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Abstract: Rotor systems are of considerable importance in most modern industrial machinery,
and the evaluation of the working conditions and longevity of their core component—the rolling
bearing—has gained considerable research interest. In this study, a scale-normalized bearing health
indicator based on the improved phase space warping (PSW) and hidden Markov model regression
was established. This indicator was then used as the input for the encoder–decoder LSTM neural
network with an attention mechanism to predict the rolling bearing RUL. Experiments show that
compared with traditional health indicators such as kurtosis and root mean square (RMS), this
scale-normalized bearing health indicator directly indicates the actual damage degree of the bearing,
thereby enabling the LSTM model to predict RUL of the bearing more accurately.

Keywords: remaining useful life (RUL); rolling bearing; health indicator; phase space warping; long
and short-term memory (LSTM)

1. Introduction

Bearing reliability evaluation and remaining useful life (RUL) prediction have re-
ceived extensive attention due to the increasingly extreme working conditions of the entire
system [1,2]. Generally, bearing life follows a specific statistical distribution that can be
inferred from a large number of life data samples. However, due to the influence of as-
sembly errors, material defects, and load fluctuations, in practice, bearing life has strong
randomness. Studies carried out using public bearing life datasets can be taken as exam-
ples. In the accelerated degradation datasets of bearings collected by FEMTO-ST on the
PRONOSTIA experimental platform, the RUL of the test bearing under specific load and
speed conditions falls within the range of 2–7 h [3]. The results of the datasets provided by
the BPC system from Sumyoung Technology Co. are similar, where the life spans of the test
bearings are between 30 min and 8 hours [4]. In addition to the accelerated degradation ex-
periments mentioned above, the RULs obtained from the natural degradation experiments
are also different. For example, in the life test of the Rexnord ZA-2115 double-row bearing
carried out on the durability test rig by NASA, the results are between seven days and
one month [5]. Therefore, it is highly challenging to predict bearing RUL from a statistical
point of view accurately. For this reason, in engineering practice, research focus has shifted
to the study of the RUL of individual bearing, considering its actual working condition.
Kundu [6] predicted the bearing RUL by establishing a Weibull proportional regression
model based on the monitored signals of the PRONOSTIA platform. By combining the
respective advantages of long- and short-term memory (LSTM) and statistical process
analysis, Liu [7] proposed a new network to predict the bearing RUL using the datasets
released by NASA and FEMTO-ST. Huang [8] introduced the transfer learning method and
constructed a transfer depth-wise separable convolution recurrent network to predict the
bearing RUL from the same public datasets considering different work conditions.
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Various mathematical and physical models were successfully applied to the prediction
of bearing RUL. However, an overview of the aforementioned studies indicates that the
actual degree of damage to the test bearing was not considered in the studies using the
public bearing datasets; only the physical signals, e.g., acceleration and temperature signals,
monitored in the bearing life test were studied. Take the FEMTO dataset as an example,
and it did not provide damage sizes of the test bearings. The termination criterion was only
created by the acceleration signal exceeding the threshold. Similarly, the same criterion was
defined as the end of bearing life in many other representative studies [7–10]. However,
it was found in our experiments that under the same operating conditions, even if the
same acceleration threshold is used as the test termination condition, the final damage
degree, namely the crack length in the spall area, can be remarkably different. Figure 1
shows the damage to four test bearings under the same operating condition, for which
the tests were stopped based on the same acceleration threshold. It was demonstrated
that even bearings with the same damage exhibited utterly different degrees of damage
under similar acceleration levels. Therefore, under different application scenarios, the
construction of health indicators and the development of life prediction methods need to
be explicitly designed.
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Figure 1. Illustrations of crack length in the spall area to represent the damage degree of a bearing.

Among the conventional health indicators [11,12], the root mean square (RMS) is
the most commonly used, although it has the disadvantage of strong fluctuations. Ad-
ditionally, the relative root mean square (RRMS) was adopted in the literature to reduce
the negative impact of the fluctuations on the calculation results [9]. In addition to the
RMS, Zhong [13] used a nonparametric health index for machine condition monitoring
by combining envelope spectrum and statistic model, and principal component analysis
(PCA) was used by Kundu [6] for dimensionality reduction of feature vectors to extract
those features with better monotonicity. Xu [14] purposed a new health indicator called
moving average cross-correlation of the power spectral density (MACPSD) to predict the
health state of ball bearing. However, the problem with these health indicators in practice
is that their calculated values are not directly related to the actual damage degree of the
bearing, as shown by the crack length of the spall area in Figure 1.

