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Abstract: This paper addresses the problem of instance-level 6DoF pose estimation from a single
RGBD image in an indoor scene. Many recent works have shown that a two-stage network, which first
detects the keypoints and then regresses the keypoints for 6d pose estimation, achieves remarkable
performance. However, the previous methods concern little about channel-wise attention and the
keypoints are not selected by comprehensive use of RGBD information, which limits the performance
of the network. To enhance RGB feature representation ability, a modular Split-Attention block that
enables attention across feature-map groups is proposed. In addition, by combining the Oriented
FAST and Rotated BRIEF (ORB) keypoints and the Farthest Point Sample (FPS) algorithm, a simple
but effective keypoint selection method named ORB-FPS is presented to avoid the keypoints appear
on the non-salient regions. The proposed algorithm is tested on the Linemod and the YCB-Video
dataset, the experimental results demonstrate that our method outperforms the current approaches,
achieves ADD(S) accuracy of 94.5% on the Linemod dataset and 91.4% on the YCB-Video dataset.

Keywords: 6DoF pose estimation; split-channel attention; ORB-FPS keypoint

1. Introduction

6d pose estimation is a functional task of many computer vision applications, such as
augmented reality [1], autonomous navigation [2,3], robot grasping [4,5] and intelligent
manufacturing. The purpose of 6d pose estimation is to obtain the rotation and translation
from the object’s coordinate system to the camera’s coordinate system. In practical applica-
tions, the estimation process requires robustness to the noise, occlusion, different lighting
conditions and achieves real-time. RGB image has rich texture information, so the pose of
the object can be estimated by detecting the object in the images. Traditional RGB-based
methods [6] extract the global or local feature to match the source model. With the rapid
development of Convolutional Neural Network (CNN), image feature learning ability has
been significantly improved. CNN is also used in pose estimation, PVNet [7] regress the
2d keypoint through the end-to-end network, and then use the PnP algorithm, estimate
the 6d pose by calculating the 2d-3d correspondence relationship of the object. RGB-based
methods always achieve good computing efficiency, but they are sensitive to the back-
ground, illumination, texture. In addition, these RGB-based approaches need to compute
the projection of the 3d model, making partly lose of the geometry constraints. Depth
image or point cloud contains sufficient geometry information, Hinterstoisser et al. [8] uses
hand-crafted feature or pointnet to extract the point cloud feature and estimate the pose by
feature matching or bounding box. Compared to RGB images, the point cloud has more
geometry information. However, the point cloud does not have texture information and it
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is sparse. In addition, due to the mirror reflection, RGB-D sensors cannot obtain the depth
information of the smooth or transparent surface.

Based on the limitations mentioned above of RGB-based methods and pointcloud-
based methods, how to fully use the RGB image’s texture information and pointcloud’s
geometry information becomes an important issue. PoseCNN [9] first uses RGB image
to estimate the coarse pose of the object, then utilizes Iterative closest point(ICP) [10]
to refine the result. However, these two separate steps cannot be optimized jointly and
are time-consuming for real-time applications. Chi et al. [11] extracts the depth image’s
information through CNN and uses it as a supplementary channel of the RGB image, but
it needs a complex preprocess and does not make the best use of the RGBD information.
DenseFusion [12] is an innovative work, it extracts the RGB and point cloud information
from every single pixel by CNN and PointNet [13], respectively, then embeds and fuse the
RGB and point cloud information of every pixel through the single-pixel fusion method.
The later method FFB6D [14] adds the communication between the two channels. Full pixel
estimation greatly increases the computed complexity, PVN3D [15] uses full pixel hough
voting to obtain the 3d keypoints and then estimate the 6d pose through the least-squares
method. Compared to 2d-keypoint-based methods, PVN3D significantly increases the
robustness. However, PVN3D gets the keypoints by farthest point sample (FPS), which
only concerns the Euclidean distance factor, without the texture information which may
cause the selected keypoints appear on a smooth surface.

