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Abstract: The body freedom flutter characteristics of an airfoil and a fly wing aircraft model were
calculated based on a CFD method for the Navier–Stokes equations. Firstly, a rigid elastic coupling
dynamic model of a two-dimensional airfoil with a free–free boundary condition was derived in
an inertial frame and decoupled by rigid body mode and elastic mode. In the fluid–solid coupling
method, the rigid body was trimmed by subtracting the generalized steady aerodynamic force
from the structural dynamic equation. The flutter characteristics were predicted by the variable
stiffness method at a fixed Mach number and flight altitude. Finally, validation of the predicted body
freedom flutter characteristics was performed through a comparison of theoretical solutions based
on a Theodorsen unsteady aerodynamic model for airfoil and experimental results for a fly wing
aircraft model. The mechanism of the influence of the bending mode stiffness and the position of the
center of gravity on the body freedom flutter characteristics were briefly analyzed.

Keywords: rigid–elastic coupling; fluid-solid coupling; body freedom flutter; CFD; variable stiffness
method

1. Introduction

Flying wing aircraft have inherent advantages in terms of the aerodynamic lift–drag ra-
tio, stealth performance and structural efficiency, and have gradually become the preferred
configuration for high-altitude long endurance UAVs [1]. However, an unconventional
flutter phenomenon has become a killer limiting the envelope of most large-aspect ratio
flexible flying wing aircraft, which is called body freedom flutter. Body freedom flutter
is a dynamic instability phenomenon caused by the coupling of rigid body motion and
elastic deformation. The critical flutter velocity is about half of the traditional bending and
torsional coupling flutter velocity [2,3]. Therefore, the problem of body freedom flutter
seriously threatens the flight safety and limits the aircraft’s performance.

Body freedom flutter has attracted considerable attention [4,5]. In 2005, a Lockheed
Martin team used Nastran and the flight dynamics/aeroelastic coupling analysis program
ASWings to carry out a body freedom flutter analysis for the high aspect ratio SC005 wing
proposed for the SensorCraft project [6]. They also carried out a body freedom flutter wind
tunnel experiment for a half-mode flying wing model. Later, Lockheed Martin also carried
out a BFF flight verification experiment and a BFF suppression experiment on the X-56A
platform [7–11]. Using the Nonlinear Aeroelastic Trim and Stability of HALE Aircraft
(NATASHA), Richards and Mardanpour studied the effects of propeller position, structural
inertia and stiffness parameters on the body freedom flutter of a flying wing [12,13]. The
University of Minnesota has launched the Performance Adaptive Aeroelastic Wing (PAAW)
project. The flutter analysis, flight experiments and flutter suppression experiments of
mAEWing1 were carried out using the Nastran aeroelastic module [14]. Huang and Yang
have used the commercial software ZAERO to carry out a body freedom flutter analysis of
a semi-modal flying wing under symmetrical constraints, and also carried out wind tunnel
validation experiments [15,16]. Gu et al. compared the results of Nastran and ZAERO
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commercial software, and studied the effects of loop gain value and the center of gravity
on body freedom flutter characteristics [17,18].

At present, commercial software such as Nastran and ZAERO are often used in
body freedom flutter analyses and studies of the influence of parameters. Aerodynamic
models are mostly lifting surface models or strip theory models based on binary unsteady
aerodynamic forces, which are still insufficient for high-precision simulation of subsonic
and complex shapes. In this study, a body freedom flutter simulation was carried out
based on a CFD method using the Navier–Stokes equations. For the stability problem,
a rigid-elastic coupling dynamics model was established in the inertial system under
the linear small disturbance hypothesis [19,20]. The calculation results were compared
with a theoretical solution based on the Theodorsen unsteady aerodynamic model and
experimental results.

2. The Rigid–Elastic Coupled Dynamic Modeling Method: Taking a Two-Dimensional
Airfoil as an Example

Body freedom flutter is usually for the whole aircraft, but a two-dimensional airfoil
model that can obtain analytical solutions is helpful for illustrating the rigid–elastic cou-
pling modeling method and verifying the reliability of a numerical simulation program of
the body freedom flutter.