In RUL prediction, researchers have proposed numerous prediction methods, which
can be mainly divided into the model-driven method, data-driven method, and hybrid
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method. Model-driven methods, such as the Paris-Erdogan method [15], can accurately
predict the bearing RUL under different working conditions. Still, the accuracy depends
on establishing a practical model based on the physical system. The data-driven method
utilizes statistical models or artificial intelligence (AI) models to predict the RUL, where
the statistical model is often referred to as an empirical model-based method. For example,
Kumar [16] combined the Kullback–Leibler divergence and Gaussian process regression
to predict the RUL. Li [11] and Qiu [17] presented a stochastic process to predict the RUL.
Xing [18] and Li [19] proposed a mixed Gauss model–hidden Markov model (GM-HMM)
to predict the RUL of wind turbine bearings. Other methods include AI mathematical
models such as the support vector machine [9] and artificial neural network [20], which can
handle complex systems problems without any prior knowledge. However, data-driven
methods can only manage the targeted work condition and exhibit no universal adaptability.
On the other hand, the hybrid method combines the advantages of the model-driven
method and the data-driven method; techniques such as the Kalman filter [21] and particle
filter [22] belong to this type. Although many works were proposed to study the problem of
bearing RUL prediction, few relevant studies have considered detecting accurate damage
occurrence time and end of lifetime, which are crucial for prediction outputs. Antoni [23]
used entropic evidence to detect the initial faults in rotating machinery. Chegini [24]
purposed ensemble empirical model decomposition and wavelet packet decomposition
to detect the initial faults in rotating machinery, and the Nirwan [25] used the acoustic
emission to detect faults. Although such mentioned works provided relatively accurate
detection results, the detection models or the extracted features originated from extensive
calculations. It is not easy to implement such methods under the requirement of real-time
response, mainly when the prediction of bearing RUL is an ongoing process.

To address the problem of detecting initial bearing damage, an adaptive envelope
analysis method was employed in Section 2. Subsequently, in Section 3, an improved
phase-space warping (PSW) algorithm was proposed to construct the bearing health indi-
cator, followed by the indicator normalization using the hidden Markov model regression
(HMMR) introduced in Section 4. The test bearing datasets verified the capability of the
normalized health indicator to reasonably reflect the actual degree of bearing damage. In
Section 5, the health indicator threshold, indicating the true damage extent, was defined as
the end of bearing lifetime, which allows the proposed encoder-decoder long-short term
memory (LSTM) model with an attention mechanism to predict the bearing RUL. The
results through analyzing the experimental data of bearing life proved the effectiveness of
the proposed method, see Section 6.

2. Detection of Bearing Initial Damage

In engineering practice, it is not practical to take the operation starting time of the
rolling bearing as the initiation for bearing RUL prediction. This method has the shortcom-
ings of extensive computation and unclear engineering significance. In contrast, predicting
the bearing RUL after detecting the initial damage through real-time monitoring of signals
can help determine the maintenance schedule and have more practical engineering sig-
nificance as the amount of calculation is relatively small. Therefore, before predicting the
bearing RUL, it is necessary to develop a damage detection algorithm with high sensitivity
and strong robustness to determine the starting time of prediction (i.e., damage occurrence
time). This paper proposed a sensitive and stable envelope analysis method that does not
need a large amount of calculation and can adaptively determine a reasonable envelope
bandwidth to identify the initial damage of the bearing as well as the starting time for
RUL prediction.

2.1. Adaptive Frequency Band Selection

The vibration signal should theoretically contain ball passing frequencies (BPFs) when
bearing damage occurs, whose calculation formulas are shown as follows, in which, the
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ωR, DP, bP, α and n are, respectively, the rotational speed, pitch diameter, roller diameter,
contact angle and number of rollers.
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Envelope analysis is the standard procedure to extract the ball passing frequencies,
called the damage-related characteristic frequencies, from the signal envelopes in real
applications. In the envelope analysis, the selection of frequency band for the bandpass
filter is a critical step, for which researchers have proposed various methods. Among
them, the fast Kurtogram [26] is the most commonly used one for selecting envelope
frequency bands. The signal components extracted by this method are primarily impulsive,
as fast Kurtogram was initially designed to be highly sensitive to the impacts hidden in the
original signal. Due to the impulsive nature of bearing damage response, the method has
proven effective in many applications. However, in some other cases, the slide-roll ratio of
the bearing or the collision between the cage and rolling elements under normal operations
also have significant impacts. As a result, envelope analysis based on fast Kurtogram would
lead to misjudgment owing to its excessive sensitivity. Recently, Peeters [27] proposed to
select the optimal frequency band based on the sparsity of envelope signals. This approach
utilizes the second-order stationarity of healthy bearing signals to maximize the envelope
sparsity, thereby realizing the selection of the envelope frequency band. However, when
the normal impacts break the hypothesis of second-order cyclostationary, this method
would still fail to extract the characteristic frequencies. Therefore, we shift our focus to
develop a sensitive and robust detection method for damage frequency extraction. The
method must predict the bearing RUL automatically and avoid the interferences caused by
slight impacts from the slide-roll mechanism or the collision between the cage and rolling
elements during the regular operation of the bearing.

It is well-known that the bearing damage-induced impacts excite vibrations at the
bearing resonance frequency [28]. In other words, if the resonance frequency can be
identified, the frequency band close to it can be used as the filter band to perform the
envelope analysis. To this end, the peaks of power spectral densities (PSDs) of bearing
accelerations are used as the center frequencies of the envelope frequency bands. Moreover,
it is assumed that the natural frequency rests at the local peak of its PSDs under 10 kHz [29].
Then, eleven frequency bands from the local minimum were selected as the envelope
passbands to extract the characteristic frequencies of the bearing damage, see Figure 2.

2.2. Initial Damage Detection

Spectral peaks of a healthy bearing would be evident at the corresponding characteris-
tic frequencies in the envelope spectrum.