In order to make comprehensive use of image and point cloud information, we
propose the 3D keypoint voting network (3DKV) for 6DoF pose estimation. As shown
in Figure 1, 3DKV is a two-stage network, which first detects the keypoints, then utilizes
the least-squares method to compute the 6d pose. To enhance RGB feature representation
ability, we present the feature map split-attention block. More specifically, every block
divides the feature map into several groups along the channel dimension and finer-grained
into subgroups, and the group is determined via a weighted combination of its subgroups,
where the weights are calculated through the contextual information. In addition, an
ORB-FPS keypoint election approach that concerns both texture and geometry is proposed.
Firstly, we detect the ORB keypoint in the RGB images, then calculate the correspondence
3d points in the point cloud through the camera parameter, then find the final 3d ORB-FPS
keypoints through the Farthest Points Sample (FPS) from the selected points. This method
improves the ability of keypoints to characterize objects, and avoids the selected keypoints
appear on non-significant areas like smooth surfaces, making it easier to locate keypoints
and improving the ability to estimate the pose. In general, the contributions of this paper
can be concluded as follows:

(1) A split-attention block is presented in the image feature extraction part. This
method combines channel-attention and group convolution. The channel-attention block
enhances the feature fusion between the image’s channel dimension. Moreover, the group
convolution reduces the network’s parameters and improves its computational efficiency.

(2) A simple and effective keypoints selection approach named ORB-FPS is proposed.
It utilizes a two-stage approach to select the keypoints, and avoids the selected keypoints
appear on non-significant areas like smooth surfaces, making them easier to locate and
improving the network’s ability to estimate the pose.

(3) A thorough evaluation of the proposed algorithm is presented, including com-
parisons with the current algorithms on the Linemod and YCB datasets. The experiment
results show that the proposed method performs better than other algorithms.

The remainder of this paper is organized as follows. Section 2 reviews the related work
of other researchers. Section 3 demonstrates the details of our proposed method. Section 4
provides the experiment results and analyses. Section 5 concludes with the summary and
the perspectives.
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Figure 1. Pipeline of our proposed algorithm. (a) The RGB-D input data of our network; (b) The blue
lines represent the direction vector to the keypoint; (c) The predicted 9 points, where 8 blue ORB-FPS
keypoints and one red center point; (d) The 6DoF pose estimated by our algorithm.

2. Related Work
2.1. Pose from RGB Images

The RGB image-based methods for 6DoF pose estimation can be roughly divided into
three categories: template, correspondence relationship and voting. The template-based
approaches first learn the feature of objects through convolutional neural networks, and
then detect the objects in the image and calculate the pose. SSD6D [16] extends the SSD
detection network to enable instance segmentation and 6d pose estimation. PoseCNN [9]
proposes an end-to-end method based on RGB images, it includes three modules: semantic
segmentation, 3D translation estimation and 3D rotation estimation, and uses the VGG16 to
extract features. Zeng et al. [17] proposes a unsupervised pose estimation network based on
the multi-perspective images. Another keypoint-based strategy first detects the keypoints
of the corresponding object from the image and then calculates the pose by regressing
the keypoints. For example, YoLo6D [18] detects the center point and 8 bounding box
points of the projection of the three-dimensional object on the image, then utilizes the
PnP algorithm to obtain the final pose. DpoD [19] uses the dense UV map to directly
obtain the connection between the 2d pixel and the vertex of the 3D model. Some other
methods vote on the pixels or patches of the image to obtain key points. PVNet [7] first
votes the keypoints through RANSAC, then utilizes the 2D-3D correspondence to calculate
the 6D pose. HybridPose [20] adds edge vector and symmetrical correspondence into
the PVNet framework to enhance the robustness of symmetrical objects. Based on the
shortcoming of the PnP algorithm and regress directly, GDR-Net [21] presents a geometry-
guided regression Network. Furthermore, Stevsic et al. [22] adds the attention blocks into
the feature extraction module to improve its feature representation ability. Some other
researchers use panoramic images to accomplish this task, Zhang et al. [23] show how the
use of panoramic images improves significantly the geometric analysis of the scene thanks
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to the large captured context and Xu et al. [24] it with object poses. Pintore et al. [25]
combines modern CNN networks, 3D scene information and parameter optimization
to recover the oriented bounding boxes of the captured objects inside the 3D layout of
the indoor environment. RGB-based approaches always are efficient, but most of them
built on the perspective projection, which may cause the partly lose of the geometric
constraint information.

