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Abstract: To improve the working performance of battery electric vehicle (BEV) high-speed helical
gear transmission under full working conditions, combined with Tooth Contact Analysis (TCA) and
Loaded Tooth Contact Analysis (LTCA), the vibration model of single-stage helical gear bending-
torsion-axis-swing coupling system considering time-varying mesh stiffness was established. The
genetic algorithm was used to optimize the tooth surface with the objective of minimizing the mean
value of the vibration acceleration at full working conditions. Finally, a high-speed helical gear
transmission system in a BEV gearbox was taken as a simulation example and the best-modified
tooth surface at full working conditions was obtained. Experiment and simulation results show
that the proposed calculation method of time-varying meshing stiffness is accurate, and tooth
surface modification can effectively suppress the vibration of high-speed helical gear transmission in
BEV; compared to the optimally modified tooth surface under a single load, the optimal modified
tooth surface under full working conditions has a better vibration reduction effect over the entire
working range.

Keywords: battery electric vehicle; high-speed gear transmission; tooth surface modification;
genetic algorithm

1. Introduction

With the aggravation of energy and environmental issues, the new energy vehicles
have achieved rapid development. Among new energy vehicles, BEVs have attracted much
attention because of their advantages related to energy conservation and environmental
protection, as well as their performance and potential for intelligent driving. At present, the
combination of an electric motor with a single- or two-stage gear reducer structure is widely
used in BEV power transmission systems. To pursue the power density ratio, EVs often use
high-speed motors, resulting in the input speed of the gear reducer directly connected to the
motor being too high, which unavoidably presents a significant challenge to the dynamic
performance of the gear transmission in the BEV gearbox, which has a significant effect on
the vehicle’s reliability, stability, and vibration noise. Therefore, vibration suppression for
high-speed gear transmission of BEVs is crucial.

Tooth surface modification is an important means of vibration suppression and noise
reduction of gear transmission. A lot of fruitful research has been carried out by scholars
around tooth surface modification. Liu et al. [1] proposed a small gear tooth surface com-
pensation modification design method, where the influence of gear pair coincidence degree
was considered. Jiang et al. [2] obtained the optimal ease-off modification tooth surface
by optimization and discussed the effect of the stiffness waveform and amplitude change
due to modification of the dynamic characteristics of the system. Yang et al. [3] studied
the modification parameters of herringbone gear pairs and presented the relationship
between modification evaluation index and gear design parameters. In Bonori’s work [4],
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an optimization approach based on genetic algorithms was proposed to improve gear
dynamic performance with a view to noise reduction; linear and parabolic profile modifica-
tions were considered and compared by means of several optimization strategies based
on static nonlinear FEM analysis. Farhad S.S. et al. [5] endeavored to examine nonlinear
spiral bevel gear vibration with the innovative method of tooth surface modification. In
Simon’s work [6], an optimization methodology was proposed to systematically define
head-cutter geometry and machine tool settings to introduce optimal tooth modifications
in face-hobbed hypoid gears. Habibollah M. [7] et al. investigated the complex, nonlinear
dynamic behavior of three bevel gear models; tooth profile modification was employed
in models by means of genetic algorithms in order to extract the best amount and length
of modifications. Bahk [8] et al. investigated the impact of tooth profile modification on
spur planetary gear vibration; an analytical model was proposed to capture the excitation
from tooth profile modifications at the sun–planet and ring–planet meshes. Wang [9,10]
studied the vibration reduction effect of 3D modification on helical gears; in his work, a
multi-objective modification optimal design method for helical gear considering an evenly
distributed load on the tooth surface and vibration and noise reduction was proposed.
Ghosh [11] et al. studied the effectiveness of spur gear tooth profile modification with
respect to the vibration reduction level, obtaining the best profile modification by opti-
mization. Cirelli [12] et al. proposed a refined methodology to simulate the non-linear
dynamic response of spur gears; the dynamic transmission error, computed on the basis of
the proposed methodology, was successfully compared with experimental data available
in the literature. Bruzzone’s work [13] developed a semi-analytical model for the evalua-
tion of the displacements and static transmission error between two loaded gears of any
type of geometry and with any kind of surface modifications. Liu [14] et al. developed
a nonlinear analytical model; the effect of tooth profile modification on the vibration of
the multi-meshing gear group was investigated. Hu [15] et al. studied the effect of mod-
ification coefficient and helix angle on the transient meshing performance of gears with
respect to energy using explicit dynamic finite element analysis, obtaining the relationship
between transient meshing performance and gear modification coefficient and helix angle.
Martini [16] et al. investigated the dynamic behavior of counterbalance forklift trucks in
order to create a virtual test tool based on a numerical multi-body model to evaluate the
dynamic stresses experienced by the main structural components of a specific series of
counterbalanced forklift trucks. Schliermann [17] et al. developed bevel gearboxes for
electric industrial trucks in which the drive motor is arranged vertically, which ensures a
very compact design.

