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Abstract: The collective motion of biological species has robust and flexible characteristics. Since
the individual of the biological group interacts with other neighbors asymmetrically, which means
the pairwise interaction presents asymmetrical characteristics during the collective motion, building
the model of the pairwise interaction of the individual is still full of challenges. Based on deep
learning (DL) technology, experimental data of the collective motion on Hemigrammus rhodostomus
fish are analyzed to build an individual interaction model with multi-parameter input. First, a Deep
Neural Network (DNN) structure for pairwise interaction is designed. Then, the interaction model
is obtained by means of DNN proper training. We propose a novel key neighbor selection strategy,
which is called the Largest Visual Pressure Selection (LVPS) method, to deal with multi-neighbor
interaction. Based on the information of the key neighbor identified by LVPS, the individual uses
the properly trained DNN model for the pairwise interaction. Compared with other key neighbor
selection strategies, the statistical properties of the collective motion simulated by our proposed DNN
model are more consistent with those of fish experiments. The simulation shows that our proposed
method can extend to large-scale group collective motion for aggregation control. Thereby, the
individual can take advantage of quite limited local information to collaboratively achieve large-scale
collective motion. Finally, we demonstrate swarm robotics collective motion in an experimental
platform. The proposed control method is simple to use, applicable for different scales, and fast for
calculation. Thus, it has broad application prospects in the fields of multi-robotics control, intelligent
transportation systems, saturated cluster attacks, and multi-agent logistics, among other fields.

Keywords: collective motion; swarm robotics; deep neural network; intelligent control; self-organization

1. Introduction

Collective motion occurs widely in group-living animals, which can help the groups
to adapt to the environment through solving problems collectively, such as by predator
avoidance or cluster foraging. Hence, extensive research has been focusing on this topic.
For instance, the collective motion of desert locusts was studied in [1], which revealed
the principle of the insect’s aggregation. Cavagna took advantage of the machine vision
technology to capture the trajectory data of the large-scale purple-winged pheasant and
built a model of social interaction for collective motion [2]. Altshuler et al. [3], inspired by
Helbing [4], discovered an interesting collective behavior of ant colonies: the symmetrical
breaking of collective escape motion. These works show that most collective motions are
mainly caused by the social interactions between individuals [5,6].

Social interaction is defined as the transmission and processing of distributed infor-
mation by the individual, which can be divided into two main structures: hierarchical
structure and egalitarian structure [7]. Most of the mammalian beasts in nature are or-
ganized in hierarchical structures. On the contrary, the collective motion of bacteria is
often supposed as egalitarian structures. Furthermore, the bird flocks and fish schools
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are basically between hierarchical structures and egalitarian structures. The hierarchical
structure of interaction, such as leader–follower relationships in the group, is more ubiqui-
tous, which can lead to more effective organization [8,9]. Therefore, after the leadership
literature of Couzin et al. [10], the hierarchical interaction model has attracted more and
more attention.

However, it is difficult to study hierarchical interaction. First, the pairwise interaction
between two individuals should be treated asymmetrically, which leads to different models
for two paired individuals. Second, the input of most existing interaction models is based
on the information of the position of the individual and its neighbors [11]. However, the
literature [12] proposes that collective motion should also be related to the speed value
of each individual. In fact, there are many parameters of each individual for potential
explanation of the interaction. However, it is difficult to build mathematically analytical
models with both relative position and speed inputs for explaining the asymmetrical
interaction [11]. Therefore, building a multi-parameter model of distributed interaction for
large-scale collective behavior is still an open and challenging problem.

The data-driven models, especially those based upon Deep Neural Network (DNN),
have a strong ability to reveal the relationship between multi-parameter inputs and the indi-
vidual decision. Because the deep learning (DL) technology is suitable for solving complex
mapping problems, and in recent years, DNN models have been widely applied in pat-
tern recognition [13–16], behavior prediction [17,18], and collective motion analysis [19,20].
However, there are few cases of using DNN models to control swarm robotics.

Swarm robotics has many important potential applications, such as nanoparticles
controlled by a magnetic field, which can be used for medical treatments [21–24]. It is very
difficult to control swarm robotics to formulate collective motion. Most methods for swarm
robotics control rely on the control theories [25–30], but the performance of these methods
exhibits a lack of flexibility. Thus, Vasarhelyi G. et al. successfully used a social interaction
model to realize 30 drones’ flexible collective motion [31]. Inspired by them, we used the
data-driven method on real fish data to build a social interaction model, which could be
used to drive our self-made swarm robotics (Cuboid) to move collectively [32]. However,
the above two works never used the DNN interaction model.

Due to the computational limitation of the individual, very few works have explicitly
addressed the question about how the individual sparsely integrates pairwise interaction
with all its neighbors in an animal group [33]. Instead of using average contributions of
all neighbors, as many models previously proposed [34–39], our previous work suggests
that an individual fish pays attention to a few neighbors [32]. This mechanism has the
advantage of overcoming the natural limitation of individual information processing [40].