2.2. Pose from Point Cloud

With the development of terrestrial laser scanners (TLS) and low-cost 3D scan in-
struments like Kinect, point clouds can be obtained easily. There are many classical
pointcloud-based algorithms for pose estimation, such as calculating FPFH [26], SHOT [27]
and other local descriptors. Pointnet [13,28] and its variants make a break work, which
directly applies deep learning to point clouds and enable them to complete advanced
applications like object classification, semantic segmentation, object recognition. A variety
of 6d pose estimation approaches are also proposed based on PointNet, Votenet [29] uses
Hough voting to generate points close to the center of the object, then group and aggregate
the points to obtain candidate boxes. PointnetLK [30] expands the PointNet and Lucas–
Kanade (LK) algorithms into a single trainable recurrent deep neural network and achieves
outstanding pose estimation performance. Weng et al. [31] proposes category-level 9Dof
pose estimation, which consists of 3D rotation, 3D translation and 3D size. Huang et al. [32]
predicts the pose by learning the stable geometry feature. PCRNet [33] uses PointNet as
the backbone to extract the global feature for pose estimation, it is more robust to noise.
Gao et al. [34] proposes a lightweight data synthesis pipeline to produce the data. How-
ever, the pointcloud is textureless and sparse. Meanwhile, due to the specular reflection,
the depth camera cannot obtain the depth information of the smooth or transparent surface,
which will limit the performance.

2.3. Pose from RGBD Data

Based on the above-discussed shortcomings of RGB-based and pointcloud-based
approaches, some researchers combine the two types of information together. Traditional
methods for pose estimation mainly use hand-crafted features. For example, Linemod [8]
locates and estimates object poses by extracting gradient features of images and normal
features of depth images. Some other methods use deep learning to extract the RGBD
feature, Shao et al. [35] proposes two fusion strategies, the first is concatenates RGB and
depth image into a raw input to the CNN network, and another strategy just like [3,36,37],
they utilize CNN network to extract the RGB image and depth image features, and then
concatenate the features as the input for object segmentation and pose estimation. However,
these methods neglects the inner structure of the depth channel and extract depth image
features as a supplement channel to the RGB feature channels. Densefusion [12] separately
extracts RGB and depth feature information through CNN and PointNet, and designs a
dense pixel-level fusion method, which integrates the features of RGB data and point cloud
features more properly. In order to enhance the connection between the two channels,
refs. [14,38] built the full flow bidirectional fusion and correlation fusion communication
module. PVN3D [15] proposes a new method to generate 3D keypoints. It generates 3D key
points through full-pixel voting and calculates 6D pose by using the least square method,
6-PACK [39] proposes an anchor-based attention network to generate an order of keypoints.
3D keypoints strategy improves the pose estimation performance significantly, however, it
only uses the distance factor and the RGB texture information is not effectively used.

3. Methodology

Given an RGBD image, 6D pose estimation can be described as finding the best
affine transformation between the object’s coordinates and the camera’s coordinate, which
consists of two parts: rotation matrix and translation vector. The entire process should be
fast and accurate, and robust to noise and occlusion.
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In order to tackle this problem, this paper proposes a 3D Key Point Voting (3DKV)
strategy for 6d pose estimation. As shown in Figure 2, 3DKV is a two-stage structure,
first detects the 3D ORB-FPS keypoints, then predicts the 6D pose. In detail, given an
RGB-D image as input, we use an ImageNet pre-trained in-channel attention block CNN
network to extract the RGB image’s texture and other appearance features and use the
PointNet++ [28] to extract the point cloud’s geometric features. We add the split-attention
blocks into every channel of the image feature extraction module to enhance the channel
information fusion. Then 3DKV utilizes DenFusion to fuse the RGB and point cloud feature
of every pixel and sends them to the keypoints detection module. In order to make better
use of the texture feature, we first detect the 2D ORB keypoints of the RGB image, then
finds the 3D fps keypoints from the 3D corresponding points of the 2D orb keypoints. The
keypoints detection module includes two parallel tasks: instance semantic segmentation
and keypoints prediction. In addition, we select 12,888 points from each RGB-D image
as the seed points and use shared Multi-Layer-Perceptron(MLP) to share the training
parameters between the 3D keypoint prediction and instance semantic segmentation.