The two-dimensional airfoil rigid–elastic coupling dynamic model established in this
research considers four degrees of freedom (DOF): pitch, plunge, bending and torsion, as
shown in Figure 1. The reference points of the generalized coordinates of the four-DOF sys-
tem are established at the connection of the elastic axis [21,22]. In the inertial system [23,24],
H is the plunge displacement of the rigid body, where downward displacement is positive.
θ is the pitch displacement of the rigid body, where the nose-up attitude is positive. h is the
bending displacement relative to the fuselage, where downward displacement is positive. α
is the torsional displacement relative to the fuselage, where the nose-up attitude is positive.
Xθ is the distance from the fuselage centroid to the elastic axis, and the centroid in front
is positive; Xα is the distance from the wing centroid to the rigid axis, and the centroid in
front is positive. Note that the mass of the fuselage and wing are M and m, respectively.
The pitching moment of the inertia of the fuselage wing are Iθ and Iα. Kh and Kα are the
bending stiffness and torsional stiffness of fuselage wing connection, respectively.
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Figure 1. Diagram of an airfoil with the fuselage model in an inertial system.

The dynamic model considers the trim state and ignores the influence of gravity. It is
assumed that the aerodynamic force only come from the wing. The fuselage is simulated
as a particle, which only acts as inertia and has no effect on aerodynamic force. The rigid
rod (without mass) drawn in the figure is to represent the connection mode of the fuselage
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wing and the modal vibration mode of the fuselage. The dynamic equations are established
by the Lagrange equation under the inertial system [25–27].

d
dt

(
∂T
∂

.
qi

)
− ∂T

∂qi
− ∂U

∂qi
= Qi(i = 1, 2, 3, · · · , n) (1)
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T =
1
2

M
(

.
H

2
+ 2Xθ

.
H

.
θ + X2

θ

.
θ

2
+ R2

θ

.
θ

2
)
+

1
2

m
(

.
h

2
+ 2Xα

.
h

.
α + X2

α
.
α

2
+ R2

α
.
α

2
)

(2)

Considering the trim state, the lift and gravity are balanced, and the influence of the
gravitational potential energy is ignored. The potential energy of the system is the elastic
potential energy only:

U =
1
2

Kh(h− H)2 +
1
2

Kα(α− θ)2 (3)
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where Iθ = M
(

R2
θ + X2

θ

)
, Iα = m

(
R2

α + X2
α

)
The Equation (4) is a linear equation, and the structural dynamic equation can be

solved by the modal decoupling method. Because of the existence of two rigid-body
degrees of freedom, the eigenvalue equation has two overlapping zero-frequency solutions.
The rigid body model can be treated according to the reference [28]. The elastic modes are
still processed according to the conventional structural dynamics method, and the mode
shape vectors of the whole structural system are finally obtained. The obtained mode
shape vectors convert the generalized displacement ξ = [ H θ h α ]

T into a modal
coordinate: ξ = Φq, where Φ represents the modal shapes of the rigid–elastic coupling
dynamic model described in the structural models and q is the generalized displacement
vector. We bring them into (4) to obtain:[

Mrig 0
0 M f lex

][ ..
qrig..
q f lex

]
+

[
0 0
0 M f lexω2

f lex

][
qrig
q f lex

]
= ΦT

[
0
Q

]
(5)

It can be seen that the rigid body motion part and the elastic motion part of the whole
dynamic equation are decoupled.

3. CFD and Fluid–Solid Coupling Calculation Method

When solving turbulent flow problems in computational fluid dynamics, unsteady
N-S equations are usually homogenized to obtain time-averaged N-S equations as the basic
governing equations. In this study, the three-dimensional conservation-type compressible
RANS equations based on time-average processing were used as the basic governing
equations for flow field calculation. Neglecting the bulk force and the external heat source,
the unsteady N-S equation in the general curvilinear coordinate system is:

V
∂Q
∂t

+
∂E
∂ξ

+
∂F
∂η

+
∂G
∂ζ

=
nv

Re

(
∂Ev

∂ξ
+

∂Fv

∂η
+

∂Gv

∂ζ

)
(6)

where V is the Jacobian reciprocal; nv is the viscosity switch parameter (when nv = 0,
Equation (6) is a Euler equation, and when nv = 1, Equation (6) is an N-S equation); Q is
a conservation variable; E, F and G are inviscid convection fluxes; and Ev, Fv and Gv are
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viscous diffusion fluxes. The Spalart–Allmaras turbulence model was chosen. The mesh
deformation is calculated by using RBF combined with the TFI method [29,30].