Specifically, when a local spalling occurs in the inner-ring, the ball passing frequency
of the inner-ring (BPFI), its low-order harmonics, and the nearby sidebands may all exhibit
peak characteristics. When a bearing has an outer-ring spalling, the ball passing frequency
of the outer-ring (BPFO) and its low-order harmonics would also exhibit corresponding
peak characteristics. Table 1 shows the geometrical parameters, experimental conditions
and the calculated characteristic frequencies of our test bearing.
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Table 1. Geometrical parameters and the characteristic frequencies of the test bearing.

Parameters Value Parameters Value

Inner race diameter Di 25.4 mm Static load ratings 7828.87 N
Outer race diameter Do 52.0 mm Dynamic load ratings 14,011.9 N

Pitch diameter DP 38.7 mm Contact angle 0◦

Roller diameter Db 7.92 mm
Number of rollers n 9

Rotation speed ωR 33 Hz
BPFI 178 Hz BPFO 118 Hz
BSF 77 Hz FTF 13 Hz

On the other side, Figures 3 and 4 show the envelope spectrums of the inner- and outer-
ring damaged bearing, respectively. They are obtained from the pre-divided bandpass
frequency bank with eleven passbands, see Figure 2 as an example.

Each time the acceleration signal is collected from the accelerometer, we select filter
bands from the envelope spectrum using the method described in Section 2.1. Then, the
obtained amplitudes of the characteristic frequencies would be compared with the pre-
defined threshold to determine whether damage has occurred in the bearing. In this paper,
the threshold is defined as σth = 3σn, where σn represents noise level expressed as local
average, excluding the amplitudes of BPFs. Taking the definition of the BPFO threshold as
example, the BPFO can be determined using Equation (5). In the equation, fs represents
the bandwidth that needs to be captured, Fs(freq) represents the amplitude at the target
frequency, ns is the number of spectral lines, and the BPFO is the ball passing frequency of
the outer-ring damaged bearing.

σn = 1
ns−1

[
freq= fs2

∑
freq= fs1

Fs(freq)− Fs(BPFO)

]
fs1 = BPFO− fs
fs2 = BPFO + fs

(5)



Machines 2021, 9, 238 6 of 26
Machines 2021, 9, 238 6 of 28 
 

 

 

Figure 3. Eleven envelope spectrums of the inner-ring damage bearing obtained from the adaptive 

band selection, i.e., (a) the envelope spectrum with the lowest enveloped band to (k) the envelope 

spectrum with the highest enveloped band. 
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To avoid misjudgment, when the initial damage occurs in the bearing, it is assumed
that at least two of the amplitudes at its characteristic frequencies, i.e., the BPF, the low-
order harmonics, and the sideband frequencies (if inner-ring damage occurs in the bearing),
would exceed the threshold [30]. Therefore, 11 time instants can be determined based on
the 11 envelope spectrums as the bearing service time goes by. The minimum of these time
instants is defined as the occurrence time of bearing damage.

Figure 5a,b are the zoom-in envelope spectrums corresponding to the damage occur-
rence time obtained by the above method. Compared with other frequency components,
the characteristic frequencies are dominant in amplitude (see the BPFI and its sideband
in Figure 5a and the BPFO in Figure 5b). Thus, when damages occur to the bearing, if
reasonable bandpass filter ranges are selected, there would be significant increases in
the amplitudes of characteristic frequencies in the envelope spectrum. On the other side,
Figure 5c,d show the envelope spectrums for the same time instant obtained after selecting
the filter band using the fast Kurtogram. The amplitudes of the BPFI and its sideband in
Figure 5c, together with the amplitude of BPFO in Figure 5d, are not significantly larger
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than those of other frequency components. Disappointingly, the fast Kurtogram based
envelope analysis method fails to detect bearing damages at last and cannot be applied to
initialize the prediction of bearing RUL.
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3. Construction of Health Indicator

The amplitudes of BPFs in the envelope spectrum can help determine the occurrence
time of bearing initial damage. Nevertheless, it is not a good option as a health indicator to
predict the RUL because of its poor monotonicity against the bearing degradation process.
Therefore, once the initial damage is detected, a new bearing health indicator needs to be
established to predict the bearing RUL.

Previous studies often use time-domain statistical features, e.g., RMS, kurtosis, and
peak-to-peak value, as health indicators in industrial applications. In contrast, applicational
cases related to frequency-domain features, e.g., wavelet transform and Hilbert-Huang
Transform, were presented in the references until recent years. However, due to the
introduction of pre-defined parameters in the mathematical transformation, its applications
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in industrial fields still have limitations. Time-domain features are still the most commonly
used health indicators. The calculation formulas of RMS and kurtosis are as follows:

FRMS =

√
1
n

n
∑

i=1
|xi|2

FKURT = 1
n

n
∑

i=1

(xi−µx)
4

σ4
x

(6)

where xi is the raw data and n is the number of data points used to calculate the feature
value. µx and σx are respectively the mean value and standard deviation of the raw data.

However, owing to the complexity of actual physical systems, it is challenging to
accurately express the service status of the bearing with the above features. Their respective
trends in Figure 6 shows statistical characteristics such as RMS and kurtosis. The RMS
exhibits evident fluctuations, while the kurtosis would decrease as the number of defect-
induced impacts increases when the bearing damage becomes more severe. These poor
monotonic features are likely to cause misjudgment of bearing life in engineering applica-
tions. Furthermore, for features extracted based on AI methods, it is challenging to explain
the physical meaning of such features. Most importantly, the above-mentioned features
are incapable of reflecting the crack length of the bearing spall area shown in Figure 1. As
shown by a group of experimental results listed in Table 2, when the experiment ended, the
RMS and kurtosis after scale standardization (the standardization method is introduced in
Section 4) cannot effectively reflect the crack length in the bearing (+represents multiple
spall areas, as shown by Figure 1). Therefore, to overcome the afore-described challenges,
this paper proposes to use the PSW algorithm as the feature extraction method.
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Table 2. Comparisons of the Scaled PSW, RMS and Kurtosis for different crack length.