The contribution of this work is listed as follows. First, we use DL technology to
build a pairwise interaction model and analyze the pairwise interaction between real fish.
Then, we integrate this pairwise model into the collective motion control of multi-agents in
different scales. Most researchers argue that each individual should take advantage of the
information of all neighbors in a certain domain around the focal individual [11,32], such
as the Aoki model [34], the Couzin model [35], and the Vicsek model [36]. Vicsek believes
that each individual makes directive decisions with all individuals in a certain range.
However, in starling flocks [37,38], it is believed that the motion decision of each individual
in collective motion depends only on a limited number of neighbors. We try to reveal that if
an individual only interacts with one key neighbor, it can also formulate collective motion
through our proposed model. The key neighbor is selected by our algorithm based on
the visual information of the focal individual. We name this algorithm the Largest Visual
Pressure Selection (LVPS) strategy. This assumption of only one neighbor’s attention can
significantly reduce the computation load of the individual [32]. The fish experiment is
used to verify the similarity of our method’s simulation. Finally, we extend our method to
the collective motion control of large-scale multi-agents and swarm robotics.
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2. Materials and Methods
2.1. Experimental Data

The fish (Hemigrammus rhodostomus) collective motion experimental data were down-
loaded in the supplementary materials of [11,32]. These data were extracted from experi-
mental video via idTracker software [41] (see Figure 1A). We used 30-mm long and 2.5-mm
wide fish for the collective motion experiment. The fish had a burst-and-coast swimming
pattern, which means that the fish first turn their direction with speed increasing and then
decelerate for a straight slide [11]. Most heading angle change takes place entirely at the
beginning of the acceleration phase. We call the speed increase of fish a “kick.” At each time
of the kick, the fish makes a motion decision, such as moving distance, kick duration, and
heading variation. We detected 60,312 kicks for the five-fish experiment and 147,776 kicks
for the two-fish experiment. We decided to use the two-fish experimental data to build our
DNN model and the five-fish data to verify the DNN model.

Figure 1. The configuration of a real fish experiment and parameters in the global reference systems
at the decision time td

n (A) Five–fish schooling experiment in a tank which radius RW = 250 mm;
(B) The position parameters of fish, where rW

i represents the radial distance from fish i to the wall. φi

is the heading angle of fish i, Vi is the speed of fish i, the direction of Vi is determined by the φi; θW
i

represents the relative angle from fish i to the wall; (C) The measurement parameters of neighbor fish
(blue). dij represents the relative distance between fish i and its neighbor j; ψij represents the angle of
fish i perceiving its neighbor j (note that ψji 6= ψij); ∆φij(t) = φj(t)− φi(t) represents the difference
of heading angle between fish i and its neighbor j; (D) The moving decision parameters of the focal
fish (red). δφi(td

n) is the change of heading angle of fish i at the decision time td
n, li(td

n) is the one kick
distance between td

n and td
n+1.

The heading angle of fish i is described by the angle between the fish velocity vector
⇀
v = (vx, vy) and the horizontal line of the x coordinate:

φi(t) = arctan(vy
i (t)/vx

i (t)) (1)
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The positive direction of the fish heading angle is counterclockwise. This heading
angle value is restricted to the range of (−π, π]. The fish velocities are calculated by vx

i (t) =
(xi(t)− xi(t− ∆t))/∆t and vy

i (t) = (yi(t)− yi(t− ∆t))/∆t, where
→
p i = (xi(t), yi(t)) is

the position of the focal fish i and ∆t is 0.04 s. Based on the position (xi(t), yi(t)), heading
angle φi(t) of the fish i, and the radius of the circular tank Rw, we can calculate the following
local information of the focal fish i with respect to the environment and its neighbors (see
Figure 1B–D).

The relative orientation of the focal fish with respect to its neighbor j:
The distance to the wall may be described as follows:

rW
i (t) = Rw −

√
xi(t)

2 + yi(t)
2 (2)

The angle to the wall may be described as follows:

θW
i (t) = φi(t)− arctan(yi(t)/xi(t)) (3)

The speed of the focal fish i may be described as follows:

Vi(t) =
√

vx
i (t)

2 + vy
i (t)

2 (4)

The distance to the neighbor j may be described as follows:

dij(t) =
√(

xi(t)− xj(t)
)2

+
(
yi(t)− yj(t)

)2 (5)

The viewing angle of the neighbor j may be described as follows:

ψij(t) = arctan

((
xi(t)− xj(t)

)
sin(φi(t)) +

((
yj(t)− yi(t)

))
cos(φi(t))(

xj(t)− xi(t)
)

cos(φi(t)) +
((

yj(t)− yi(t)
))

sin(φi(t))

)
(6)

The orientation difference from the focal fish to its neighbor j may be described
as follows:

∆φij(t) = φj(t)− φi(t) (7)

Since the two positions of one neighbor at two consecutive decision moments can
reflect the neighbor position changing with respect to the focal fish, we define the following
formula as the average relative speed of neighbor j:

∆Vij(td
n) =

(
dij(td

n)− dij(td
n−1)

)
/(td

n − td
n−1) (8)

Hence, the average speed of the focal fish i can also be defined as

Vi(td
n) =

√(
xi(td

n)− xi(td
n−1)

)2
+
(
yi(td

n)− yi(td
n−1)

)2/(td
n − td

n−1 ) (9)

The motion decisions of the focal fish i are the heading changing angle δφi, the kick
distance li, and the kick duration KTi, which can be calculated by the positions and heading
angles of two sequential kicks as follows:

δφi(td
n) = φi(td

n+1)− φi(td
n), (10)

li(td
n) =

√(
xi(td

n+1)− xi(td
n)
)2

+
(
yi(td

n+1)− yi(td
n)
)2, (11)

KTi(td
n) = td

n+1 − td
n, (12)

where td
n is the decision time when one kick occurs and td

n+1 is the decision time of the
next kick.
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2.2. Deep Neural Network (DNN) Model

Based on the trajectory of the two-fish experiment, a data-driven model for focal fish
interaction with respect to the environment and its neighbor was trained. The interaction
model could be represented by a function mapping from local information to the motion
decision. The information about the environment (25-cm radius circular wall in Figure 1A)
could be regarded as a static obstacle. Meanwhile, the moving neighbor could be addressed
as the dynamic obstacle. Thus, the focal fish should have taken both types of different
information into account to determine the action for the next kick. Due to the large amount
of perceptual information for the decision, using mathematical analytical functions to build
the interaction model was difficult. Hence, we took advantage of a DNN model to solve
this problem.