The wing surface pressure distribution is solved by the N-S equation, and the struc-
tural dynamics equation is obtained:[

Mrig 0
0 M f lex

][ ..
qrig..
q f lex

]
+

[
0 0
0 M f lexω2

f lex

][
qrig
q f lex

]
= q∞

x
[

ΘT
i

...

][
0

cp(x, y)

]
dxdy (7)

where Θ represents the mode shapes of the rigid–elastic coupling dynamic model repre-
sented by the aerodynamic grid coordinate point. Θ is obtained by modal interpolation
according to the mode shape under the modal coordinates. For the model in this study,
the conversion relationship between the modal coordinates and aerodynamic grid coordi-
nates is:

ΘT
i = [ Φi,1 Φi,2(xce − x) Φi,3 Φi,4(xce − x) ] i = 1, 2, 3, 4 (8)

where i is the modal order, x is the aerodynamic grid points’ x-coordinate position, xce is
the position of the x-coordinate of the elastic axis in the aerodynamic grid point and Φ
represents the modal shapes described in Section 2. The rigid–elastic coupling model is

added to the fluid–structure coupling model by Equation (8). Letting
[

Mrig 0
0 M f lex

]
=

M∗
[

0 0
0 M f lexω2

f lex

]
= K∗, and writing Equation (7) as a state space form, we obtain:
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I 0
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q
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]
+
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]−1[ ΦTQ
0

]
(9)

The second-order predictor-corrector method is used to solve the difference equa-
tion, and the tightly coupled iterative calculation of rigid body dynamics and structural
dynamics equations is realized.

By letting
[

M∗ 0
0 I

]−1[ 0 K∗

I 0

][ .
q
q

]
+

[
M∗ 0
0 I

]−1[ ΦTQ
0

]
= f (x) and[ .

q
q

]
= x, the prediction and correction formats can be described as follows:

x̃n+1 = xn + ∆t[ 3
2 f (xn)− 1

2 f (xn−1)]

xn+1 = xn + ∆t[ 3
2 f (x̃n+1) + 1

2 f (xn)]
(10)

4. CFD and Fluid–Solid Coupling Calculation Method
4.1. Results and Discussion of the Two-Dimensional Model
4.1.1. Model Parameters

The physical model parameters selected for computation are shown in Table 1.

4.1.2. Numerical Solution by the CFD Method

The computational grid of CFD is shown in Figure 2. The NACA0010 airfoil was
chosen, and the 211 × 49 (flow direction × normal direction) O-grid was used. Let Y+ ≈ 1
and the calculated height of the first layer of the grid Ymin ≈ 0.00001. The inflow static
temperature was 300 K, the density was 1.225 kg/m3, the angle of attack was 0◦ and
∆t = 0.001 s. The Mach number and Reynolds number were obtained according to different
incoming flow velocity.
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Table 1. Parameters of the model.

Parameters Values Parameters Values

Fuselage mass M 4 kg Centroid position of the wing 20%c
Wing mass m 4 kg Radius of gyration of the fuselage Rθ 0.18 m

Fuselage pitching moment of inertia Iθ 0.1312 kg·m2 Radius of gyration of the wing Rα 0.18 m
Wing pitching moment of inertia Iα 0.1312 kg·m2 Bending stiffness Kh 1, 2, 4, 12 (N/mm)

Distance between the elastic center and
the centroid position of the fuselage Xθ

5%c Torsional stiffness Kα 600 (Nm/rad)

Distance between the elastic center and
the centroid position the of wing Xα

5%c Elastic center position 15%c

Airfoil chord length c 0.4 m Wing segment length 1.5 m
Centroid position of fuselage 20%c
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Because the model had two rigid-body degrees of freedom, the rigid-body attitude
could not be trimmed by the angle of attack only. Thus, the steady generalized aerodynamic
force was subtracted from the computation to trim the model. Figure 3 shows the rigid
body’s modal response with the steady generalized force subtracted or not subtracted from
the computations. It can be seen that the rigid body’s attitude was basically stable after
subtracting the steady generalized aerodynamic force.
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Figure 3. Modal displacement response curve of the rigid body.

The attenuation coefficient η of the response (defined in Equation (11)) was calculated
from the response curve of the bending mode, and the stability of the system was judged.
The flutter frequency and velocity were obtained by interpolating the attenuation coefficient.
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Figure 4 shows the displacement response curves of the bending modes under two typical
bending stiffnesses.

