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Abstract: In engineering practice, the bearing fault signal is composed of a series of complex multi-
component signals containing multiple fault characteristics information. In the early stage of fault
sprouting and evolution, the fault features are easily disturbed by noise and irrelevant signals,
eliminating the fault signals in the strong background noise. To overcome the influence of noise on
the signal, this study proposes multi-frequency weak signal decomposition and reconstruction of
rolling bearing based on adaptive cascaded stochastic resonance. First, the original signal is passed
through the Hilbert transform to obtain the envelope signal. The envelope signal is high-pass filtered
to eliminate the interference of low-frequency components on the response of the stochastic resonance
system. Secondly, cascaded stochastic resonance system parameters are adaptively optimized by
the quantum particle swarm algorithm (QPSO). The high-pass filtered signal input to the adaptive
cascaded stochastic resonance system (ACSRS) can further enhance the weak fault characteristics,
allowing the gradual transfer of high-frequency noise energy to the low-frequency fault characteristic
components. Finally, the signal is decomposed using the variational mode decomposition (VMD)
method to jointly determine the location of the fault characteristic frequencies in the intrinsic mode
functions (IMF) component by the energy loss coefficient and correlation coefficient to achieve the
reconstruction of multi-frequency weak signals. Through simulation and experimental validation,
the effectiveness and superiority of the method for multi-frequency weak signal detection in bearings
are verified. The results show that the method not only achieves the adaptive optimization of the
stochastic resonance system parameters gradually removing the high-frequency noise in the signal
and improving the energy of the low-frequency signal but also reduces the number of decomposition
layers of the VMD, enhances the fault characteristic information in the weak signal, and effectively
identifies the early weak fault characteristics of rolling bearings.

Keywords: multi-frequency weak signal; adaptive cascaded stochastic resonance system; quantum