Figure 2. Overview of our algorithm. Given RGB image and point cloud, the point-wised features are extracted by the
attention CNN network and PointNet++ respectively. The 3D keypoint prediction, center point prediction and instance
semantic segmentation modules are trained jointly to obtain the keypoints. Finally, the 6DoF pose is estimated through the
least-square algorithm.

3.1. Split-Attention for Image Feature Extraction

For the extraction of RGB image features for classification or instance segmentation,
the receptive field and the interaction across channels is very important. The convolution
operation is the core of the CNN network and its essence is to perform feature fusion on
a local area, including spatial (h,w) and cross-channel. Enhancing the network’s feature
extraction ability can improve its ability of object classification, recognition, segmentation
and other applications. Enlarging the receptive field is a common method, that is, fuse more
features in spatial or extract multi-scale spatial information [40]. SeNet [41] pays attention
to learn the importance of different channel features, which is equivalent to adding attention
operations to the channel dimension. SeNet pays more attention to the channel with the
most information, while suppresses those that are not important. SkNet [42] designs a
dynamic selection mechanism so that every neuron can select different receptive fields
according to the target object’s size. Based on the above two improvements, Resnest [43]
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proposes split-attention, which combines the dynamic receptive field and the attention
mechanism to improve the network’s ability to express features. Based on the Resnest, we
propose the Multi-branch-attention RGB feature extraction module. As shown in Figure 3,
given an RGB image with (h, w, c), where h, w represent the height and width of the input
image and c is the channels. First divide the input channels into M cardinals, denoted
as cardinal 1−M, and then divide each cardinal into N groups. So the total number of
groups is MN, suppose the input of each group is Ii, then the input of each cardinal can be
obtained as:

Im =
Nm

∑
j=N(m−1)+1

(Ij)(m = 1, 2, . . .M) (1)

Since the multi groups of each single cardinal, an average pooling layer is added after
each convolution operation, so the weight W of each stream can be calculated as:

Wm =
1

H ×W

H

∑
i=1

W

∑
j=1

Im(i, j) (2)

According to the groups weight, the output of every cardinal will be:

Om =
N

∑
i=1

an
i Im(n− 1) + i (3)

where am
i is the weight after softmax:

am
i = { exp Wc

i (w
m)/ ∑ j=0N exp Wc

i (w
m) N > 1

1/1 + exp−Wc
i (w

m) N = 1

where W is determined by number of the group in the cardinal. When N = 1 means that
each cardinal is regarded as a whole. After obtaining the output of each cardinal, the final
output of these cardinals can be obtained through splitting.

Figure 3. Illustration of the proposed in-channel attention block. Several channels are obtained by convolution, then
calculate the weights of every channel and concatenate them together.

3.2. Pointcloud Feature Extraction

The 3D keypoints voting requires accurate pointcloud geometric reasoning and con-
textual information. The traditional approaches generally use a hand-crafted features
such as the Fast Point Feature Histogram (FPFH), Signature of Histograms of Orienta-
tions Shot (SHOT), View point Feature Histogram (VFH) and others. These features are
time-consuming and sensitive to noise, illumination, etc. PointNet++ [28] is the improved
version of PointNet [13]. It proposes a hierarchical network to capture local features and
uses PointNet to aggregate local neighborhood information. In addition, compared with
the recent point cloud network PointCNN [44] and RandLA-Net [45], PointNet++ performs
better on the Non-Uniform density point cloud due to the Multi-scale Grouping (MSG)
and Multi-resolution grouping (MRG). So we choose it as the backbone. The proposed
method handles the point cloud directly instead of transforming it into other structures.
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This can avoid information loss during the processing. Meanwhile, due to the pointcloud’s
sparsity, the process is only for the interest points.