Bearing 1-1 Bearing 1-2 Bearing 1-3 Bearing 1-4 Bearing 1-5

Crack Length 3.5 mm 2 mm + 1 mm 3 mm 2.5 mm + 0.5 mm 3 mm + 0.5 mm
Scaled PSW 2.687 1.845 2.049 1.733 2.607

RMS 2.582 3.307 2.893 3.286 2.781
Kurtosis 1.553 1.947 2.014 1.313 1.334

3.1. Phase Space Warping (PSW) Theory

PSW is an effective method for evaluating the damage of multi-layer dynamical
systems, which was first proposed by Chelidze [31]. From the perspective of dynamic
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theory, the damage evolution of the entire rotor system can be regarded as a high-order
system composed of a “fast time” scale and a “slow time” scale. Its definition is as follows:

.
x = f [x, µ(φ), t]
.
φ = εg(x, φ, t)

(7)

In Equation (7), x ∈ Rn is the “fast time” scale variable, which can be measured
directly. φ ∈ Rm is the “slow time” scale variable, which can directly reflect the damage
state of the entire system but cannot be measured directly. f (·) and g(·) are the “fast
time” and “slow time” scaling functions, respectively. µ(·) is a function of the variable φ,
t represents time, and ε(0 < ε� 1) is a constant parameter that defines the damage rate of
the system. The response states of the bearing system at the initial time point t0 and after
operating for a certain period tp can be expressed as

x0 = F[x0, µ(φ0), t0]
xt = F

[
xp, µ(φt), tp

] (8)

Suppose that the bearing system always maintains its initial state without experiencing
any change or damage, then the response of the bearing system can be calculated using
Equation (9).

xR
(
tp
)
= F

[
xp, µ(φ0), tp

]
(9)

Therefore, with the initial operating state of the bearing system as the reference state,
there is t0 = tR. Then, the damage state of the bearing system (or damage tracking) can be
expressed as follows:

e = F
[
xp, µ(φP), tp

]
− F

[
xp, µ(φR), tp

]
(10)

In Ref. [31], after performing the Taylor expansion, the bearing system’s damage state
can be finally expressed as

e =
∂F
∂µ

∂µ

∂φp

(
φp − φR

)
+ O

(
‖φp − φR‖2

)
+ O(ε) (11)

where O(·) represents higher-order infinitesimal. In this paper, the raw acceleration signal
of the bearing is regarded as an observable “fast time” scale variable, while the damage
state of the bearing system is regarded as a “slow time” scale variable.

Typically, to calculate the damage state of the bearing, the phase space reconstruction
theory based on the Takens embedding theorem would be introduced, and the damage
state of the bearing would be quantified on this basis. The phase space reconstruction is
mathematically expressed as follows:

yR(n) = [xR(n), xR(n + τ), . . . , xR(n + (D− 1)τ)]T n = 1, . . . , N(D− 1)τ (12)

where yR ∈ RD is the reference initial state of the phase space of the bearing system, n
is the number of vectors in the phase space, and N is the total number of observation
data points. τ and D represent the time delay and embedding dimension of the phase
space, which can be calculated using the mutual information [32] method and Cao’s
method [33]. Theoretically, the unknown mapping between the reconstruction vector
yR(n) in the reference phase space and that of the next step yR(n + 1) on the “slow time”
scale—that is, under the reference state of the bearing φR—can be expressed as

yR(n + 1) = Pτ [yR(n); φR] (13)
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In engineering, linear regression is the most straightforward and generic model for
establishing the mapping between reconstruction vectors {yR(n)} and {yR(n + 1)} in the
reference phase space, as shown by Equation (14).

yR(n + 1) = An
_
y (n) (14)

where An ∈ Rd×(d+1) is the model parameter, and
_
y (n) ∈ Rd+1 is the combination of the

input phase space and the identity matrix

_
y (n) =

[
yT

R
(n), 1

]T
(15)

Based on the simple linear regression model, the parameter matrix An can be calculated
as follows:

An = Yn+1

(
_
Yn

)T
[
_
Yn

(
_
Yn

)T
]−1

_
Yn =

[
_
y

1
(n)

_
y

2
(n) . . .