η = ln(Xi/Xi+1)/Tξ =
η√

η2 + 4π2
(11)
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4.1.3. Theoretical Solution by the Theodorsen Unsteady Aerodynamic Model

As an alternative, the Theodorsen unsteady aerodynamic model was also used to
determine flutter in order to verify the CFD results. The Theodorsen unsteady aerodynamic
model is:

Qh = L = πρb2ω2{Lhh + [Lα − ( b
2 + Xα)Lh]α}

Qα = Me = πρb2ω2{[Mhb− ( b
2 + Xα)Lh]h + [Mαb2 − b( b

2 + Xα)(Lα + Mh) + ( b
2 + Xα)

2
Lh]α}

(12)

Lh = 1− i 2
k [F(k) + iG(k)]

Lα = 1
2 − i 1

k{1 + 2[F(k) + iG(k)]} − 2
k2 [F(k) + iG(k)]

Mh = 1
2

Mα = 3
8 − i 1

k
k = bω

V

(13)

After incorporating it into Equation (4), we have:
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
−ω2 M f + Kh −ω2 MXθ −Kh 0

−ω2 MXθ −ω2 Iθ + Kα 0 −Kα

−Kh 0 −ω2m + Kh − πρb2ω2 Lh −ω2mXα − πρb2ω2 [Lα − ( b
2 + Xα)Lh ]

0 −Kα −ω2mXα − πρb2ω2 [Mhb− ( b
2 + Xα)Lh ] −ω2 Iα + Kα − πρb2ω2 [Mαb2 − b( b

2 + Xα)(Lα + Mh) + ( b
2 + Xα)

2
Lh ]




H0

θ0

h0

α0

 =


0

0

0

0

 (14)

The results of the flutter determinant calculation are shown in Figure 5. The blue
line is the real part of the solution curve of the flutter determinant and the red line is the
imaginary part of the solution curve. The minimum value of the intersection points of the
two groups of curves is the flutter point. When Kh = 2 N/mm (shown in the left-hand
figure), the flutter point was 79 m/s and the flutter circle frequency was 24.73 rad/s, i.e.,
3.94 Hz. In this case, body freedom flutter occurred. In the right-hand figure, the results
are shown for a higher bending stiffness. In this case, the bending mode frequency was
relatively high and bending torsional flutter occurred through with the torsional mode
coupling with the bending mode. The flutter velocity was 81 m/s and the flutter circle
frequency was 91.76 rad/s, i.e., 14.6 Hz.
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Figure 5. Flutter determinant calculation results. (a) Kh = 2 N/mm (b) Kh = 12 N/mm.

4.1.4. Discussion and Validation of the BFF Calculation Method Using a Navier–Stokes
Fluid Model

Validation of the BFF calculation method using a Navier–Stokes fluid model and the
BFF characteristics with bending stiffness are discussion in this section. Because of the
incompressibility of the Theodorsen unsteady aerodynamic model, the aerodynamic model
could be modified by compressibility to make sure the two aerodynamic models were
consistent. The comparison results can verify the correctness of the structural modeling
and the fluid structure coupling method used in this study.

In order to modify the Theodorsen unsteady aerodynamic models, the aerodynamic
response curves of pitch force vibration at the flutter velocity and frequency were calculated,
with an amplitude of 5◦. The aerodynamic response hysteresis curves are shown in
Figure 6 with three different bending stiffness values. It can be seen that the modified
and unmodified aerodynamic response hysteresis curves are very different. The area
surrounded by the lift coefficient hysteresis curve calculated by CFD was larger than that
for the Theodorsen unsteady aerodynamic model, which would make the flutter velocity
reduce. The flutter velocity results are shown in Figure 7. It can be seen that the modified
solutions were basically consistent with the CFD method, and the deviation was less than
4%. As shown in Figure 7, increasing the bending stiffness increases the natural frequency
of the bending mode, making it far away from pitching mode’s frequency which makes it
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more difficult for body freedom flutter to occur. Therefore, increasing the bending stiffness
increased the body freedom flutter velocity and frequency.
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Figure 6. Comparisons of the CFD and Theodorsen unsteady aerodynamic forces (Kh = 2 N/mm; 
inflow velocity, 79 m/s; forced vibration frequency, 3.9 Hz). 