3.3. ORB-FPS Keypoint Selection

3D keypoint voting mainly includes two steps: select keypoints from the 3D model
and design the keypoints prediction module to predict keypoints. Many of the former 3D
key points methods are simple to select the corner points of the target’s bounding box.
However, the corner points are virtual and not on the object, which is not good for 6D pose
estimation. PVN3D proposes Farthest Point Sample (FPS) to select the keypoints, but it only
relies on the Euclidean distance, which may cause the keypoints to appear in areas without
conspicuous features, such as a smooth surface. In order to avoid this, this paper proposes
ORB-FPS 3D keypoints, we first detect the 2D ORB keypoints in the projected image of the
3D model, then calculate the corresponding 3D points on the model through the camera
internal parameters, and finally find the M ORB-FPS keypoints through FPS algorithm. The
ORB algorithm first obtains the multi-scale images, then detects the significant keypoints
through the Feature from Accelerated Segment Test (FAST) method, it is fast and scale
invariant. The ORB keypoint selection process can be described as follows:

(1) Choose a pixel p from the image and suppose its gray value is Gp.
(2) Calculate the gray value difference between p and its neighboring points. Set the

threshold T and consider the two points are different when the difference is greater than T.
(3) Compare p with 16 neighboring points and consider p is the keypoint if there are

n(n = 12) consecutive points that are different from this point.
After obtaining the ORB keypoints and its corresponding 3D points on the model, use

FPS to find the 3D keypoints. Specifically, we first select the model’s center point as the first
point, then add a point farthest from all the selected key points in turn until M(M = 8)
keypoints are obtained. The detail of the algorithm can be described in Algorithm 1.

Algorithm 1: ORB-FPS keypoint algorithm.
Input: 2D projection image I 3D model P with N points
Output: M ORB-FPS keypoints ki|Mi=1

1 Camera internal parameters C;
2 Number of ORB keypoints A;
3 Initial Center keypoint O;
4 n : Number of ORB neighbor points n=16;
5 t: ORB threshold;
6 for i = 1:A do
7 Select pixel p and set its value as l
8 Compute the difference d between l and its neighbor points
9 if d>t then

10 i = i+1;
11 if i>12 then
12 p is the ORB keypoint;
13 end
14 end
15 end
16 for j = 1:M do
17 Obtain the 3D correspondence ORB point set A through C;
18 while The selected ORB-FPS keypoints is less than M do
19 Select the farthest point to the selected point set in A;
20 end
21 end
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3.4. 3D Keypoint Voting

Through DenseFusion, the information from the image and the point cloud are closely
combined to obtain the semantic features of each pixel. Based on the RGB-D information
and offset strategy, we proposes the 3D keypoints voting module. In detail, we calculate
the offset from each point to the predicted keypoints and the ground truth keypoints, and
use their difference as the regression parameter. Suppose that the total number of points is
N and the keypoints is M, the loss can be expressed as:

Lkeypoint =
1
N

N

∑
i=1

M

∑
j=1
||∆vi,j|x||+ ||∆vi,j|y||+ ||∆vi,j|z||+ ||∆vi,j| f ||

∆vi,j = vi,j − v̂i,j

(4)

where vi,j and v̂i,j are the offset from the points to the predicted keypoints and groundtruth
keypoints, respectively. .|x, .|y, .|z, .| f are the components of ., and .|x, .|y, .|z denotes the 3D
coordinate and .| f is the extracted feature.

3.5. Instance Semantic Segmentation

In order to improve the framework’s ability to deal with multi object problem in 6d
pose estimation, we add the instance semantic segmentation module into the framework.
The common method utilizes semantic segmentation architecture to obtain the regions of
interest (RoI) containing only a single object, and then performs keypoint detection on
the RoI area. Using predictive segmentation to extract global and local features to classify
objects is conducive to keypoint location, and the addition of size information can also help
the framework to distinguish objects with similar appearance but different sizes. Based on
this property, the proposed architecture performs these two tasks at the same time. Given
the comprehensive features of each pixel to predict their semantic label, the Focal loss [46]
can be described as:

Lseg = −α(1− pi)
γlog(pi)

pi = ci ∗ hi
(5)

where α is the balance parameter, it is to balance the importance of positive and negative
samples. γ is the focusing parameter to adjust the decreasing rate of simple samples. In this
paper, we set α = 0.25 and γ = 2. ci and hi are the predicted confidence and groundtruth
label of the ith point.

