (m2 + m3)r2 sin2 θ + 1

3 m2

(
l
c

)2
(r cos θ)2 + 1

3 m1r2

B(θ) = m2r2 sin θ cos θ
[
1− l

3c2 + r
c cos θ + (lr)2

3c4 cos2 θ + r3

2c3 cos θ sin2 θ
]
−m2

r3

2c sin3 θ −m3
r3

c sin3 θ

+ m3r2 sin θ cos θ
[
1− r2

c2 sin2 θ + r2

c2 cos2 θ + 2r
c cos θ + r3

c3 sin2 θ cos θ
]

G(θ) = 1
2 (m1 + m2)gr cos θ

TFB = FBr sin θ

(
1 + r√

l2−r2 sin2 θ
cos θ

)
The weight m12 of the driving connecting rod can be obtained by adding 1060 alu-

minum and 45 steel in simulation software, which equals 1.166 kg, and in the same way,
m32 = 0.977 kg is also obtained. Then, set m1 = 9.3698 kg, m2 = 2.4294 kg, m3 = 1.7906 kg,
r = 465 mm, and l = 369 mm. Through Equation (9), it can be seen that when the patient’s
rehabilitation speed is different due to the existence of inertial force, the required motor
driving force is different, so it is necessary to calculate the motor driving force required by
the patient at different speeds due to the design of the rehabilitation robot. The requirement
is that the stepping speed of the lower limbs is 20–60 steps/min. In order to reduce the
impact on the rehabilitation of patients, it is important to continue to plan the trajectory of
the lower limb rehabilitation with a fifth-order polynomial, similar to Equation (5). The
time adjustment factor is set as tf, which equals 1~3 s. The angular driving function of the
hip joint can be obtained:

θ(t) =
20π

9

(
t
t f

)3

− 10π

3

(
t
t f

)4

+
4π

3

(
t
t f

)5

, (10)

The above-mentioned relevant parameters are imported into the simulation software
and the driving torque curve of the robot can be obtained as shown in Figure 7.
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Figure 7. Simulation curve of motor driving force. (a) The motor driving torque changes with tf and
t; (b) The changes of time tf and t; (c) The motor driving torque changes with t; (d) The motor driving
torque changes with tf.
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By analyzing the variation range of the motor driving torque required to drive the
patient’s hip joint within the time range of tf = 1~3 s and t = 1~3 s, the maximum motor
driving torque calculated in the simulation software is 30,200 N.mm, which provides a
basis for motor selection of the prototype.

2.2.5. Analysis of the Static Moment Safety Protection of Human–Machine Linkage Model

When the patient is undergoing passive rehabilitation training, the traction of the reha-
bilitation robot will generate joint moments at each joint of the patient. If the rehabilitation
robot exerts excessive force on the patient, it is easy to cause injury to the patient. This
situation should be avoided in the control strategy, and the human–machine force during
training should be controlled. The relationship between joint angle and joint torque can be
obtained [31]:

THf =
(
−820.21 + 34.29αH − 0.11426α2

H
)
Ge_Hf

THe =
(
3338.1− 15.711αH + 0.04626α2

H
)
Ge_He

TKf = (−94.437 + 6.3672αK)Ge_Kf

TKe =
(
1091.9− 0.0996αK + 0.17308α2

K − 0.00097α3
K
)
Ge_Ke

, (11)

where, THf, THe, TKf and TKe represents hip flexion joint torque, hip extension joint torque,
knee flexion joint torque and knee extension joint torque, respectively; αH and αK represent
the angle between the human thigh and the torso, the angle between the human thigh and
calf, respectively; and Ge_Hf, Ge_He, Ge_Kf, and Ge_Ke represent gender adjustment factors
during the hip flexion movement, hip extension movement, knee flexion movement and
knee extension movement, respectively.

Since the designed rehabilitation robot is mainly used by patients with limb movement
disorders, the joint torque is smaller than that of a person with functioning limbs. In order
to ensure the safety of patients during training, the adjustment factors, Ge_Hf = 0.0871,
Ge_He = 0.0516, Ge_Kf = 0.0851, and Ge_Ke = 0.0603, are selected. By calculating the
above Formula (11), the relationship between joint angle and joint torque can be obtained
as shown in Figure 8. Based on the relationship between human joint angle and joint torque,
and the relationship between the hip joint angle and the hip joint torque, the relationship
between the knee joint angle and the knee joint torque are obtained, as shown in Figure 8.
Therefore, if the human–machine interaction force does not exceed the above-mentioned
limit in Figure 8 during the rehabilitation training process, the safety of the patients can be
effectively guaranteed.
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deformation modulus correction coefficient; k2 represents the friction force modulus of 
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ing postures, and if patients meet the standing conditions, it is better for them to perform 
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foot pedal of the rehabilitation robot, when the patient is undergoing active rehabilitation 
training, the movement direction of the patient’s foot is always parallel to the bed surface, 
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2.2.6. Active Training Control System of the Proposed Mechanism