_
y

I
(n)
] (16)

where Yn ∈ Rd×I is the vector combination of the I nearest neighbors of the reconstruction

vector yn in the reference phase space, and
_
Yn ∈ R(d+1)×q. Yn+1 is the target response, that

is, the combination of the next step vectors of the I nearest neighbor vectors. However, in
actual scenarios, the “slow time” scale parameter (i.e., the operating state of the bearing)
is in a state of continuous degradation. Thus, after degradation for time tp, the mapping
between each phase space point and its next step would be changed, and the true mapping
can no longer be expressed by Equation (13) but can be obtained using Equation (17).

yp(n) =
[
xp(n), xp(n + τ), ..., xp(n + (D− 1)τ)

]T
yp(n + 1) = Pτ

[
yp(n); φp

] (17)

Assuming that during the bearing operation, there is no damage to its operating state,
and the mapping relationship is not changed after the elapse of time tp. In this case, the
theoretical reconstruction vector of the next step yp(n + 1) can be expressed as follows:

yp(n + 1) = Pτ
[
yp(n); φR

]
(18)

Based on the above idea, the damage “trajectory” during bearing operation after the
elapse of time tp can be obtained as follows:

ep = Pτ
[
yp(n); φp

]
− Pτ

[
yp(n); φR

]
(19)

3.2. Improved PSW Algorithm

Section 3.1 introduced the relevant model of the original PSW. However, the problem
with this model in actual engineering is that the mapping relationship between the recon-
struction vectors yR(n + 1) and yR(n) does not follow a simple linear mapping relationship
but exhibits a certain degree of nonlinearity. Therefore, a PSW mapping model that takes
into account actual nonlinear factors is proposed in this section.

Ref. [34] proposed the random vector functional-link net (FLNet), where the input
and output layers are directly connected without an activation function. At the same time,
an enhanced pattern is employed as an alternative to the nonlinear activation function. The
structure of FLNet used for phase space nonlinear mapping in this paper is illustrated in
Figure 7.
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G(·) is the randomly input activation function, representing the nonlinear part of the
model, such as the sigmoid function and so on. ωm ∈ R1×(d+1) is a parameter generated
randomly from the 0–1 continuous uniform distribution to generate nonlinear effects in
combination with the activation function, which is called the enhancement node, and m is
the number of enhancement nodes. Compared with conventional neural network structures
with nonlinear relationships, the structure adopted herein not only provides nonlinear
characteristics that are not originally available for the mapping between phase space
reconstruction vectors but is also more in line with engineering reality. At the same time,
under the framework of this structure, the regression parameters can be directly calculated
by linear regression formulas, which can eliminate calculations in neural networks that
need to use gradient descent methods, thus exhibiting the superior advantage of small
calculation amounts. In summary, when applying the phase space reconstruction function,
the mapping between yR(n + 1) and yR(n) can be rewritten as

yR(n + 1) = Anb(n)

b(n) =
{

yT
R(n), G

[
θ
_
y (n)

]T
, 1
}T (20)

where θ ∈ Rm×(d+1) is a random parameter matrix generated from the continuous uniform
distribution, which is composed of ω; b(n) ∈ Rd+m+1 is the combination of the reconstruc-
tion vector and the enhancement node. In summary, by rewriting Equation (16) using
Equation (20), the following can be obtained:

An = Yn+1(Bn)
T
[

Bn(Bn)
T
]−1

Bn =
[
b1(n)b2(n) . . . bI(n)

] (21)

By combining Equations (19)–(21),

ep(n) = yp(n + 1)−Yn+1(Bn)
T
[

Bn(Bn)
T
]−1
{

yT
R(n), G

[
θ
_
y (n)

]T
, 1
}T

(22)

Then, according to the Ref. [31], the final quantified damage state of the bearing in the
phase space can be calculated using Equation (23).

qn = 1
rM

n

Ep =

√
∑N

n=1 q(n)‖ep(n)‖2

∑N
n=1 q(n)

(23)

where q(n) is the weight function. rn is the Euclidean distance between the current recon-
struction vector yp(n) and the one that has the farthest Euclidean distance in the space
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composed of the I nearest neighbor vectors. M is the correlation dimension of the refer-
ence phase space. Finally, with the sample Bearing 1-1 as an example, the improved PSW
results are shown in Figure 8. Compared with kurtosis and RMS, it exhibits significantly
smaller fluctuations and better monotonicity, so it is more appropriate to serve as the health
indicator for the bearing.
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Figure 8. Damage tracking of Bearing 1-1.

In Refs. [35,36], several other features shown in Table 3 are used for the prediction of
bearing RUL. However, the prediction task begins after the occurrence of bearing initial
damage. Hence, we select the monotonicity of the features after the bearing initial damage
as the evaluation criterion. For a comparison purpose, the result from the PSW method is
presented together with those from other features, as shown in Figure 9.

Monotonicity =
1

n− 1

n−1

∑
i=1

[sgn(xi+1 − xi)] (24)

Machines 2021, 9, 238 15 of 28 
 

 

Crest factor 
CF

RMS

max min

2

X X
F

F
 

Clearance factor 
CLF 2

1

2

1

max( ) min( )

1
2

n

i

X X
F

x
n

 

Impulse factor IF
mean

max( ) min( )

2

X X
F

F
 

Shape factor RMS
SF

mean

F
F

F
 

PCA Above features fused by PCA 

 

Figure 9. Monotonicity of different features. 

4. Feature Normalization 

The improved PSW can better describe the damage state of the bearing from the per-

spective of the bearing system, but there are still certain problems with PSW for different 

bearings. Figure 10a shows the full life PSW data of five identical bearings under the same 

working conditions. There are relatively large initial fluctuations in the PSW values of 

different bearings. Similarly, the traditional RMS also faces the same problem. Therefore, 

it is necessary to develop a numerical standardization method to unify the quantitative 

standard of the bearing health indicator. 

  
(a)  (b)  

Figure 10. Unscaled PSW and scaled PSW. (a) Damaged tracking without scaling and (b) Damaged tracking with scal-

ing. 