Figure 6. Comparisons of the CFD and Theodorsen unsteady aerodynamic forces (Kh = 2 N/mm;
inflow velocity, 79 m/s; forced vibration frequency, 3.9 Hz).
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4.2. Results and Discussion of the Three-Dimensional Model

In this section, the CFD/CSD numerical simulation method was verified based on
the wind tunnel test results of the flying wing in reference [31]. In the reference study, a
half-mode flutter wind tunnel test was carried out.
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A semi-model was used in the calculation, which was consistent with the experiment.
The grid is shown in Figure 8. The calculation grid adopted a multi-block structure grid
without considering the viscous effect. The height of the first layer grid was 0.001 c0 (c0
was the root chord length). The calculation Mach number was 0.0547, the angle of attack
was α = 0◦, with ∆t = 0.001 s. Five Euler grids were generated and the number of grids
was 0.5 × 106, 0.9 × 106, and 2.5 × 106. The lift coefficients CL were 0.2925, 0.2856 and
0.2856, respectively. The pressure distribution curves of the fuselage and wing are also
shown in Figure 8. The results show that increasing the number of grids has no effect on
the calculation results when the number of grids is greater than 0.9 × 106.
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Firstly, the Euler equation was used to calculate the steady aerodynamic force. In
order to avoid repeated calculation of the steady aerodynamic force under different in-
coming velocities, the flutter characteristics were predicted by using the variable stiffness
method [32]. The calculation model of the variable stiffness method kept the mass of the
original aircraft and dynamic pressure unchanged, and the stiffness gradually decreased to
a series of multiples of the original aircraft stiffness Nj until the stiffness multiple N at the
time that flutter occurred. Therefore, given the flight Mach number and flight altitude, only
one steady aerodynamic calculation was performed. The theoretical derivation showed
that the stiffness of the calculation model was N times the original stiffness, the flutter
dynamic pressure of the calculated model was QF,m and the flutter frequency was ωF,m.
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The flutter velocity pressure QF,a and flutter frequency ωF,a of the original stiffness aircraft
at a given Mach number were, respectively:

QF,a = QF,m/N (15)

ωF,a = ωF,m/
√

N (16)

In the incompressible range, the results of the variable stiffness method were consistent
with those of the incompressible flutter calculation.

The steady flow field was taken as the initial field and the effect of the steady aerody-
namic force was deducted. The time domain-coupled CFD/CSD analysis of body freedom
flutter characteristics was carried out by using the variable stiffness method.

The structural modes were the rigid-body pitching mode and the first four symmetric
elastic modes, which were the symmetric first bend, symmetric second bend, symmetric
first twist and symmetric third bend. The mode shape is shown inFigure 9. The modal
frequencies of the first five modes obtained from the finite element model used in the
calculation are given in Table 2 and compared with the GVT results in the reference.
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Table 2. Modal frequencies.

Model Name Pitching
Mode

Symmetric
First Wing

Bend

Symmetric
Wing

Second Bend

Symmetric
Wing First

Twist

Symmetric
Wing Third

Bend

FEM 0.0 5.19 24.55 47.16 62.18
GVT 0.0 5.10 23.60 44.17 -
Error 0.0% 1.7% 4.0% 6.8% -

Figures 10 and 11 show the generalized coordinate time response of the benchmark
status (BFF-04) and the forward state of the center of gravity (BFF-11) under different
stiffness multiples N. A comparison between the calculated and experimental results is
given in Table 3. The calculated velocity was 19 m/s~20 m/s (corresponding to the stiffness
coefficients n = 1 and n = 0.9025), and the flutter frequency was 1.31 Hz and 1.88 Hz,
respectively. According to Figure 12, it can be seen that the divergence trend slows down
after moving the center of gravity forward when n = 0.9025. This indicates that the critical
flutter velocity had improved.
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Table 3. Comparison of CFD/CSD and the wind tunnel test results.