The above literature provides a very useful reference for the vibration suppression
and noise reduction of gear transmission, but in these studies, only the case of a specific
load is considered, and it is not clear whether it is optimal under full working conditions
(the whole working load range). Thus, exploring the optimal tooth surface modification
method under full working conditions is necessary.

In this paper, our intentions are as follows:

(1) obtain the optimal tooth profile under full working conditions by combining TCA,
LTCA, and genetic optimization algorithms;

(2) study the effect of different modification methods under full working conditions;
(3) obtain the optimal vibration suppression modification strategy for BEV high-speed

gear transmission under full working conditions, and further extend the application
to other gear transmissions.

The description of the symbols in the article are shown in Table 1.
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Table 1. Symbol summary.

Symbol Description

a Parabolic coefficient of profile modification
b Parabolic coefficient of axial modification

cix, ciy, ciz
Equivalent support damping of driving and driven gears in Xx, y, and z

directions (i = 1,2)
cm Meshing damping

cijx, cijy
Damping of the driving and driven gears corresponding to the torsional

swing degrees of freedom (j = 1,2)
c1, c2, c3 Constants

d0 One-half of the normal tooth width

d1
Distance between the coordinate system Sb and the coordinate system Sc

along the direction of Obzb axis
F Dynamic meshing force in the direction of the meshing line

i12 Transmission ratio of the gear pair
Ii Rotational inertia of the driving and driven gears (i = 1,2)

kix, kiy, kiz
Equivalent support stiffness of driving and driven gears in x, y, and z

directions (i = 1,2)
km Time-varying meshing stiffness

kijx, kijy
Stiffness of the driving and driven gears corresponding to the torsional

swing degrees of freedom (j = 1,2)
Kt Meshing stiffness
me Equivalent torsional mass of the gear pair

Mde, Mec, Mcb, Mba Coordinate transformation matrices
M Number of meshing points in one meshing period

N Number of the root mean square of the vibration acceleration in the working
load range

O1, O2 Geometric centers of driving and driven gears
P Force or moment
q Relative angular displacement
Ri Radius of the base circle of the driving and driven gears (i = 1,2)

Sa
Coordinate system established on the normal tooth profile of the tool,

moving together with the tool

Sb
Coordinate system established on the normal tooth surface of the tool,

moving together with the tool

Sc
Coordinate system established at the midpoint of the tooth width and pitch

line of the transverse tooth surface of the rack tool
Sd Follower coordinate system established on the pinion
Se Fixed coordinate system built on the pinion
Sf Auxiliary coordinate system established on the pinion tooth profile

Sg
Coordinate system established on the pinion tooth profile along any helix

angle direction
T1, T2 Driving and driven gear torque

u Distance from the point on the tool’s normal tooth profile to the parabolic
vertex

xi, yi Bending vibration displacement of driving and driven gears (i = 1,2)