Figure 9. Monotonicity of different features.



Machines 2021, 9, 238 14 of 26

Table 3. Statistical features.

Features Definitions

Absolute mean Fmean = 1
n ∑n

i=1|xi |
Root mean square FRMS =

√
1
n

n
∑

i=1
|xi |2

Kurtosis FKURT = 1
n

n
∑

i=1

(xi−µx)
4

σ4
x

Skewness FSKEW = 1
n

n
∑

i=1

(xi−µx)
3

σ3
x

Crest factor FCF = |max(X)−min(X)|
2FRMS

Clearance factor FCLF = |max(X)−min(X)|

2
(

1
n

n
∑

i=1
|x|

1
2

)2

Impulse factor FIF = |max(X)−min(X)|
2Fmean

Shape factor FSF = FRMS
Fmean

PCA Above features fused by PCA

4. Feature Normalization

The improved PSW can better describe the damage state of the bearing from the
perspective of the bearing system, but there are still certain problems with PSW for different
bearings. Figure 10a shows the full life PSW data of five identical bearings under the same
working conditions. There are relatively large initial fluctuations in the PSW values of
different bearings. Similarly, the traditional RMS also faces the same problem. Therefore,
it is necessary to develop a numerical standardization method to unify the quantitative
standard of the bearing health indicator.
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This study utilized a method proposed in the Ref. [9], which used relative values to
unify and quantify health indicators. In this method, the relative PSW value is calculated
as follows:

Escaled(t) =
E(t)

1
h1+h2−1 ∑h2

h1
E(h)

(25)

where h1 and h2 are the starting and ending point of the steady phase during the full
life of the bearing. In Ref. [9], these two points were selected empirically, which is not a
scientifically effective approach. In this paper, the ending point h2 of the steady phase of the
bearing is defined as the point of occurrence of minor faults; that is, the starting point of the
fault obtained by the adaptive envelope analysis method described in Section 2. As for the
starting point of the steady phase, Figure 10 indicates that once the bearing starts to operate,
there is a certain “shift” in the bearing system state at the initial phase. However, this de
facto “shift” is not damage; therefore, it is unreasonable to use the bearing’s starting point
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as the starting point of its steady phase. Therefore, this paper proposes to employ HMMR
and use the PSW data before the fault point as its good input to perform unsupervised
classification, thereby automatically dividing this segment of data into the initial phase
and the steady phase.

4.1. Hidden Markov Theory

The HMM model is a model for nested stochastic processes, which contains two states:
one is the invisible hidden state S(t) ∈

{
S1, S2 . . . SQ

}
, and the other is the explicit state

Z(t) ∈ {Z1, Z2 . . . ZK} based on the hidden state, as shown in Figure 11. Q and K are the
number of hidden and explicit states, respectively.
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The evolution of this model is generally described by the transition probability
matrix A, which can be expressed as A = {ajj} = P[S(t + 1) = Sj

∣∣S(t) = Si] , where i and j,
respectively, represent the ith and jth hidden state, and aij represents the transition probabil-
ity from hidden state i to j. Under the current hidden state S(t), the probability of showing
the explicit state Z(t) is expressed by the emission matrix B = [bj(k)] = P[Z(t) = Zk

∣∣S(t) = Sj] .
The initial probability of the stochastic process is expressed by π =

[
π1, π2 . . . πQ

]
. In

summary, the parameters contained in a complete HMM model are given as

λ = {π, A, B} (26)

4.2. HMMR-Based Normalization

In this study, after extracting the healthy data of the bearing, it is assumed that the
healthy phase of the bearing can be divided into two phases—namely the initial running-in
stage and the steady stage—and regarded as the hidden states of the HMM model [37];
moreover, this is an irreversible process. Thus, the transition matrix A can be expressed as

A =

[
a11 1− a11
0 1

]
(27)

Figure 12 indicates that in the initial running-in stage, the bearing’s PSW value is in the
form of an increasing cubic spline, while in the steady phase, it tends to be a stable straight
line. Therefore, the explicit state is treated as a continuous Gaussian random distribution
based on a polynomial regression model in this paper, rather than a traditional discrete
emission matrix. This way, the traditional HMM model is modified into an HMMR model,
where the running-in phase is a cubic spline Gaussian regression model, and the steady
phase is a linear Gaussian regression model, as shown by Equation (28).

Et = UT
j νj + σjξ

bj(Z) = P
[

Z|S(t) = Sj
]
=

N
(

et ; UT
j vj ,σ2

j

)
Q
∑

q=1
N(et ; UT

q vq ,σ2
q )

(28)

where Uj is the regression coefficient of the (l + 1)-dimensional lth order function under

the jth hidden state. νj = [1, tj, t2
j · · · t

p
j ]

T
is the regression input (i.e., time input) under the

jth hidden state. ξ ∼ N(0, 1) is the Gaussian distribution with zero mean and one standard
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deviation, σj is the standard deviation of the regression model under the jth hidden state.
Therefore, the parameters for the HMMR model in this paper are rewritten as follows:

−
λ = (π, A, U1, U2, σ1, σ2) (29)
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Finally, according to the maximum likelihood estimation algorithm, the model param-
eters can be obtained as

L
(−

λ; et

)
= log p

(
et;
−
λ

)
= log

{
∑
S

p[S(1); π] ·
T
∏

t=2
p[S(t)|S(t− 1); A]·

T
∏

t=1
N
[
et; UT

S(t), σ2
S(t)