3.6. Center Point Voting

Except for the keypoint, the center point voting module is also utilized in this part.
The 3D center point will not be blocked by other objects, so it can treated as an assistant
of the instance semantic segmentation. Following the PVN3D, we use the center point
module to distinguish the different instance objects in the multi-objects scene. The 3D
center point can also be considered a keypoint, so the center point loss Lcenterpoint can be
described as the Lkeypoint where M = 1.

The 3D keypoint prediction network, instance semantic segmantation network and
center point voting network are trained jointly, and the loss function could be defined as:

Loss = λ1Lkeypoiont + λ2Lseg + λ3Lcenterpoiont (6)

3.7. Pose Calculate

Given two data sets of keypoints, one from the M predicted keypoints [ki]
M
i=1 in the

camera’s coordinate system, and another from the M ORB-FPS keypoints [k
′
i]

M
i=1 in the

object’s coordinate system. The least-square method is used to calculate 6d pose translation,
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which is to find the best rotation matrix R and translation vector T that make the two
datasets keypoints closest to each other. The R and T can be calculated as follows:

R, T = arg min
R,T

M

∑
i=1
||ki − (R ∗ k

′
i + t)||2 (7)

4. Experiments

This section shows the experimental results of the proposed method. We evaluate the
performance with other pose estimation algorithms on two datasets, Linemod dataset [47]
and YCB-Video dataset [9].

4.1. Datasets

Linemod is a standard benchmark widely used in 6d pose estimation. Linemod
consists of 13 objects from 13 videos. This dataset contains multiple challenging problems
for pose estimation: cluttered scenes, texture-less objects and different lighting conditions.

YCB-Video Dataset is used to evaluate the pose estimation performance in symmetry
and severe occlusions. The dataset contains 21 YCB objects with varying shapes and
textures and captures and annotates the 6D pose from 92 RGBD videos. Follow PoseCNN,
we split the dataset into 80 videos for training and another 12 videos for testing. Meantime,
we add the synthetic images into the training set.

4.2. Evaluation Metrics

We evaluate our framework with the ADD and ADD-S metrics. The ADD evaluates
the average Euclidean distance between the model points transformed with the predicted
6D pose [R, t] and the groudtruth pose[R̂, t̂]:

ADD =
1
N ∑

x∈O
||(Rx + t)− (R̂x + t̂)|| (8)

where O is the object mesh and the N is the total number. In addition, For symmetrical
objects like eggbox and glue, the ADD-S is proposed. ADD-S computes the distance with
the closest points. The formula can be described as follows:

ADD− S =
1
N ∑

x1∈O
min
x2∈O
||(Rx1 + t)− (R̂x2 + t̂)|| (9)

We follow PoseCNN [9] and report the area under the ADD-S curve (AUC) obtained
by changing the average distance threshold as the evaluation. Furthermore, in this paper
we set the max accuracy threshold to 2cm.

4.3. Implementation Details

During implementation, follow the PVN3D, we select eight ORB-FPS keypoints and
one center point for the predicting network. Furthermore, during the training and testing
processes, we sample 12,888 points for each frame of RGBD image. In order to enhance the
framework’s robustness to the light condition and background, we synthesize 70,000 ren-
dered images and 10,000 fused multi-objects images from the SUN2012pascalformat
dataset [48]. In addition, we set the initial learning rate 0.001 and decrease 0.00001 every
20,000 iterations.

4.4. Results on the Benchmark Datasets

In order to evaluate the pose estimation performance of our algorithm, we design
several group of experiments and show the experiment results. The ADD(S) metric means
ADD metric for the non-symmetrical objects and ADD-S for the symmetrical objects.
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4.4.1. Result on the Linemod Dataset