X Root mean square of the vibration acceleration at a certain working load
under full working conditions

Y Vibration displacement in the direction of the meshing line
zi Axial vibration displacement of the driving and driven gears (i = 1,2)
Z Line displacement or angular displacement deformation
β Helical gear helix angle
δ1 Geometric transmission error
δ2 Tooth bending deformation
δ3 Contact deformation

∆ϕ1, ∆ϕ2 Actual angle of the pinion and gear measured by the circular grating
θx, θy Swings around the x- and y-axes
θz Torsional deformation around the z-axis
ξ Damping ratio
ϕ1 Angle between the meshing plane and the positive direction of the y-axis
ϕ2 Rotation angle of the pinion during gear machining
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2. Mathematical Model
2.1. Dynamic Model of the Gear Transmission

In this work, we took a high-speed helical gear transmission of a BEV as the research
object; the basic parameters and three-dimensional model of the input gear pair are shown
in Table 2 and Figure 1, respectively.

Table 2. Basic parameters of the gear pair.

Parameters Pinion Gear

Number of teeth 22 59
Spiral direction RH LH

Normal module (mm) 2
Normal pressure angle (◦) 18.5

Helix angle (◦) 32
Face width (mm) 33 31.5

Profile shift coefficient (mm) 0.4578 −0.31
Elastic modulus (GPa) 210
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Figure 1. Three-dimensional model: (I) BEV gearbox; (II) Helical gear pair.

A 12-DOF bending-torsion-axis-swing coupling dynamic model of helical gear trans-
mission was established, as shown in Figure 2, where θx, θy are swings around the x- and
y-axes, respectively; θz is the torsional deformation around the z-axis; ϕ1 is the angle
between the meshing plane and the positive direction of the y-axis; β is the helical gear
helix angle; T1, T2 are driving and driven gear torque, respectively; O1, O2 are geometric
centers of driving and driven gears, respectively; kix, kiy, kiz (i = 1,2) are the equivalent
support stiffness of driving and driven gears in the x, y, and z directions, respectively;
cix, ciy, ciz (i = 1,2) are the equivalent support damping of driving and driven gears in the
x, y, and z directions, respectively; km, cm are time-varying meshing stiffness (TVMS) and
meshing damping, respectively.
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ÿ2m2 + ẏ2c2y + y2k2y = Fy (8) 
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Figure 2. Bend-torque-shaft-swing coupling model for high-speed stage helical gear
transmission system.

The set of differential equations for the kinetic model shown in Figure 2 is given by
Newton’s second law in Equations (1)–(12)

..
x1m1 +

.
x1c1x + x1k1x = Fx (1)

..
y1m1 +

.
y1c1y + y1k1y = −Fy (2)

..
z1m1 +

.
z1c1z + z1k1z = Fz (3)

..
θ1xI1 +

.
θ1xci1x + θ1xki1x = −Fz sinϕ1R1 (4)

..
θ1yI1 +

.
θ1yci1y + θ1yki1y = Fz cosϕ1R1 (5)

..
θ1zI1 = −FyR1 + T1 (6)

..
x2m2 +

.
x2c2x + x2k2x = −Fx (7)

..
y2m2 +

.
y2c2y + y2k2y = Fy (8)

..
z2m2 +

.
z2c2z + z2k2z = −Fz (9)

..
θ2xI2 +

.
θ2xci2x + θ2xki2x = −Fz sinϕ1R2 (10)

..
θ2yI2 +

.
θ2yci2y + θ2yki2y = Fz cosϕ1R2 (11)

..
θ2zI2 = FyR2 − T2 (12)

Based on the force and displacement decomposition, the radial dynamic meshing
force, tangential dynamic meshing force, and axial dynamic meshing force in the above
equation are expressed in parametric form as follows:

F = km((x1 − x2) sinϕ1 cosβ+ (y1 − y2 + R1θ1z − R2θ2z) cosϕ1 cosβ+
(z1 − z2 + (R1θ1x − R2θ2x) sinϕ1 + (R1θ1y − R2θ2y) cosϕ1) sinβ)+
cm((