For the focal fish i at decision time td
n, (1) the static information includes the distance

from the wall rW
i (td

n), the direction of the angle to the wall θW
i (td

n), and the average speed
of the focal fish Vi(td

n) (see Figure 1B); (2) the dynamic information of neighbor j includes
the distance to the neighbor dij(td

n), the viewing angle of the neighbor ψij(td
n), the relative

orientation angle with the neighbor ∆φij(td
n), and the average relative speed with the

neighbor ∆Vij(td
n) (see Figure 1C); and (3) the above perceptual information is for neural

network input. On the other hand, the outputs of the neural network consist of three parts,
which are the heading changing angle δφi(td

n), the kick length li(td
n), and the duration time

of the kick KTi(td
n) (see Figure 1D).

The distribution of the input and output data of the 2-fish experiment is illustrated
in Figure 2. It is obvious that the individual always swam near the wall, referring to the
distribution of the relative distance from the wall rW

i (td
n) (Figure 2A) and the direction angle

to the wall θW
i (td

n) (Figure 2B). The social interaction between the two fish was asymmetrical.
This means that there existed a temporary leader-and-follower relationship between the
two fish. Hence, the peaks of the probability density function (PDF) of the viewing angle of
the neighbor ψij(td

n) (Figure 2E) was close to zero (for the follower) and ±π (for the leader).
One fish was always aligned with and close to another (see the PDF of dij(td

n) (Figure 2D),
∆Vij(td

n) (Figure 2G), and ∆φij(td
n) (Figure 2F)). The PDF of Vi(td

n) (Figure 2C) shows that
the average speed of an individual was about 120 mm/s. Since the sample period of the
fish experimental camera was 0.04 s, the PDF of the duration time of the kick KTi(td

n)
(Figure 2L) was discrete. The average value of the kick length li(td

n) (Figure 2K) was about
60 mm (2 body lengths). The high frequency value of the heading changing angle δφi(td

n)
(Figure 2J) was about 20 degrees. Due to the heading angle changing, the viewing angle
of the neighbor and the angle to the wall became ψij(td

n) + δφi(td
n) and θW

i (td
n) + δφi(td

n),
respectively (see Figure 2H,I). We used these data as the record set to train our DNN model
for pairwise interaction.

Due to the burst-and-coast motion type, at time td
n, the decision-making is divided into

two sequential phases. The first phase is to determine the heading changing angle δφi(td
n),

because the heading angle changing occurs exactly before fish acceleration. After that, the
second phase decision includes the kick length li(td

n) and kick duration KTi(td
n). These

values are then generated based on the new heading angle value φi(td
n) + δφi(td

n). li(td
n)

and KTi(td
n) contain the relative position and average speed information for the suddenly

increased speed (kick) and the following passive gliding period. Therefore, we designed
two DNN models to mimic the above two decision phases (see Figure 3). The first DNN
model was named the Angle Changing Network

The second one was named the Length and Duration Network (LDN). Since the
functionality and information input of the two DNN models were similar, the input layer
and the hidden layer of the ACN and LDN had the same structure. They both had
7 neurons as an input layer and 3 hidden layers with 10, 20, 50, 20, and 10 neurons. The
Rectified Linear Unit (RELU) was set as the activation function for all layers except the
output layer. Because the output of the ACN model was a continuous value with a range
(−π, π], the activation function of the output layer of both networks was selected as a
Linearly Activated Function, which is suitable for regression applications. (ACN).
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Figure 2. The histogram of the measurement value and decision value of the two–fish experiment. For local information
of focal fish i at decision time td

n, the static information includes: (A) the distance to the wall rW
i (td

n), (B) the direction
angle to the wall θW

i (td
n) and (C) the average speed of the focal fish Vi(td

n). While, the dynamic information of neighbor j
includes (D) the distance to the neighbor dij(td

n), (E) the viewing angle of neighbor ψij(td
n), (F) relative orientation angle to

the neighbor ∆φij(td
n), and (G) the average relative speed with the neighbor4Vij(td

n). (H) The viewing angle of neighbor
ψij(td

n) + δφi(td
n) after heading changing of the focal fish. (I) The angle to the wall θW

i (td
n) + δφi(td

n) after heading changing
of the focal fish. The decision of the focal fish consists of three parts, which are (J) the heading changing angle δφi(td

n),
(K) the kick length li(td

n) and (L) the duration time of the kick KTi(td
n).