When performing active rehabilitation training, it is also necessary to reconstruct the
patient’s motor functions while judging the patient’s active training movement intention.
The design process of the limb rehabilitation module simulating the sandy soil environment
is introduced. Scholars from Newcastle University created a classic pressure model through
long-term research and analysis of ground characteristics [32]:{

p = (k1 + bk2)
(

l
b

)n

F = pA
, (12)

where, p represents the pressure per unit area; b represents the radius of the circular plate;
n represents the soil deformation index correction coefficient; k1 represents the cohesive
deformation modulus correction coefficient; k2 represents the friction force modulus of
deformation coefficient; l represents the amount of sandy soil subsidence; F represents the
vertical load on the bearing plate; and A represents the bearing area.

For the absolute sandy soil model, k1 = 0. Therefore, the relationship between the
amount of sandy soil subsidence l and the vertical load F can be calculated. The designed
rehabilitation robot can adapt to the rehabilitation training of patients from lying to standing
postures, and if patients meet the standing conditions, it is better for them to perform
rehabilitation exercises in the standing posture. However, considering the design of the
foot pedal of the rehabilitation robot, when the patient is undergoing active rehabilitation
training, the movement direction of the patient’s foot is always parallel to the bed surface,
and so the similar vertical sandy soil model is established. The specific force from the foot
is shown in Figure 9.
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The active training control block diagram based on the similar sandy soil model for
active training is shown in Figure 10. The amount of human body sinking l is calculated,
based on the vertical load F on the bearing plate through the similar sandy soil model,
and then the geometric relationship of the lower limb rehabilitation module is used to
solve the desired joint position ∆θ(t) based on the calculated amount of sinking l. The new
system input r2(t) can be obtained by adding it to the system input r1(t), and then adding
it to the position deviation of the rehabilitation robot fed back by the inner control loop,
resulting in the force caused by the pedal to simulate the sinking motion of the human
foot. Additionally, by setting a different parameter k2, a different hardness of sandy soil
environments can be obtained, so that different sandy soil environments can be simulated,
and the feeling of stepping on the sandy soil can be reconstructed for the patient.
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3. Results
Rehabilitation Robot Experimental Platform Construction

In order to carry out the experimental verification of the mechanism design and control
strategy of the proposed robot, the electrical system and the human–machine interaction
interface of the robot are also designed. Figure 11 is a block diagram of the electrical
system of the proposed rehabilitation robot, which mainly includes the central control unit,
human–computer interaction unit, motion control unit and data acquisition unit.
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The main function of the core of the central control unit is the STM32 single-chip
microcomputer is to run the control program, receive and send operating instructions, and
realize the coordinated control of the robot; the human–computer interaction unit includes
a remote control and a touch-sensitive display. It is used for the input of control instructions
for physician and patient rehabilitation parameter settings, etc. The motion control unit
mainly includes the CAN communication module on a single-chip microcomputer, the
Coply servo drive and the brushless DC motor. Its main function is to realize the joint
motion of the robot through CAN communication. The data acquisition unit is composed
of a data acquisition control module, a membrane pressure sensor, a pulling sensor (Hyly
019, Bengbu Hengyuan Sensor Technology Co., Ltd., Bengbu, China), an angle sensor
(SP2831, Novotechnik, Germany) and a limit switch. Its main function is to collect the
patient’s plantar pressure information, identify the patient’s movement intention, read
the rotation angle of motor, and the limitation of the patient’s range of motion. A healthy
volunteer was selected for the experiment. The related body parameters of the volunteer
are shown in Table 2.
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Table 2. The size range of each joint of volunteers.