]} (30)

According to the method proposed in the Ref. [38], Equation (30) can be solved by
the expectation–maximization (EM) algorithm. Its results are shown in Figure 13, where
the service state of the healthy bearing is automatically divided into the initial running-in
phase and the steady operating phase. The end of the initial running-in phase—that is, the
starting point of the steady operation phase—will be finally regarded as the theoretical
point h1 in Equation (25). Figure 10b shows the standardized result of the PSW data in
Figure 10a obtained by the above method.
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Figure 1 illustrates the crack length in the spall area to represent the damage degree
of a specific damaged bearing. Multiple spall areas are also shown in Figure 1 and are
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represented as the identifier ‘+’ in Table 2. Damage related standardized PSW value is
given in the same column of Table 2, together with RMS and kurtosis. Compared with the
traditional RMS and kurtosis, an obvious positive correlation can be observed between the
standardized PSW value and the crack length.

5. Bearing RUL Estimation
5.1. Ending Point of the Bearing Life

According to the theory introduced in the above sections, the standardized PSW
indicator of the bearing can be obtained, and the starting point of the bearing’s minor fault
can be accurately identified. Based on the above information, the bearing RUL can be
predicted with the starting point of the bearing’s minor fault as the starting point. Table 2
indicates that there is a positive correlation between the bearing’s PSW indicator and its
physical damage crack. Therefore, a PSW threshold indicator can be defined based on
the above information to serve as the ending condition of bearing life. In this paper, this
threshold is defined as Threshold = 1.7, as shown in Figure 14.
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5.2. Feature Smoothing

To further reduce the error caused by feature fluctuations and to lower the influence of
noise, exponential curve fitting is performed on the data before training the mathematical
model for bearing RUL prediction [7,9]. The theoretical model is expressed as

yE = αE exp(βEt) + γE (31)

where αE, βE, and γE are the exponential curve fitting parameters. The fitting result is
shown in Figure 15. Finally, the fitted data are input into the mathematical model presented
in Section 5.3 for calculation. As shown in Figure 16, the method with exponential curve
fitting has a better performance in predicting the bearing RUL against the method without
curve fitting.
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Figure 16. Effectiveness of exponential curve fitting for bearing RUL prediction. (a) Results without exponential curve
fitting and (b) Results with exponential curve fitting.

5.3. Bearing RUL Prediction

The LSTM model is a classic time series prediction network model [39]. This model
consists of the following three components: forget gate, input gate, and output gate. In this
model, the current hidden state Ht and the cell memory state Ct update on Ht−1 and Ct−1
based on the input It−1 of the previous time point according to the relevant algorithm.
Finally, the time information of the time series is input. Its forward propagation process is
expressed as follows:

Γ f= sigmoid
[
W f (Ht−1, It−1) + b f

]
Γi= sigmoid

[
Wi(Ht−1, It−1) + bi]

Γo= sigmoid[Wo(Ht−1, It−1) + bo]
Ct = Ct−1 · Γ f + {Γi · tanh[Wc(Ht−1, It−1) + bc]}
Ht = Γo · tanh(Ct)
Zt = Ht

(32)

To enhance the prediction effectiveness of the LSTM model for bearing life, an LSTM-
based encoder–decoder model [7] was proposed. To further improve the performance of the
network, this paper sought to improve the model itself, such that in addition to introducing
the attention mechanism reference, the bi-directional long-short term memory (BILSTM)
was adopted to further extract the time information between bearing PSW indicators, and
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a residual model was also introduced to prevent gradient divergence. The calculation of
the attention mechanism is shown by Equations (33)–(35).

C = ∑ti
t=1 ptHe

t (33)

pt =
exp(st)

∑ti
t=1 exp(st)

(34)

St= Attention Function
(

Hr
t , H1

y

)
(35)

where ti is the length of the input time series, and H1
y are, respectively, the result of the

residual block hidden unit and the result of the first layer LSTM hidden unit of the decoder
at the time t, He

t is the result of the decoder hidden unit at the time t.
In the traditional LSTM model, the initial hidden unit H0 is usually a zero matrix.

However, in this model, the damage type and working condition of the bearing are used as
the one-hot matrix and the hidden unit input, as illustrated in Figure 17.
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Finally, combined with the PSW health indicators mentioned in this paper, the input
and output of the entire network are given by Equation (36), where Rtn is the normalized
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life at the time Tn after standardization. Figure 18 depicts the flow chart of the entire life
prediction process.

[E1, E2, E3, · · ·, Eti−1, Eti]→ R1
[E2, E3, E4, · · ·, Eti, Eti+1]→ R2

·
·
·

[En−1, En, En+1, · · ·, ETn+ti−3, ETn+ti−2]→ RTn−1
[En, En+1, En+2, · · ·, ETn+ti−2, ETn+ti−1]→ RTn

(36)
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6. Experimental Results
6.1. Description of the Test Rig

The bearing accelerated life test rig shown in Figure 19 is used for the experiment.
In this test rig, the rotation of the shaft, test bearing, and support bearing are driven by a
motor. The load on the test bearing is provided by the hydraulic loading system, and the
vibration during bearing operation is measured using acceleration sensors.