Calculation or Experimental Status Flutter Velocity
(m/s)

Flutter
Frequency (Hz)

Vibration Frequency and Damping
under the Experimental Flutter Velocity

Frequency (Hz) Damping (%)

Benchmark status
Experiment 22.3 1.67
CFD/CSD 19.21 1.31 1.47 7.7%

Center of gravity
moved forward 40 mm

Experiment 24.2 2.73
CFD/CSD 19.77 1.88 2.62 10.8%
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The numerical simulation results are consistent with the experimental results, but
there are some errors in the numerical values because the flutter frequency mainly depends
on the frequency of the pitch mode, and the pitch mode frequency is greatly affected by the
incoming flow velocity (or dynamic pressure). Considering the single degree of freedom
pitching vibration, the differential equation is:

Iyy
..
α

2 − CMz
.
aQScre f

.
α− CMzaQScre f α = 0 (17)

where Iyy is the pitching moment of inertia, α is the angle of attack, CMZα is the static
derivative of the pitching moment, CMz

.
a is the dynamic derivative of the pitching moment,

Q is the dynamic pressure, S is the reference area and cref is the reference length. The
solution of the equation is:

α =
α0

cos φ
e−ηt cos(ωdt + φ) =

α0

cos φ
e−ηt cos(ωn

√
1− ξ2t + φ) (18)

The vibration frequency ωd is:

ωd =

√
−CMzaQScre f

Iyy
(1− ξ2) (19)

According to Equation (19), when there is an error in the flutter velocity, it will
significantly affect the pitch mode frequency and then affect the flutter frequency. As a
comparison, the time domain responses of the experimental model were simulated under
the experimental flutter velocity. The vibration frequency was basically consistent with
the experimental results. Moreover, the modal damping ratio obtained by numerical
simulation was less than 5% (calculated by Equation (11)), resulting in a flutter velocity
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error of about 10~20%. Considering the error of the experiment itself, the flutter velocity
obtained by numerical simulation is reasonable.

The static/dynamic derivative of the pitching moment of the aircraft increased when
the center of gravity moved forward. With the increase in the dynamic derivative, the
damping of pitching mode increased, which led to the increase in the body freedom flutter
velocity. With the increase in the static derivative, the pitching modal frequency increased,
which led to the increase in the body freedom flutter frequency. Furthermore, Figure 13
shows the vibration pattern of flutter obtained by the CFD calculation. It can be seen that
when the nose of the fuselage lifts up, the wing tip will also deform upward. When the
nose of the fuselage moves down, the wing tip will also deform downward. This indicates
that the phase of the two main modes (pitching mode and first wing bending mode) of
the flutter were almost the same. This was different from the bending–torsional flutter, in
which the phase difference between the bending mode and the torsion mode was close to
90◦. A similar phenomenon was reported in [33]. Figure 13c,d show photos of the wind
tunnel test and experimental measurement results. It can be seen that the vibration pattern
calculated by CFD is consistent with the test results. When flutter occurs, the phases of the
pitch mode and bending mode are basically the same.

Machines 2021, 9, x FOR PEER REVIEW 13 of 16 
 

 

Table 3. Comparison of CFD/CSD and the wind tunnel test results. 

Calculation or Experimental 
Status 

Flutter Velocity 
(m/s) 

Flutter Frequency 
(Hz) 

Vibration Frequency and Damping un-
der the Experimental Flutter Velocity 
Frequency (Hz) Damping (%) 

Benchmark status 
Experiment 22.3 1.67   
CFD/CSD 19.21 1.31 1.47 7.7% 

Center of gravity 
moved forward 40 

mm 

Experiment 24.2 2.73   

CFD/CSD 19.77 1.88 2.62 10.8% 

According to Equation (19), when there is an error in the flutter velocity, it will sig-
nificantly affect the pitch mode frequency and then affect the flutter frequency. As a com-
parison, the time domain responses of the experimental model were simulated under the 
experimental flutter velocity. The vibration frequency was basically consistent with the 
experimental results. Moreover, the modal damping ratio obtained by numerical simula-
tion was less than 5% (calculated by Equation 11), resulting in a flutter velocity error of 
about 10~20%. Considering the error of the experiment itself, the flutter velocity obtained 
by numerical simulation is reasonable. 