The output layer of the ACN has only one neuron for heading angle change generation. Con-
sider the static information of focal fish i SACN

i = [ rW
i (td

n) θW
i (td

n) Vi(td
n) ]

T and the dynamic
information with respect to its neighbor j DACN

ij = [ dij(td
n) ψij(td

n) ∆φij(td
n) ∆Vij(td

n) ] such
that the output of the ACN is listed as follows:

δφi(td
n) = L

(
f
(
∑
(

wACN × [SACN
i ; DACN

ij ]
)))

(13)

where wACN is the weight, L(·) is the Linearly Activated Function, and f (·) is the RELU
function. After the ACN generates the output δφi(td

n), the LDN takes advantage of
this value to update its input information. Thus, the static information then becomes
SLDN

i = [ rW
i (td

n) θW
i (td

n) + δφi(td
n) Vi(td

n) ]
T, which means that the orientation angle

to the wall has been changed and impacts the straight motion. For the same reason, the
dynamic information of neighbor j for the LDN input is also changed as follows:

DLDN
ij = [ dij(td

n) ψij(td
n) + δφi(td

n) ∆φij(td
n) + δφi(td

n) ∆Vij(td
n) ] (14)
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Figure 3. The structure of the pairwise interaction network. An Angle Changing Network (ACN)
is laid on the top, where it receives the original environmental and the neighbor’s information.
The outputs are the heading angle changing value δφi of the focal fish at decision time td

n. The
Length and Duration Network (LDN) for a straight-moving decision is laid at the bottom. The
input of the LDN is the same as the ACN, but the angle value inputs (θW

i ,ψij,∆φij) are changed into
(θW

i + δφi, ψij + δφi, ∆φij + δφi) because of the heading angle change of the focal fish. The structures
of the LDN input layer and hidden layer are similar to those of the ACN. However, the output
layer of the LDN includes two neurons, which are the kick length li(td

n) and the duration time of the
kick KTi(td

n).

Hence, the two outputs of the LDN neural network are listed as follows:[
li(td

n)
KTi(td

n)

]
= L

(
f
(
∑
(

wLDN × [SLDN
i ; DLDN

ij ]
)))

(15)

where wLDN represents the weight parameters of the LDN, L(·) is the Linearly Activated
Function, and f (·) is the RELU function.

According to the standard procedure of the regression DNN training, we designed
the following mean square error formula as a cumulative loss function for both the ACN
and LDN:

Loss =
1
N

N

∑
i=1

(O− Ô)
2 (16)

where O is the label value of the record data and Ô is the predicted value of the DNN model.
N is the number of training samples, which was 147,776 (kicks) for the 2-fish experiment.
The label values of the ACN and LDN are δφi(td

n) and [ li(td
n) KTi(td

n) ]
T,td

n ∈ Td, respec-
tively, where Td is the set for all decision times. We employed the Adam Optimizer [42] to
minimize the loss function. The learning rate was set at 0.0005. We randomly selected 20%
of all record samples as the test set. The dropout algorithm [43] was adopted to improve
the generalization ability of the algorithm.

2.3. The Fusion Method of Pairwise Interaction for the Multi-Agents

Instead of using the average contributions of all neighbors as many models previously
proposed [34–39], our previous work suggests that an individual paying attention to only
a few neighbors can lead to collective motion [32]. This mechanism may overcome the
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natural limitation of information each individual can process [40]. In this paper, we wanted
to test whether collective motion could emerge from the group when the individual only
interacted with one neighbor. Hence, we tested three different neighbor selection strategies
to investigate their impacts on collective motion. We then compared the results of a five-
agent simulation implemented by different neighbor selection strategies with five real
fish experiments. The three neighbor selection strategies were Nearest Neighbor Selection
(NNS), Random Neighbor Selection (RNS), and Largest Visual Pressure Selection (LVPS).

For NNS, each individual only considers the information of the nearest neighbor at
the decision time td

n. This means that the individual i only selects neighbor j as its leader,
whose distance dij(td

n) is the smallest.
For RNS, the focal fish chooses one neighbor as its leader randomly at the decision

time td
n.

For LVPS, the focal fish chooses its leader as the one with the largest visual pressure.
Due to the importance of the fish’s vision, the social interaction based on visual sensory
input has been intensely researched [44]. Here, we defined the visual pressure of the focal
fish as the visual angle of the focal fish with respect to its neighbors (see Figure 4). The
larger the visual angle of the neighbor, the greater the visual pressure pressed on the focal
fish by this neighbor.

Figure 4. Neighbor selection strategy based on visual pressure.

In order to simplify the calculation of the visual pressure angle, one can consider each
neighbor as a straight vector. In Figure 4, the red fish i is the focal fish. The blue fish j and
yellow fish k are its neighbors. A relative coordinate system is established at the center of
the focal fish body. αij and βij are the visual ending and starting angles of the neighbor j,
respectively, which are calculated by the following formulas:

αij = arctan
dij × sin ψij +

BL
2 × sin ∆φij

dij × cos ψij +
BL
2 × cos ∆φij

(17)

βij = arctan
dij × sin ψij − BL

2 × sin ∆φij

dij × cos ψij − BL
2 × cos ∆φij

(18)

where BL is the average body length of the fish (30 mm for the fish experiment) and[
dij, ψij, ∆φij

]
is the local information of fish i with respect to the neighbor j. Based on αij

and βij, the visual pressure angle θij of neighbor j is then calculated as follows:

θij =
∣∣αij − βij

∣∣ (19)

Note that the visual pressure angles of the blue fish j and yellow fish k are overlapped.
Hence, it seems that the visual pressure angle of the blue fish should reduce this overlapped
part. However, the fish is an intelligent species with imagination and memory. For instance,
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fish are able to predict the behavior of short-term hidden prey [45]. Owing to this reason,
in spite of only seeing some parts of the neighbor, the focal fish should have the ability
to detect the full body of its neighbor. Thus, we tended to use the visual pressure angle
with respect to the full body of the neighbors, which is different from the method in the
literature [44].