.
x1 −

.
x2) sinϕ1 cosβ+ (

.
y1 −

.
y2 + R1

.
θ1z − R2

.
θ2z) cosϕ1 cosβ+

(
.
z1 −

.
z2 + (R1

.
θ1x − R2

.
θ2x) sinϕ1 + (R1

.
θ1y − R2

.
θ2y) cosϕ1) sinβ)

(13)

Fx = F cosβ sinϕ1 (14)

Fy = F cosβ cosϕ1 (15)

Fz = F sinβ (16)
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where F is the dynamic meshing force in the direction of the meshing line; xi, yi (i = 1,2)
are the bending vibration displacement of driving and driven gears; zi (i = 1,2) is the axial
vibration displacement of the driving and driven gears; Ii (i = 1,2) is the rotational inertia
of the driving and driven gears; Ri (i = 1,2) is the radius of the base circle of the driving
and driven gears; θix, θiy (i = 1,2) are the swing displacement of driving and driven gears
around the x- and y-axes, respectively; θiz (i = 1,2) is the torsional displacement of the
driving and driven gears around the z-axis; kijx, kijy, cijx, cijy (j = 1,2) are the stiffness and
damping of the driving and driven gears corresponding to the torsional swing degrees of
freedom, respectively. The formula for calculating meshing damping cm is as follows:

cm = 2ξ

√
kmI1I2

I1R2 + I2R1
(17)

where ξ is a damping ratio; in this paper, it takes a value of 0.1.
In order to eliminate the influence of the gear rigid body angular displacement on

the subsequent analysis, the relative angular displacement q is introduced to convert the
angular displacement into linear displacement; it is expressed as follows:

q = R1θ1z − R2θ2z (18)

By substituting Formula (18) into Formulas (6) and (12), the torsional vibration equa-
tion can be simplified as follows:

..
qme + Fy =

T1

R1
(19)

where m is the equivalent torsional mass of the gear pair, which is expressed as

me =
I1I2

I1R2
2 + I2R2

1
(20)

2.2. Excitation

It should be noted that the excitation factors of the gear transmission system are com-
plex and diverse, including external excitation [18] caused by motor and load fluctuation,
and internal excitation caused by stiffness [19,20], impact [21], error [22,23], and tooth
surface friction [24,25]. Without loss of generality, only the TVMS is illustrated in this work;
the other excitations are introduced in the same way without further explanation.

A method based on LTCA was applied to calculate the TVMS of gear pairs, which
organically combines gear geometric analysis and mechanical analysis and can obtain the
meshing stiffness curves of gear pairs under modified and error conditions. The calculation
formula of meshing stiffness Kt is as follows:

Kt =
P
Z

(21)

where P denotes force or moment and Z denotes line displacement or angular
displacement deformation.

The loaded transmission error (LTE) Z of the gear pair is mainly caused by geometric
transmission error, tooth bending deformation, and tooth contact deformation. The geomet-
ric transmission error is determined only by the design and machining of the tooth surface,
and has no relationship with the magnitude of the load P. When the gear pair material,
geometric parameters, and meshing position are certain, the tooth bending deformation
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and tooth contact deformation are determined by the load P. The relationship between each
component and load P is as follows:

δ1(P) = c1
δ2(P) = c2P

δ3(P) = c3
3
√
(P)2

(22)

where c1, c2, c3 are constants and δ1, δ2, δ3 represent geometric transmission error, tooth
bending deformation, and contact deformation, respectively.

Dividing a meshing period into n meshing positions, Zk(P) represents the loaded
deformation at the kth meshing position under the nominal load P, and its value can be
obtained by the gear LTCA procedure.