Table 1 shows our quantitative evaluation results of the 6D pose estimation experi-
ments on the Linemod dataset. We compare our method with the RGB based methods
PoseCNN [9], PVNet [7] and RGDB based methods PointFusion [49], Densefusion [12],
PVN3D [15]. Among them, we reference PoseCNN, PVNet, PointFusion and DenseFusion
as the baseline. For PVN3D, they release their pretrained model on the Linemod and
YCB datasets, so we test the performance of the pretrained model on the datasets. These
methods are the single view and without iterative refinement. As the table shows, the BB8
means 8 bounding box points and it makes the worst performance due to the keypoints
may not appear on the surface of the object. In addition, the RGBD based methods per-
form better than RGB based methods demonstrates that RGB and point cloud features are
necessary for this task. Furthermore, the proposed algorithm advances the other methods
by more than 0.3 percent on the ADD(S) metric due to its better representation ability and
the keypoint selection scheme. Figure 4 shows the visualization results of our approach on
the Linemod dataset, it can be seen that our method performs well on the Linemod objects.

Figure 4. Some visual results of the Linemod dataset.
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Table 1. The accuracies of our method and the baseline methods on the LINEMOD dataset in terms of the ADD(-S) metric,
where the bold are considered as symmetrical objects.

PoseCNN PVNet PointFusion Densefusion PVN3D Ours

ape 77.0 43.6 70.4 79.5 96.0 96.4
benchvise 97.5 99.9 80.7 84.2 94.2 94.5
cam 93.5 86.9 60.8 76.5 92.3 95.0
can 96.5 95.5 61.1 86.6 93.8 94.9
cat 82.1 79.3 79.1 88.8 95.4 95.8
driller 95 96.4 47.3 77.7 93.0 94.0
duck 77.7 52.6 63.0 76.3 93.7 92.9
eggbox 97.1 99.2 99.9 99.9 96.2 96.7
glue 99.4 95.7 99.3 99.4 96.4 97.4
holepuncher 52.8 81.9 71.8 79.0 94.5 96.3
iron 98.3 98.9 83.2 92.1 92.2 93.1
lamp 97.5 99.3 62.3 92.3 93.5 93.7
phone 87.7 92.4 78.8 88.0 93.5 93.6

average 88.6 86.3 73.7 86.2 94.2 94.5

4.4.2. Result on the YCB-Dataset

Table 2 shows the quantitative evaluation results of the 6D pose on the YCB-Video
dataset of the proposed algorithm and other methods. The compared methods are
PoseCNN, DenseFusion and PVN3D and all the methods do not have iterative refine-
ment. As the Table 2 shows, our method advances other approaches by 1.7 percent on
the ADD-S metric and 0.8 percent on the ADD(S) metric. Our method also outperforms
than others on the symmetrical objects (tagged in bold in the table). Figure 5 shows the
visualization results of our method on the YCB-Video dataset, some of them are severely
occluded and the performances of the proposed method are excellent as well. This is be-
cause our algorithm uses dense prediction, which calculates every point/pixel’s translation
vector to the keypoint and votes the predicted keypoints through the vectors. The voting
scheme is motivated by the property of the rigid objects, which means once we see the
local visible parts, we can infer the relative directions to the invisible parts. Furthermore,
the comprehensive utilization of RGB images and point cloud leads to better performance
on the symmetrical object. It can be concluded that our algorithm works well on the
occlusion scenes.

Table 2. Quantitative evaluation of 6D Pose (ADD-S, ADD(S)) on the YCB dataset. Symmetric objects’ names are in bold.

PoseCNN DenFusion PVN3D Ours

ADD-S ADD(s) ADD-S ADD(s) ADD-S ADD(s) ADD-S ADD(s)

002 master chef can 83.9 50.2 95.3 70.7 95.8 79.6 96.4 81
003 cracker box 76.9 53.1 92.5 86.9 95.4 93.0 94.5 90.0
004 sugar box 84.2 68.4 95.1 90.8 97.2 95.9 97.1 95.6
005 tomato soup can 81 66.2 93.8 84.7 95.7 89.8 95.6 89.2
006 mustard bottle 90.4 81 95.8 90.9 97.6 96.5 97.6 95.4
007 tuna fish can 88 70.7 95.7 79.6 96.7 91.7 96.7 87.0
008 pudding box 79.1 62.7 94.3 89.3 96.5 93.6 95.1 90.6
009 gelatin box 87.2 75.2 97.2 95.8 97.4 95.1 97.2 95.6
010 potted meat can 78.5 59.5 89.3 79.6 92.1 84.4 91.2 87.1
011 banana 86 72.3 90 76.7 96.3 92.4 96.9 94.1
019 pitcher base 77 53.3 93.6 87.1 96.2 93.8 96.9 95.5
021 bleach cleanser 71.6 50.3 94.4 87.5 95.5 90.9 96.1 93.4
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Table 2. Cont.