2.4. Software Configuration of the Simulation Platform

The DNN interaction model was a core module of the simulation, which was written
in the Python and LabVIEW computer languages. The DNN training software was written
with TensorFlow, which is a module of Python. Meanwhile, the multi-agent simulation and
Graphical User Interface (GUI) were written with LabVIEW because it was convenient for
designing Object-Oriented Programming (OOP). OOP is a powerful available programming
tool that can easily keep separate the information about each agent in a single software
unit. With this facility, all agents in the simulation software are organized by simulation
time. At each decision time, the focal agent asks Python for the new motion decision
independently. The communication interface between LabVIEW and Python is a client–
server program. The server program runs on Python. It receives the DNN input from the
focal agent running in the LabVIEW simulation software. The input includes the local
static and dynamic information of a focal agent. After neighbor selection for interaction,
the Python server program uses TensorFlow to compute the motion decision output of the
DNN model (ACN and LDN). Then, this output is downloaded to the LabVIEW client,
which sends this decision to the focal agent (see Figure 5).

Figure 5. The structure of the simulation platform.

LabVIEW updated all the states of the agents according to the simulation clock.
The period of the simulation clock ∆t was 0.04 s. In the global coordinate, the state
of agent i is denoted as [xi(t), yi(t), φi(t)]

T. At decision time td
n, agent i sends its local

environmental information Si = [ rW
i (td

n) θW
i (td

n) Vi(td
n) ]

T and all neighbors’ infor-

mation Dij = [ dij(td
n) ψij(td

n) ∆φij(td
n) ∆Vij(td

n) ]
T

, j ∈ J, where J is the set of all the
indexes of all neighbors of the focal agent i, to the Python server. After the neighbor
selection for interaction, TensorFlow computes the decision output and downloads the
result [ δφi(td

n) li(td
n) KTi(td

n) ]
T to the agent i. Then, LabVIEW sets the timer Tt

i (t) of
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agent i to the new value KTi(td
n). Meanwhile, the heading angle φi(td

n) of agent i φi is set to
φi(td

n) + δφi(td
n). After that, LabVIEW updates the state of agent i at every time step with

the period ∆t according to the following formula until Tt
i (t) < 0: xi(t + ∆t)

yi(t + ∆t)
Tt

i (t + ∆t)

 =

 xi(t)
yi(t)
Tt

i (t)

+

 Vd
i · cos(φi)

Vd
i · sin(φi)
−∆t

 (20)

where Vd
i = li(td

n)/KTi(td
n) is the average speed of the decision at td

n. When the timer value
of agent i is less than zero (i.e., Tt

i (t) < 0), the agent i comes into a new decision moment
td
n+1 to ask the server for a new motion target. If the distance to the wall is less than one

body length, the agent resets its timer to stop one kick process and then asks the Python
server for a new decision (see Algorithm 1 for details).

Algorithm 1. States Update Rules for Agent i

Input: decision results [ δφi(td
n) li(td

n) KTi(td
n) ]

T, old states [xi(t), yi(t), φi(t)]
T and the

timer value Tt
i (t).

Output: new states [xi(t + ∆t), yi(t + ∆t), φi(t + ∆t)]T and new timer value Tt
i (t + ∆t)

If Tt
i (t) is less than or equal to 0 \\ there exists a new decision from the Python server

Tt
i (t + ∆t)=KTi(td

n)

φi(t + ∆t) = φi(t) + δφi(td
n)

Else \\ agent straight motion
Tt

i (t + ∆t)=Tt
i (t)− ∆t

xi(t + ∆t)=xi(t)+Vd
i · cos(φi)

yi(t + ∆t)=yi(t)+Vd
i · sin(φi)

If rw
i < BL \\ safety mechanism of the motion simulation

Tt
i (t) = 0 \\ ask the Python Server for a new decision

2.5. Statistical Properties of Collective Motion

Five agents’ simulation trajectory results could be used for the comparison with the
five-fish experiment to evaluate the effectiveness of our model. We selected six different
statistical properties for collective motion. Consider the position of the barycenter (center
of mass)

→
p B = (xB(t), yB(t)), which is calculated with the following formulas:

xB(t) =
1
N

N

∑
i=1

xi(t), yB(t) =
1
N

N

∑
i=1

yi(t) (21)

where N is the total number of agents in the group. Based on the position of the barycenter,
the speed of the barycenter (vx

B(t), vy
B(t)) is defined by vx

B(t) = (xB(t)− xB(t− ∆t))/∆t
and vy

B(t) = (yB(t)− yB(t− ∆t))/∆t. Then, the direction of the barycenter is given by

φB(t) = arctan
(

vy
B(t)/vx

B(t)
)

.
The barycenter holds a reference system in which the relative position and

velocity of the fish are defined as
→
p

B
i =

→
p i −

→
p B = (xB

i (t), yB
i (t)) and

→
v

B
i =

((
xB

i (t)− xB
i (t− ∆t)

)
/∆t,

(
yB

i (t)− yB
i (t− ∆t)

)
/∆t

)
, respectively.

In the global reference system, we defined six statistical properties as follows:

1. The distance from all fish (agents) to the wall: rW =
{

rW
i (t)

∣∣i = 1, 2, · · · , N
}

;
2. The angle to the wall of all fish (agents): θW+ =

{∣∣θW
i (t)

∣∣∣∣i = 1, 2, · · · , N
}

.