From this, the loaded deformation at the kth meshing position under the nominal load
P can be obtained as follows:

Zk(P) = c1 + c2P + c3
3
√
(P)2 (23)

According to the above method, three calculations under different loads are performed,
and the coefficients c1, c2, and c3 can be determined by using the method of undermined
coefficient; thus, the load as a function of deformation at the meshing position of the gear
pair can be obtained, and the meshing stiffness at this meshing position under any load can
be determined by this equation. By performing the above calculations for each meshing
position, the meshing stiffness of each meshing position during the entire meshing period
can be obtained, and finally, the meshing stiffness of each meshing position can be fitted to
obtain the TVMS curve of the gear pair. The entire calculation process is shown in Figure 3.
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Figure 3. TVMS calculation process for the gear pair.

The TVMS of the gear pair in Table 2 is calculated according to the method described
in this paper. Figure 4 shows the calculated TVMS curve of the gear pair under a load
torque of 382 N·m.
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2.3. Tooth Surface Modification

Tooth surface modification can be divided into two categories: tooth profile modifica-
tion and axial modification. Tooth profile modification can reduce the meshing impact of
tooth pairs, thereby reducing the vibration and noise of the gear system; axial modification
can make the load distribution on the tooth surface more uniform, reduce the bending and
torsional deformation caused by the load, and improve the strength and vibration problems
caused by the error along the tooth width direction during manufacturing and installation.

The tooth profile of the helical gear in this paper was achieved by tooth profile
modification of the rack tool [8]. The normal tooth profile of the rack tool developed into a
pinion is shown in Figure 5. The coordinate system Sa is the coordinate system established
on the normal tooth profile of the tool, moving together with the tool; Sb is the coordinate
system established on the normal tooth surface of the tool, moving together with the tool; Sc
is the coordinate system established at the midpoint of the tooth width and pitch line of the
transverse tooth surface of the rack tool; Sd is the follower coordinate system established on
the pinion; Se is a fixed coordinate system built on the pinion; d0 is one-half of the normal
tooth width; a is the parabolic coefficient of profile modification when the vertex is at Oa;
αn is the normal pressure angle; u is the distance from the point on the tool’s normal tooth
profile to the parabolic vertex. The coordinates of the normal tooth profile of the rack tool
in the coordinate system Sa are expressed as follows:

ra(u) =
[

u au2 0 1
]T (24)
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Figure 5. Normal tooth profile of rack cutter.
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According to Figures 5–7, the equation of pinion tooth surface can be obtained by
coordinate transformation.

rd(u, d1,ϕ2) = MdeMecMcbMbara(u) (25)

Machines 2021, 9, x FOR PEER REVIEW 9 of 21 
 

 

 

Figure 5. Normal tooth profile of rack cutter. 

According to Figures 5–7, the equation of pinion tooth surface can be obtained by 

coordinate transformation. 

𝐫d(u, d1, φ2) = MdeMecMcbMba𝐫a(u) (25) 

According to the gear meshing principle, 

f(u, d1, φ2) = n⃗ c ∙ v⃗ c
(c,d)

= 0 (26) 

where Mde, Mec, Mcb, Mba are coordinate transformation matrices; β is the helix angle; φ2 

is the rotation angle of the pinion during gear machining; d1 is the distance between the 

coordinate system Sb and the coordinate system Sc along the direction of the Obzb axis; 

and r1 is the radius of reference circle of pinion (d2 = φ2r1). 

Mba = [

− cos αn sin αn
−sin αn − cosαn

0  0
0  −d0

0 0
0 0

1  0
0  1

] 

Mcb = [

1 0
0 cos β

0 0
sin β d1 sin β

0 − sin β
0 0

cos β d1 cos β
0 1

] 

Mec = [

1 0
0 1

0 −r1
0 −d2

0 0
0 0

1  0
0  1

] 

Mde = [

cosφ2 −sinφ2
sin φ2 cosφ2

0 0
0 0

0  0
0  0

1 0
0 1

] 

 

 

Figure 6. Rack projection.