The radial vibration of the bearing seat during the experiment is picked up by two
horizontal and vertical PCB 608A11 acceleration sensors. The NI-9234 vibration acceleration
acquisition card is used to acquire acceleration signals at a sampling frequency of 51.2 kHz.
The sampling duration of each acquisition is 1.28 sec, and data are acquired every 12 sec.
Section A sampling termination rule is formulated during the experiment—-when any
one of the two radial vibration accelerations exceeds 20 g, the test would be stopped
immediately. The LDK-UER 205 bearing is used as the test bearing, and the corresponding
geometric parameters are listed in Table 1. The test was carried out under three different
working conditions, namely the rotation speed of 33 Hz/load of 800 kg, the rotation speed
of 33 Hz/load of 900 kg, and the rotation speed of 33 Hz/load of 1000 kg. The tests are
detailed in Table 4.
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Figure 19. Accelerated endurance test rig of bearing RUL.

Table 4. Experimental results and the tracking metric values when experiment ended.

Conditions Dataset Samples Test Time Faulty Type Ended Tracking Metric

Bearing 1-1 3192 10 h 38 min Inner-race 2.64
Bearing 1-2 1477 4 h 55 min Inner-race 2.107

33 Hz-800 kg Bearing 1-3 853 2 h 51 min Inner-race 2.337
Bearing 1-4 994 3 h 19 min Inner-race 1.878
Bearing 1-5 802 2 h 40 min Inner-race 3.231

Bearing 2-1 584 1 h 57 min Roller 1.446
Bearing 2-2 608 2 h 2 min Inner-race 1.496

33 Hz-900 kg Bearing 2-3 399 1 h 20 min Outer-race 1.584
Bearing 2-4 935 3 h 7 min Inner-race 1.71
Bearing 2-5 581 1 h 56 min Inner-race 2.397

Bearing 3-1 550 1 h 50 min Inner-race 2.575
Bearing 3-2 1238 4 h 8 min Outer-race 3.61

33 Hz-1000 kg Bearing 3-3 390 1 h 18 min Inner-race 1.293
Bearing 3-4 768 2 h 37 min Inner-race 2.427
Bearing 3-5 386 1 h 17 min Inner-race 1.96
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6.2. Experimental Results

In this experiment, it is defined that the life of the bearing is terminated only after the
standardized PSW indicator exceeds 1.7. Therefore, based on the information in Table 4,
only the 11 datasets including Bearing 1-1, Bearing 1-2, Bearing 1-3, Bearing 1-4, Bearing1-5,
Bearing 2-4, Bearing 2-5, Bearing 3-1, Bearing 3-2, Bearing 3-4, and Bearing 3-5 are used as
the final test sets. Further, the time series input length of the neural network is defined as
ti = 20 herein. The final result is based on the prediction results obtained with each of the
eleven data sets as the test set, as shown in Figure 20.
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Figure 20. Prediction results of bearing RUL from different bearing datasets, which are respectively (a) Bearing 1-1,
(b) Bearing 1-2, (c) Bearing 1-3, (d) Bearing 1-4, (e) Bearing 1-5, (f) Bearing 2-4, (g) Bearing 2-5, (h) Bearing 3-1, (i) Bearing 3-2,
(j) Bearing 3-4, and (k) Bearing 3-5.

To quantitatively assess the accuracy of the model proposed in this paper, the RMS
error (see Equation (37)) is used as the criterion.

RMSE =

√
1

Tn − 1∑Tn
t=1

(
Rt −

_
Rt

)2
(37)

Table 5 shows the average error of the eleven bearing datasets (see Figure 20), respec-
tively, as the test sets, using several other methods, including SVR [9], 3-layer FC network,
LSTM [40], TCN-LSTM [41] and raw encoder-decoder model [7].
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Table 5. RUL prediction errors of different methods.

Method Average RMS Error

SVR 0.1164
3-Layer FC network 0.1440

LSTM 0.2127
TCN-LSTM 0.1895

Raw encoder-decoder 0.1052
Proposed method 0.0792

7. Conclusions

Most extant studies on the RUL prediction of rolling bearings have limited themselves
to online public data sets, which do not consider the actual damage degree of the bearing
and also rarely consider the starting and ending points for the bearing RUL prediction or the
damage type of the bearing. Compared with the traditional health indicators used for life
prediction, the standardized PSW indicator based on HMMR and improved PSW proposed
in this paper can effectively evaluate the actual damage size in the bearing. Moreover, it
was experimentally verified that with this indicator as input, the encoder–decoder neural
network that combines the attention mechanism (which takes into account the bearing
damage type and working conditions) and the BILSTM model can effectively improve the
prediction accuracy for bearing RUL, thereby generating certain engineering value.

The main contributions of this paper are summarized as follows:
Instead of using the traditional statistical life distribution to predict the bearing life,

the damage starting time point for bearing life prediction is accurately defined from the
perspective of the characteristic frequency of the rolling bearing through the adaptive
envelope analysis method.

A health indicator that can effectively reflect the actual damage of the bearing is
obtained by combining the HMMR model and the PSW model.

Compared with the traditional LSTM model, the encoder–decoder LSTM model
proposed in this paper considers the timing signal characteristic of the health indicator.
Not only are the BILSTM model and attention mechanism introduced into the model, but
also the operating conditions of the bearing are considered as the LSTM hidden state input
for the calculation, thereby improving the prediction accuracy for bearing RUL.
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