Volunteer Gender Age Height Thigh Length Calf Length

Xu Man 26 1720 (mm) 492 (mm) 398 (mm)

The experiment platform is developed as shown in Figure 12. To verify the trajectory
and mechanism design, the starting point and end point of the training trajectory is set
θ(0) = 0 and θ(2) = 2π/9, and the position mode to control the motor is adopted. The
robot drives the patient to train according to the theoretical trajectory, and then the error
of the volunteer’s hip joint angular displacement can be obtained as shown in Figure 12b.
The maximum difference between the theoretical curve and actual curve of the hip joint is
0.023 rad.
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Figure 12. The prototype of the proposed rehabilitation robot. (a) Experiment platform with the
volunteer; (b) Hip joint angular displacement error curve.

According to the pedal structure of the designed lower limb rehabilitation module,
A = 29385.37 mm2 and b = 130 mm. The similar sandy soil model is established in a straight
line perpendicular to the pedal, taking into account the normal gait of humans. In order
to verify the designed active control strategy, the relevant parameters are as follows: the
starting point (573.0, 0), the end point (653.0, 0), the inclination angle of the bed board (35◦),
the force is applied perpendicular to the pedal, and the parameters of the relevant sandy
soil model are applied. The relevant parameters are selected as shown in Table 3.

Table 3. Related sandy soil model parameters.

Sandy Soil Environment k1 k2 n

Harder 0 6.27 0.95
Softer 0 0.90 1.15
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The control of the lower limb rehabilitation module to move from the starting point to
the set end position. After starting the training movement, the robot controls the hip joint
movement module to rotate, and automatically records the data. Therefore, the relationship
curve between the force exerted by the volunteer and the amount of motion can be obtained
in the two sandy soil environments with a different hardness of sand, as shown in Figure 13.
On the basis of the active training control block diagram, through the analysis of Figure 13,
it can be seen that when the parameters are set through the soft sandy soil model, the
amount of exercise is more clear, and the trend of the amount of exercise and the force
change is also consistent, so that the volunteer can experience stepping on the ground with
different hardnesses.
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4. Discussion

For bedridden stroke patients, the uncoordinated and asymmetric motor function of
the upper and lower limbs also inhibits the recovery process of human limb motor function.
The proposed new synchronous rehabilitation robot for bedridden stroke patients’ upper
and lower limbs has a very good research value, including preventing osteoporosis, in-
creasing joint mobility, preventing joint contracture, improving cardiopulmonary function
and promoting blood circulation and respiratory function. This paper focuses on the
mechanism design of the lower limb rehabilitation module.

Compared with other multi-posture LLRTS, the performance of each mechanism is
obtained as shown in Table 4. The proposed lower limb rehabilitation module cannot only
realize the rehabilitation movement required by stroke patients, but also electrically adjusts
the body shape of patients with a different weight and height. Moreover, due to the design
of the weight compensation mechanism of ankle motion module in Figure 3, including the
weight compensation part, the transmission cable and cable sheath and the foot plate, the
movement range of the human heel is also larger than the other multi-posture LLRTS, such
as Erigo [26]. The innovation of the weight compensation mechanism provides a certain
reference value for the mechanism design of other rehabilitation robots. It also provides a
basis for future personalized rehabilitation robot mechanism configuration.

Table 4. Performance comparison of the multi-posture LLRTS.

Product Name Training Joints Range of
Motion

Human Height
Adjustment

Human Fat and Thin
Shape Adjustment

Manufacturing
Cost

ROWAS [20] Hip, knee and ankle Large Yes Yes High
Flexbot [27] Hip, knee and ankle Large Yes Yes High

The proposed robot Hip, knee and ankle Large Yes Yes Low
Erigo [26] Hip, knee and ankle Small Yes No Low
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5. Conclusions

This paper presents a synchronous rehabilitation robot for bedridden stroke patients’
upper and lower limbs and the mechanism of its lower limb rehabilitation module is
introduced in detail. It not only can electrically adjust the body shape of patients with
different weights and heights, but also increase the training range of the lower limb joints
due to the innovative design of the weight compensation mechanism. The geometric
relationship of the human–machine linkage mechanism is deduced and the dynamic
analysis of the human–machine linkage mechanism is conducted, which provides a basis
for the motor selection of the prototype. Based on the analysis of the static moment safety
protection of the human–machine linkage model, the motor driving force required in the
rehabilitation process is calculated to achieve the purpose of rationalizing the rehabilitation
movement of the patient’s lower limb. To reconstruct the patient’s motor functions, an
active training control strategy based on the sandy soil model is proposed. Finally, the
experimental platform of the proposed robot is constructed and the preliminary physical
experiment proves the feasibility of the lower limb rehabilitation component. In the future,
diversified rehabilitation training strategies and the clinical research will be carried out.
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