Machines 2021, 9, x FOR PEER REVIEW 10 of 21 
 

 

Figure 6. Rack projection. 

. 

Figure 7. Pinion and rack meshing. 

Axial modification in TCA can be realized directly in the tooth surface equation of 

the pinion [8]. Parabolic modification in the direction of the helix was used for the axial 

modification; the axial modification diagram is shown in Figure 8. The coordinate system 

Sf is an auxiliary coordinate system established on the pinion tooth profile; Sg is the coor-

dinate system established on the pinion tooth profile along any helix angle direction. In 

the coordinate system Sg, 

yg = bzg
2 (27) 

where b is the parabolic coefficient of axial modification. 

 

Figure 8. Diagram of axial modification. 

In the coordinate system Sf, 

zf = zg cos βg + bzg
2 sin βg (28) 

yf = −zg sin βg + bzg
2 cos βg (29) 

Compared to the unmodified tooth surface, the value of the change in coordinates of 

the modified tooth surface is 

∆y = bzg
2 cos βg (30) 

According to Equation (28) and Figure 8, 

Figure 7. Pinion and rack meshing.

According to the gear meshing principle,

f(u, d1,ϕ2) =
→
n c·
→
v
(c,d)
c = 0 (26)

where Mde, Mec, Mcb, Mba are coordinate transformation matrices; β is the helix angle; ϕ2
is the rotation angle of the pinion during gear machining; d1 is the distance between the
coordinate system Sb and the coordinate system Sc along the direction of the Obzb axis;
and r1 is the radius of reference circle of pinion (d2 = ϕ2r1).
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Mba =


− cosαn sinαn 0 0
− sinαn − cosαn 0 −d0

0 0 1 0
0 0 0 1


Mcb =


1 0 0 0
0 cosβ sinβ d1 sinβ
0 − sinβ cosβ d1 cosβ
0 0 0 1


Mec =


1 0 0 −r1
0 1 0 −d2
0 0 1 0
0 0 0 1


Mde =


cosϕ2 − sinϕ2 0 0
cosϕ2 cosϕ2 0 0

0 0 1 0
0 0 0 1


Axial modification in TCA can be realized directly in the tooth surface equation

of the pinion [8]. Parabolic modification in the direction of the helix was used for the
axial modification; the axial modification diagram is shown in Figure 8. The coordinate
system Sf is an auxiliary coordinate system established on the pinion tooth profile; Sg is the
coordinate system established on the pinion tooth profile along any helix angle direction.
In the coordinate system Sg,

yg = bz2
g (27)

where b is the parabolic coefficient of axial modification.
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In the coordinate system Sf,

zf = zg cosβg + bz2
g sinβg (28)

yf = −zg sinβg + bz2
g cosβg (29)

Compared to the unmodified tooth surface, the value of the change in coordinates of
the modified tooth surface is

∆y = bz2
g cosβg (30)

According to Equation (28) and Figure 8,

zg =
− cosβg +

√
cos2 βg + 4bzf sinβg

2b sinβg
(31)



Machines 2021, 9, 226 11 of 21

Inserting Equation (31) into Equation (30), we can obtain the following:

∆y = b

− cosβg +
√

cos2 βg + 4bzf sinβg

2b sinβg

2

cosβg (32)

where βg = arctan
(
rg tanβ/r1

)
and rg =

√
x2

d + y2
d,zf = zd.

According to Equation (32), the coordinates of the pinion tooth surface after tooth
profile modification and axial modification can be obtained as follows:

rd(u, d1,ϕ2) = MdeMecMcbMbara(u) +


0

∆y
0
0

 (33)

2.4. The Global Optimization Model

Since the genetic algorithm has good global search capability and can control the
search process adaptively to find the optimal solution, in this paper, we selected the genetic
algorithm combined with TCA and LTCA of gears to optimize the tooth profile and axial
modification coefficients.