The above two statistical properties illustrate the position of the agents with respect to
the global environment.
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3. Polarization of the group: P(t) ∈ [0, 1]:

P(t) =
1
N

N

∑
i=1

→
e i(t) (22)

where
→
e i(t) = (cos(φi(t)), sin(φi(t))) is the unit vector for representing the direction

of the fish i. When the value P(t) = 1, all the fish (agents) have the same orientation,
while when this value is close to 0, all the fish are in different directions.

4. Group size: C(t):

C(t) =
1
N

N

∑
i=1

∥∥∥→p i −
→
p B

∥∥∥ (23)

where
∥∥∥→p i −

→
p B

∥∥∥ is the distance from
→
p i to

→
p B. When the group is compact, C(t) is

low, and vice versa.

In the relative coordinate system with respect to the barycenter, we defined the
following two characters for collective behavior:

5. Counter-milling index Q(t) ∈ [−1, 1]:

Q(t) =

(
1
N

N

∑
i=1

sin
(

γB
i (t)

))
× SIGN

(
1
N

N

∑
i=1

sin
(

θW
i (t)

))
(24)

where γB
i (t) is the relative speed angle between the relative position vector

→
p

B
i and the

relative speed vector
→
v

B
i , SIGN(·) represents the sign function, and 1

N

N
∑

i=1
sin
(
θW

i (t)
)
> 0

means all fish (agents) move counterclockwise. Contrarily, if this value is less than
zero, all fish move clockwise. When the direction of all fish moving around the center
of the experimental space is different from the direction of each fish rotating around
the barycenter, we call the group counter-milling swimming (i.e., Q(t) < 0). On
the contrary, if the two directions of rotation are the same, then the group shows a
super-milling behavior (i.e., Q(t) > 0).

6. The relative speed to the barycenter of all fish ∆V(t) may be described as follows:

∆V(t) =


∥∥∥→p i(t)−

→
p B(t)

∥∥∥− ∥∥∥→p i(t− ∆t)−→p B(t− ∆t)
∥∥∥

∆t
, i = 1, 2, · · · , N

 (25)

3. Results

The results are mainly divided into two parts. The first part is the analysis of pairwise
interaction of the model in the two-fish (agent) experiment (simulation). The second
part describes the analysis of the neighbor selection hypotheses in the five-fish (agent)
experiment (simulation).

3.1. The Effect of Model Pairwise Interaction

In Figure 6, we present the distributions of six properties for the pairwise interaction be-
havior of the DNN model. These properties include three output values
[δφ1, l1, KT1]

T and three statistical properties [∆φ+
12(t), rW, θW+]

T. We input the experi-

mental data [rW
1 , θW

1 , V1, d12, ψ12, ∆φ12, ∆V12]
T into the trained DNN model to check the

consistency of the output value [δφ1, l1, KT1]
T (black lines) with respect to the fish de-

cision (red lines) in Figure 6A–C. This can be regarded as the training error of the fish
motion data.
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Figure 6. The comparison between the two-agent DNN model simulation and two–fish experiment. (A) PDF of the
heading angle change after each kick of fish 1 δφ1; (B) PDF of the distance between two kicks of fish 1 l1; (C) PDF of
the duration between two kicks of fish 1 KT1; (D) PDF of the signed relative angle of one individual between two fish
∆φ+

12(t) = ∆φ12 × SIGN(θW
1 ); (E) PDF of the distance to two fish. The solid lines represent the leaders. The dash lines

represent followers. rW; (F) PDF of the absolute value of the relative angle to the wall for the leader and follower θW+.

Figure 6A–C shows that both the simulation (blue lines) and training data outputs
(black lines) of the DNN were narrower than that of the real fish (red lines) because the
DNN model could filter the noise of the original data of the fish schooling. Thus, if the DNN
model is used in a simulation with training data input, the PDF of the output values indeed
becomes narrower than the original training data label. In order to prevent overfitting, we
stopped the learning iteration when the training error became larger. Hence, the DNN
model could learn the general characteristics of the data, and it filtered out the special
features such as the noise of the individual. As a result, the distribution of the DNN model
output was sharper than that of the real fish. The peaks of the kick length for both the real
fish and the DNN simulation were around 2BL (60 mm), and the average values of kick
duration distribution of the DNN output, simulation, and real fish were similar.

We then compared the signed relative orientation ∆φ+
12(t) = ∆φ12 × SIGN(θW

1 ) be-
tween the two fish, which illustrated their direction of alignment (see Figure 6D). The
simulation result showed that two agents aligned all the time that the real fish did. In
Figure 6E, the solid and dashed lines show the relative distance to the wall of the leader
and follower, respectively. We defined the leader as the agent (fish) with the larger the
viewing angle, and thus

∣∣ψij(t)
∣∣ was in the range of [90◦, 180◦]. Note that the literature [11]

indicates that the leader and follower relationship is not stable in the experiment (i.e., fish
change roles all the time).