PoseCNN DenFusion PVN3D Ours

ADD-S ADD(s) ADD-S ADD(s) ADD-S ADD(s) ADD-S ADD(s)

024 bowl 69.6 69.6 86 86 85.5 85.5 95.4 95.4
025 mug 78.2 58.5 95.3 83.8 97.1 94.0 97.3 92.8
035 power drill 72.7 55.3 92.1 83.7 96.6 95.0 96.7 94.9
036 wood block 64.3 64.3 89.5 89.5 90.8 90.8 95.1 95.1
037 scissors 56.9 35.8 90.1 77.4 91.8 91.8 96.5 92.6
040 large marker 71.7 58.3 95.1 89.1 95.2 90.1 94.3 86.2
051 large clamp 50.2 50.2 71.5 71.5 90.0 90.0 95.4 95.4
052 extra large clamp 44.1 44.1 70.2 70.2 77.6 77.6 95.5 95.5
061 foam brick 88 88 92.2 92.2 95.4 95.4 96.5 96.5

Average 75.2 61.3 90.9 82.9 94.2 90.7 95.8 91.4

Figure 5. Some visualization results of the YCB dataset. The proposed method performs well even when the objects are
seriously occluded.
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4.5. Ablation Study

A series of ablation studies are conducted to analyse the influences of different key-
points selection methods, number of keypoints on the framework and the in-channel
weight calculation.

Effect on the Keypoint Selection. In this part, we select 8 corner points of the 3D
object’s bounding box(BB8) and 8 Farthest Point Sample(FPS) points to compare with our
ORB-FPS keypoint. In addition, the different number of ORB-FPS keypoints are also taken
into the comparison. Table 3 shows the experiment result of the several methods on the
YCB-dataset. Overall, the ORB-FPS keypoint selection scheme performs better than the FPS
on the basics of selecting the same number of key points, this is because ORB-FPS makes
better use of the RGB image’s texture feature. The BB8 keypoint performs worst due to the
bounding box corner points are virtual and far away from the object. In addition, from the
comparison of the different number of keypoints, eight keypoints selected from the ORB-
FPS approach is a good choice. Fewer keypoints can not fully express the complete shape
of the object and more keypoints will increase the output space and make the network
harder to learn.

Table 3. Experiment results on YCB dataset of the different keypoint selection approaches.

BB8 FPS8 ORB-FPS4 ORB-FPS8 ORB-FPS12

ADD-S 93.2 94.2 94.1 95.8 94.7
ADD(S) 89.4 90.7 90.5 91.4 91.0

Effect of the channel-attention. In order to testify the influence of the channel-
attention, we compare the experimental results with the channel-attention and without.
According to Table 4, adding channel-attention block increase the 6D pose performance.
The channel-attention block can calculate the weight of different channels and use these
weights to integrate the channel-wise information, this will increase the network’s repre-
sentation ability.

Table 4. Experiment results on YCB dataset with/withou the channel-attention.

Without With

ADD-S 95.6 95.8
ADD(S) 91.0 91.4

5. Conclusions

This paper presents an accurate deep 3D keypoint voting network for 6DoF pose
estimation. We propose split-attention block to enhance the network’s ability to learn
features from the RGB image. Due to the split channel attention, the network can selectively
enhance useful channels and suppress less useful ones. In addition, we introduce the 3D
ORB-FPS keypoint selection method, which first detects the 2D ORB keypoints in the image,
then finds the corresponding 3D points through the camera intrinsic matrix, and finally
finds the 3D keypoints through the FPS algorithm. The proposed keypoint selection method
leverages texture information of RGB image and geometry information of pointcloud. Our
algorithm outperforms the previous methods on two benchmark datasets on the ADD-S
and ADD(S) metrics. Overall, we believe our network can be applied in the real applications
such as Automatic driving, Bin-Picking and so on.
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