The relative vibration acceleration on the gear pair meshing line is the most important
aspect of vibration and noise in gear transmission systems, so the final optimization
objective is to minimize the vibration acceleration on the meshing line direction over
the entire working load range. Here, the minimum full working condition vibration
acceleration is defined as the minimum of the mean value of the root mean square of the
full working condition vibration acceleration. The objective function expression in the
genetic algorithms is

min(f) =
∑N

i=1 X
N

(34)

with

X =

√√√√∑M
j=1

..
Y

2

M
(35)

where X is the root mean square of the vibration acceleration at a certain working load
under full working conditions, N is the number of the root mean square of the vibration
acceleration in the working load range, Y is the vibration displacement in the direction of
the meshing line, and M is the number of meshing points in one meshing period.

The specific optimization process based on the genetic algorithm is shown in
Figure 9 below.
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3. Experimental Verification and Analysis
3.1. Experimental Verification of LTE Calculation Accuracy after Tooth Surface Modification

The accuracy of excitation calculation directly affects the subsequent analysis results.
To ensure the accuracy of the TVMS calculation method based on LTE in this study, an
experimental process was designed to check whether the LTE calculation results of the input
gear pair were consistent with the experimental results before and after modification. The
experimental scheme is shown in Figure 10. The circular grating model in the experiment
was HEIDENHAIN RPN886; the number of lines was 90,000, with an accuracy of ±1”. The
maximum rotational speed of the tacho-torquemeter was 8500 r/min, with a full scale of
2000 N·m and an accuracy of 2 N·m.
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Figure 10. Experimental scheme.

The electric motor needs to drive the gearbox at a relatively low speed to ensure the
accuracy of the actual LTE, due to the meshing impact. The actual rotation angle of the
driving pinion and the driven gear under load is measured by two circular gratings; the
actual LTE δ can then be calculated as follows:

δ = ∆ϕ2 − ∆ϕ′2 = ∆ϕ2 −
1

i12
∆ϕ1 (36)

where ∆ϕ1 and ∆ϕ2 are the actual angle of the pinion and gear measured by the circular
grating, and i12 represents the transmission ratio of the gear pair.
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The experiment was carried out under a load of 100 N·m, at a speed of 14 r/min, and
the tooth surface modification coefficients a and b were 1.048 × 10−2 and 1.840 × 10−3,
respectively. The experimental results are shown in Figures 11 and 12. The calculation
result of the simulation method in this study is shown in Figure 13.
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As can be seen from Figures 12 and 13, the amplitude of LTE calculated by the
simulation method in this study is 6.9” and the experiment result is 6.8”; there is only 1.5%
difference between the results, that is, the LTE calculation method proposed in this study
has high accuracy. Thus, the accuracy of the subsequent calculation of TVMS is ensured.

3.2. Optimal Tooth Surface Modification Scheme

We set the target gear working load range as 100 N·m–400 N·m and input speed as
5000 r/min (the corresponding vehicle speed is about 100 km/h). The optimal profile
modification coefficients for the working loads of 100 N·m, 300 N·m, and 400 N·m and
the full working condition were obtained through genetic algorithm optimization. The
optimization results are shown in Table 3.

Table 3. Genetic algorithm optimization results.

Modification Scheme Tooth Profile Modification Coefficient:
a

Axial Modification
Coefficient: b

Scheme 1 (Optimum modification at a
load of 100 N·m) 1.048 × 10−2 1.840 × 10−3

Scheme 2 (Optimum modification at a
load of 300 N·m) 8.600 × 10−3 3.950 × 10−3

Scheme 3 (Optimum modification at a
load of 400 N·m) 8.540 × 10−3 4.890 × 10−3

Scheme 4 (Optimum modification under
full working conditions) 7.450 × 10−3 2.540 × 10−3