In order to deeply analyze the pairwise interaction, we plotted the relationship between
the heading angle change δφ1 and velocity change values (proportional to acceleration) of the
focal individual 1 and the different relative speed ∆V12, position (∆x12, ∆y12), and orientation
∆φ12 of its neighbor, individual 2 (see Figure 7A,B). Since there were seven parameters for
the input of the DNN pairwise interaction model [rW

1 , θW
1 , V1, d12, ψ12, ∆φ12, ∆V12]

T, we fixed
rW

1 at 100 mm and θW
1 = −90◦. This means that the heading angle of the individual was

always parallel to the wall. We selected these two parameter values because the fish group
swam at this environmental position frequently (see Figure 6E,F). The focal fish swam
clockwise when θW

1 = −90◦. Hence, the wall was on its left side (see the left curve of
Figure 7).
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Figure 7. The relationship between the motion decision of the focal individual (red) and the relative position, orientation,
and speed of its neighbor. (A) The relationship between the heading angle change δφ12 and perceptual information
[d12 sin(ψ12), d12 cos(ψ12), ∆φ12, ∆V12] input of the ACN model. Each panel plots δφ12 with respect to ∆φ12 and ∆V12 when
the neighbor was located at (∆x12, ∆y12) = (d12 sin(ψ12), d12 cos(ψ12)) in the range of 45 mm around the focal individual.
Forty-eight different relative positions (∆x12, ∆y12) of the neighbor in the Cartesian system are shown as subpanels. The
speed of the focal fish was fixed at the median velocity of V1 = 50 mm/s, and the environmental position of the focal fish
was fixed at position rW

1 = 100 mm and θW
1 = −90◦. The green color means the focal individual turned left, while the yellow

color means a right turn was made. (B) All of the structure is the same as in A, but all subpanels display the speed change of
the focal fish l1/KT1 −V1, which is related to the output of the LDN model. The red color (respectively. blue color) means
the focal fish accelerated (respectively. decelerated) in the next kick. The x axis of each panel is the relative orientation of the
neighbor, where a positive value means the neighbor’s heading angle is on the left of the focal fish.

The velocity of the focal fish V1(t) was fixed at 50 mm/s so that the range of the
decision speed could be extended to [0, 100 mm/s] in Figure 7B, which facilitated showing
the speed change rules. We transformed the relative polar position of the neighbor (d12, ψ12)
into a relative Cartesian coordinate (x12, y12) and plotted panels every 15 mm around the
focal fish. The x axis of each panel is the relative orientation of the neighbor, where a
positive value means the neighbor’s heading angle was on the left with respect to the
focal individual. Therefore, we used an inverse x axis coordinate in each panel for better
visualization. The y axis of each panel is the relative speed of the neighbor, ranging from
[−100 mm/s, 100 mm/s].

The heading angle change δφ1(td
n) of the focal fish caused by pairwise interaction is

illustrated in Figure 7A. The green color means turning left, while yellow means turning
right. Because of the left wall, the focal fish mainly turned right to avoid an environ-
mental collision. This led to the main color of each panel in Figure 7A being yellow.
We investigated the speed variation l1/KT1 −V1 of the focal fish reflecting the influence
of the neighbor, which was determined by the output of the LDN and the speed of the
local fish (see Figure 7B). The red color means acceleration of the focal fish, while blue
means deceleration.

The focal fish was sensitive to the heading angle of the front neighbor (see the strong
alignment of the three top central panels of Figure 7A). If the neighbor’s heading was on
the left or right, the focal turned left or right (green and yellow). Furthermore, the focal
fish decelerated for collision avoidance when its orientation was the same as that of the
neighbor. On the other hand, the focal fish accelerated for neighbor attraction when the
orientation of the neighbor was different from that of the focal (see the three top central
panels of Figure 7B).

The bottom three central panels of Figure 7A,B show a situation where the neighbor
was behind the focal fish. If the neighbor moved to the left, the focal fish would turn right
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(yellow) and decelerate to wait for the neighbor. On the contrary, the focal fish turned left
(green) to go outside of the tank with a speed and acceleration for keeping the leading
position. Additionally, the focal fish kept its direction of motion when the neighbor had
the same orientation.

If the neighbor was on the left of the focal fish, the focal fish decelerated when ∆φ12= 0
and accelerated for attraction when |∆φ12| was large. If the neighbor was on the right and
the wall was on the left, the focal fish decelerated to prevent colliding with the wall. If
the neighbor was on the left and in front, the focal fish inclined to align with the neighbor.
Contrarily, if the neighbor was on the left and behind, the focal fish neglected it and decided
to turn right to avoid the wall.

3.2. The Analysis of the Multi-Fusion Method of Pairwise Interaction

The cohesion of the group in the fish experiment (fish, red lines) and in the DNN
model simulation was high, with C ≈ 50mm (see Figure 8D). However, the DNN model
simulation with the Near Neighbor Selection (NNS, green lines) strategy was low. The
cohesion PDF of the Random Neighbor Selection (RNS, blue lines) strategy of simulation
was wider than that of the fish. Only the Large Visual Pressure Neighbor Selection (LVPS,
black lines) strategy for the DNN model simulation was more compact than that of the
fish. Figure 8C shows the PDF of polarization of the group. All the strategies were highly
polarized, except that of NNS, which means that all individuals swam in the same direction
(with a huge peak at P ≈ 1). All individuals swam near to the wall (rW ≈ 50mm) (see
Figure 8A) and were always parallel to the wall (θ ≈ 90◦) (see Figure 8B). The PDF of the
DNN model simulation was sharper than that of the fish experiment, because the DNN
model filtered the noise of the pairwise interaction. The relative speed shown in Figure 8F
was similar for both the DNN model simulation and the fish experiment.