The static/dynamic derivative of the pitching moment of the aircraft increased when 
the center of gravity moved forward. With the increase in the dynamic derivative, the 
damping of pitching mode increased, which led to the increase in the body freedom flutter 
velocity. With the increase in the static derivative, the pitching modal frequency increased, 
which led to the increase in the body freedom flutter frequency. Furthermore, Figure 13 
shows the vibration pattern of flutter obtained by the CFD calculation. It can be seen that 
when the nose of the fuselage lifts up, the wing tip will also deform upward. When the 
nose of the fuselage moves down, the wing tip will also deform downward. This indicates 
that the phase of the two main modes (pitching mode and first wing bending mode) of 
the flutter were almost the same. This was different from the bending–torsional flutter, in 
which the phase difference between the bending mode and the torsion mode was close to 
90°. A similar phenomenon was reported in [33]. Figure 13c,d show photos of the wind 
tunnel test and experimental measurement results. It can be seen that the vibration pat-
tern calculated by CFD is consistent with the test results. When flutter occurs, the phases 
of the pitch mode and bending mode are basically the same. 

 

  

(a) Nose up (b) Nose down 

Machines 2021, 9, x FOR PEER REVIEW 14 of 16 
 

 

 

 

 

(c) Experimental photo (d) Experimental measurement results 

Figure 13. Flutter vibration patterns calculated by CFD/CSD and wind tunnel test photo. 

5. Conclusions 
The body freedom flutter characteristics of a two-dimensional airfoil and a fly wing 

aircraft model were analyzed based on the CFD method. Rigid–elastic coupling dynamic 
models were established in an inertial coordinate system under the linear small disturb-
ance hypothesis. Based on the theoretical solutions of an airfoil and the experimental re-
sults of a flying wing aircraft model, the numerical simulation method was verified. Be-
cause the increasing bending stiffness made the bending mode frequency far away from 
the pitching mode frequency, this made it more difficult for body freedom flutter to occur. 
Therefore, increasing the bending stiffness increased the body freedom flutter velocity 
and frequency. The predicted flutter velocity and frequency were in good agreement with 
the theoretical solution, and the maximum error was less than 4%. 

A forward shift of the center of gravity resulted in an increase in the pitching 
static/dynamic derivative and finally led to an increase in the flutter velocity and fre-
quency. The numerical simulation was consistent with the experimental results, but there 
was a deviation in the value, which needs further study. Furthermore, the numerical sim-
ulation and experimental results showed that the phase of the two main modes (pitching 
mode and first wing bending mode) of the flutter were almost the same. This was different 
from the bending–torsional flutter, in which the phase difference between the bending 
mode and the torsion mode was close to 90°. The mechanism of body freedom flutter also 
needs further study. 

Author Contributions: Data curation and writing—original draft, P.L. and H.G.; supervision, D.C. 
and L.Y.; writing—review and editing, B.L. All authors have read and agreed to the published ver-
sion of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: leipengxuan@cardc.cn. 

Conflicts of Interest: The authors declare no conflict of interest. 

3.0 3.5 4.0 4.5 5.0

-4

-3

-2

-1

0

W
i
n
g
 
r
o
o
t
 
b
e
n
d
i
n
g
 
m
o
m
e
n
t
 
(
N
·

m
)

time (s)

-14

-10

-6

-2

2

6

P
i
t
c
h
 
A
n
g
l
e
 
(
°)

Figure 13. Flutter vibration patterns calculated by CFD/CSD and wind tunnel test photo.



Machines 2021, 9, 243 14 of 15

5. Conclusions

The body freedom flutter characteristics of a two-dimensional airfoil and a fly wing
aircraft model were analyzed based on the CFD method. Rigid–elastic coupling dynamic
models were established in an inertial coordinate system under the linear small disturbance
hypothesis. Based on the theoretical solutions of an airfoil and the experimental results of
a flying wing aircraft model, the numerical simulation method was verified. Because the
increasing bending stiffness made the bending mode frequency far away from the pitching
mode frequency, this made it more difficult for body freedom flutter to occur. Therefore,
increasing the bending stiffness increased the body freedom flutter velocity and frequency.
The predicted flutter velocity and frequency were in good agreement with the theoretical
solution, and the maximum error was less than 4%.

A forward shift of the center of gravity resulted in an increase in the pitching
static/dynamic derivative and finally led to an increase in the flutter velocity and fre-
quency. The numerical simulation was consistent with the experimental results, but there
was a deviation in the value, which needs further study. Furthermore, the numerical simu-
lation and experimental results showed that the phase of the two main modes (pitching
mode and first wing bending mode) of the flutter were almost the same. This was different
from the bending–torsional flutter, in which the phase difference between the bending
mode and the torsion mode was close to 90◦. The mechanism of body freedom flutter also
needs further study.
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