The LTE curves of the gears before and after modification under the above three
groups of single loads were calculated using TCA and LTCA; the results are shown in
Figures 14–16. Comparing the results, it is obvious that the LTEs of the modified gears
under each set of working loads were significantly reduced, indicating that appropriate
tooth surface modification can effectively reduce the vibration of the gear system compared
to the unmodified gears.
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The vibration acceleration of the gear transmission system under stiffness excitation is
influenced by the amplitude and mean value of TVMS. Figures 17–19 show the TVMS of
the gear pair before and after modification under the above three sets of loads. It can be
seen from the figures that the magnitude of the TVMS decreases and the mean value of the
stiffness increases after gear modification. This is consistent with the conclusion in [26] that
reducing the amplitude of meshing stiffness and increasing the mean value of meshing
stiffness can effectively reduce the vibration acceleration of the system.
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Figure 19. TVMS curve at a load of 400 N·m.

Next, the vibration acceleration in the meshing line direction of the high-speed helical
gear train was calculated for four modifying schemes at working loads of 100 N·m, 150 N·m,
200 N·m, 250 N·m, 300 N·m, 350 N·m, and 400 N·m, and the modifying effects of different
modifying schemes were compared at full working conditions. It should be noted that the
finer the load division, the more accurate the result is, but the computing time increases
accordingly. Without loss of generality, the above division is made to illustrate the global
optimal tooth surface modification method in this work.

Figures 20–26 show the time domain diagrams of the vibration acceleration in the
direction of the meshing line under different working loads for the above modification
scheme. Table 4 shows the magnitude of the root mean square of the vibration acceleration
of the gear at different working loads in the direction of the meshing line under the above
modification scheme and without modification.
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Table 4. Root mean square value of vibration acceleration in the direction of the meshing line under
different working loads (m/s2).

Working
Load Scheme 1 Scheme 2 Scheme 3 Scheme 4 Unmodified

100 N·m 10.1806 40.0622 40.3820 12.6791 12.8866
150 N·m 8.2216 18.0759 34.7084 6.6689 15.2156
200 N·m 10.9045 7.8333 14.0231 5.9006 13.6982
250 N·m 10.9960 5.6143 7.9189 1.3355 10.7765
300 N·m 9.4872 2.2351 7.1550 3.6751 10.1485
350 N·m 11.3276 3.6645 4.7836 6.5724 10.7539
400 N·m 11.5764 6.9905 5.6930 10.7864 12.6968
Average 10.3849 12.0680 16.3806 6.8026 12.3109

Comparing the vibration acceleration of each modification scheme under different
working loads and the magnitude of the root mean square value of vibration acceleration
under each working load, it can be seen that the vibration reduction effect of Scheme 4
is obvious under full working conditions compared with the other three modification
schemes, although the vibration reduction effect of Scheme 4 is not always optimal under
each working load. The vibration acceleration of Scheme 1 is less than that of Scheme 4
under a load of 100 N·m, but in other loads, the vibration suppression effect of Scheme 4 is
more remarkable. Scheme 2 and Scheme 3 have good vibration suppression effects under
high load; however, the vibration accelerations under low loads are obviously greater than
for Scheme 4. That is, the optimal modifications to the full working conditions have better
vibration reduction effects over the whole working load range compared to the optimal
modifications for a specific load.

4. Conclusions

(1) The bending-torsion-axis-swing coupling dynamics model of the helical gear system
considering the stiffness excitation was established, the TVMS of the gear pair was
calculated based on LTCA, and the calculation accuracy was verified by experiment.

(2) Tooth profile and axial modifications were realized in TCA. The optimal tooth profile
and axial modification parameters for the full working condition were obtained by us-
ing a genetic algorithm with the minimum root mean square of vibration acceleration
as the optimization objective.

(3) The vibration reduction effects of the optimal modification under a specific load
and the full working condition were significantly different; the optimal modified
tooth surface under full working condition had a better vibration suppression effect
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in the whole working load range. Therefore, more attention should be paid to the
tooth surface modification under the full working conditions in BEV high-speed
gear transmissions.
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