Figure 8. The comparison between the five-fish experiment and the five-agent DNN model simulation. (A) PDF of the
relative distance from the wall rw of each individual; (B) PDF of the absolute value of relative angle to the wall θ+W of each
individual; (C) PDF of the Polarization P; (D) PDF of the group cohesion C; (E) PDF of collective counter-milling and
supper-milling index Q; (F) PDF of relative speed ∆V of the individual to the barycenter.

Counter-milling behavior was observed more frequently than over-milling behavior
in the fish experiment (see Figure 8E). The counter-milling behavior was caused by the
fact that the leader fish (at the front of the group) decelerated as they were closest to the
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wall. On the contrary, the follower fish had more space to go inside of the wall, and hence
they moved faster than the leader. Thus, the follower would catch up with the leader and
become a new leader in front of the group. This operation was repeated continuously,
causing all fish to rotate around the group barycenter. In counter-milling behavior, the
direction of rotation around the barycenter was different with the direction of the group
swimming around the experimental tank. This collective behavior was mainly caused by
the asymmetric interaction.

The results of Figure 8 show that the LVPS strategy could lead to a more compact and
stable collective motion than other neighbor selection strategies which was more similar to
the real fish.

We extend our pairwise interaction model with LVPS strategy to the simulation
with 100 agents (see Figure 9). It took about 2.5 min to aggregate a compact collective
motion group from a random state. Compared with other social interaction models, our
model could formulate collective motion by only interacting with one neighbor, which
was selected by the LVPS strategy. This character allowed an individual to spend less
computational load on formulating the collective motion.

Figure 9. Six sequential frames of the 100-agent simulation for the aggregation of collective motion.

Finally, we applied the DNN model with the LVPS strategy on three “Cuboids” robots
for collective motion (see Figure 10). The diameter of the circular robot platform was
1000 mm, and the body length and width of the Cuboid robot were both 40 mm. Figure 10
shows the control structure and related functions of the Cuboid robots’ experimental
platform; detailed information about the Cuboid robots’ platform is illustrated in [32]. We
spent one hour with three robots in a collective motion experiment. Figure 10A–E shows
the top view sequence of the robots’ motion in the experiment. The PDF of the Cuboid
robot experiment is shown in Figure 11. All robots ran around the wall in the experiment.
The relative distance to the wall was small (see Figure 11A). Figure 11B shows that the
relative angle to the wall was kept at approximately 90 degrees. The polarization of the
group was high, which was similar to that of the fish group (see Figure 11C). Meanwhile,
Figure 11D shows that the cohesion of the group was also high, which meant that the
Cuboid robot group was always compact.
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Figure 10. The Cuboid robots’ platform and the top view sequence of the collective motion experiment.

Figure 11. The probability density function (PDF) of the three Cuboid robots collective motion experiment with the DNN
model and LVPS strategy. (A) PDF of the distance from the wall to each robot rw; (B) PDF of the absolute value of relative
angle to the wall of each robot θ+W; (C) PDF of the robot group polarization P; (D) PDF of the group cohesion C.

4. Discussion and Conclusions

In collective motion, each individual should adjust its behavior to adapt to its neigh-
bors. Previous works suggest that one individual needs to interact with a lot of neighbors to
achieve group cohesion [34–36]. However, focusing on one neighbor can overcome the low
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information processing ability of the individual. Therefore, selecting the most influential
neighbor in the group with which to interact is very important for understanding the
coordination mechanisms of the group.

Here, we developed a pairwise interaction model of collective motion based on the
DNN model, which could achieve stable collective motion with one-neighbor interaction.
The neighbor was selected by the largest visual pressure. The results comparison between
the two- and five-fish experiments and the DNN model simulation verified the motion
similarity between our method and natural fish. All simulation agents perfectly had the
same moving direction with the compact group. Counter-milling occurred in both fish
groups and the agents’ simulation with the LVPS strategy. This property of collective
behavior enabled all individuals to alternate their positions in the group. For large-scale
collective motion, we extended our method to 100 agents for simulation to verify the
aggregation ability. The simulation showed that our method could formulate stable large-
scale collective movement in a small period.

Compared with the deep attention network model proposed in [46], it can only provide
the possibility of turning the direction of the individual. However, our model can output
not only the specific steering angle, but also the straight moving distance and time. Pairwise
interaction analysis showed that the follower individual preferred decelerating its speed
for safety to maintain the alignment rather than change its heading angle for front neighbor
avoidance, which was different from the results of other studies in the literature [11]. When
the focal fish becomes the leader, it keeps its speed unchanged when the followers are
aligning, whether the follower’s speed is fast or slow. When the follower’s orientation
angle is different from that of the leader, the leader turns to maintain its leadership.

The proposed method has the potential to control swarm robotics. The performance
of the Cuboid robots’ motion was similar to that of the fish. This means that the DNN
model control for real swarm robotics had stable, flexible, and scalable characters. This was
because the fish’s collective motion was robust and flexible. These good control characters
can help swarm robotics to be applied in many areas, such as swarm robotic multi-robot
cooperative pursuits [47] and exploration missions in dangerous areas with swarms [48].

Our pairwise interaction DNN model can integrate the information of both the static
environment and the dynamic neighbors. Since this is only the primary research of deep
learning technology in swarm robotic control, the model should have the ability to avoid
collision by prediction. In the future, we will add predictive information of the neighbor to
the deep network model and explore more complex environments which can handle the
large-scale traffic congestion of swarm robotics.
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