particle swarm optimization; variational mode decomposition; rolling bearing

1. Introduction

Rolling bearings, as the most important supporting parts of rotating machinery are
called “industrial joints”; the application of rolling bearings covers almost all industrial
fields. The operating condition of rolling bearings directly affects the efficiency, productivity,
and life of the equipment. In rotating machinery failures, bearing failures account for about
30% of all failures [1-3]. In industrial sites, the complex working conditions of equipment
bring great challenges for bearing fault diagnosis. There are more complex vibration
disturbances between bearing components, and the collected vibration signals contain a
large amount of interference noise, and the fault characteristics are difficult to be separated
and easily drowned by the noise. Therefore, it is of great research value and practical
significance to extract the weak signal characteristics of rolling bearings and grasp the
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operating status of bearings in time to realize early fault diagnosis. To solve this problem,
many scholars have proposed different weak signal detection methods, such as Hilbert
transform [4], wavelet transform (WT) [5], empirical mode decomposition (EMD) [6], and
variational mode decomposition [7]. Morlet proposed the idea of “wavelet analysis” in
1984, and the wavelet transform can be used to analyze the signal to be measured in
layers according to different scales, and to characterize the time-frequency properties of the
signal locally [8,9]. The wavelet transform overcomes the limitation of the global nature
of the traditional Fourier transform and solves the problem that the width of the window
function of the Fourier transform is fixed. However, it is still limited by the difficulty of
selecting the wavelet basis function and the difficulty of determining the scale range of
wavelet decomposition. Empirical modal decomposition is an analysis method for adaptive
processing of non-linear signals proposed by Dr. Huang et al. EMD decomposes the signal
into several components of the basic model and one remaining item. The key to EMD is
the ability to decompose a complex signal into a finite number of intrinsic mode functions
(IMF), where the decomposed IMF components contain local features of the original signal
at different time scales [10,11]. However, it still relies on the methods of finding extreme
value points, envelope interpolation, and the selection of iterative termination criteria. Wu
and Huang [12] proposed the ensemble empirical mode decomposition (EEMD) method.
White noise is added to the original signal to automatically assign signals of different
time scales to appropriate reference scales. Yaguo Lei et al. [13] used complete ensemble
empirical mode decomposition with adaptive noise (CEEMDAN), which further reduces
the modal effects by adding adaptive noise and has better convergence. Although both
EEMD and CEEMDAN can effectively suppress the modal aliasing of EMD, they cannot
effectively solve the endpoint effect problem. In 2014, Dragomiretskiy and Zosso proposed
the variational mode decomposition (VMD) method. VMD uses an iterative search method
to continuously update the center frequency and bandwidth of each BIMF component
to obtain the optimal decomposition component and center frequency. Since VMD is
influenced by the quadratic penalty factor and Lagrangian operator, the quadratic penalty
factor can have good convergence characteristics and strict enforcement of constraints in
the presence of noise [14,15]. VMD has a great advantage over EMD in that it has improved
robustness to noise and can separate two similar frequencies from its construction and
decomposition mode. Cancan Yi et al. [16] proposed a fault feature extraction method
based on a combination of VMD and particle swarm optimization algorithms. The optimal
penalty function and the number of decompositions in particle swarm optimization VMD
are used, the ratio of the maximum value of the mean and the variance of the number
of interrelationships is defined as the fitness function, the maximum correlation kurtosis
is used to select the optimal component, which can effectively identify the weak fault
information of rolling bearings. Ming Zhang et al. [17] proposed a new method for
rolling bearing fault diagnosis based on VMD. The effects of gravity and unbalanced
forces were considered, and the dynamic response models of faults at different locations
were established. The performance of extracting bearing defect features in the simulated
signals of rolling bearings with VMD and EMD was compared. The method was able to
successfully diagnose rolling bearing faults. Tingkai Gong et al. [18] proposed a method
based on VMD and trend filtering, which uses trend filtering to simplify the spectrum
of the original signal, and the criterion of kurtosis adaptively selects the regularization
parameters of trend filtering, which can effectively identify the compound faults of rolling
bearings. Chunguang Zhang et al. [19] proposed a fault diagnosis method based on
optimal VMD and resonant demodulation techniques. Combining genetic algorithms
and non-linear programming algorithms, a new parameter optimization algorithm is
designed to adaptively optimize two parameters of VMD. According to the maximum
principle, the two most sensitive IMF components are selected for the reconstruction
of the vibration signal. The reconstructed vibration signal is decomposed to obtain the
envelope spectrum using the resonance demodulation technique, and the fault frequency
of rolling bearings of locomotives is effectively identified. Xiwen Qin et al. [20] proposed
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a fault identification method based on VMD and iterative random forest (IRF) classifier.
Comparing the fault recognition effects of EMD and EEMD new number decomposition
and the combination of three mainstream classifier methods, VMD-IRF can better identify
rolling bearing faults. Tao Liang [21] proposed a multi-objective multi-island genetic
algorithm (MIGA) to optimize the VMD parameters and applied it to the feature extraction
of bearing faults. The envelope entropy and renyi entropy are used as the fitness function
to obtain the optimal solution of the VMD parameter using the MIGA algorithm. The two
IMF with the most fault information is selected for reconstruction using the improved
kurtosis and Holder coefficients. This method can extract the bearing fault characteristics
more accurately. All of the above methods are based on noise suppression or elimination
of noise in the vibration signal to identify fault characteristics. However, the process of
denoising damages the weak fault features submerged in the strong noise background
and cannot retain the complete fault signal, and its weak signal detection performance is
limited. Stochastic resonance is the use of noise through a non-linear system to enhance
the weak fault characteristics, which has certain advantages in weak signal detection.
The concept of stochastic resonance (SR) was originally proposed by Benzi et al. [22]
and used to explain the ancient glaciers meteorological issues, has since been used to
describe non-linear systems in which the presence of internal or external noise can increase
the response of the system output. In rotating machinery fault detection, the main research
has focused on the application of a single stochastic resonance-enhanced single fault signal
in weak feature extraction [23,24]. However, when the signal-to-noise ratio of the vibration
signal is low, the detection effect of a single SR is difficult to identify multiple fault types
of bearings. The actual bearing fault signal is composed of a series of complex multi-
component signals containing multiple fault feature information, so multiple frequency
components should be enhanced to distinguish different fault types in bearings. To solve
the above problem, it is necessary to investigate the stochastic resonance enhancement
technique of cascaded stochastic resonance [25]. Cascaded stochastic resonance is a sin-
gle series-connected bistable system that achieves noise reuse through multiple filtering
processes, further weakening high-frequency vibrations to make the output waveform
smoother and the useful signal characteristics more obvious. Therefore, cascaded stochas-
tic resonance is more advantageous than individual stochastic resonance in processing
weak signals. Peiming Shi et al. [26] proposed an empirical mode decomposition method
based on the denoising of cascaded multi-stable stochastic resonance systems. Using the
cascaded multi-stable stochastic resonance system (CMSRS) as a denoising preprocessor,
the energy is gradually transferred from high to low frequencies, and the denoised signal
is decomposed using empirical mode decomposition. The method can gradually remove
high-frequency noise, reduce the number of decomposition layers, improve low-frequency
signal energy, and effectively identify bearing fault characteristic signals. Whether a single
stochastic resonance method or a stochastic resonance enhancement method is used to
extract useful characteristics in vibration signals, there is a common problem of how to
select the appropriate system parameters to generate stochastic resonance. For this reason,
adaptive stochastic resonance algorithms have been developed in the last decade [27,28].
Siqi Gong et al. [29] proposed a new method for weak signal detection based on wavelet
transform and parameter optimization for bistable stochastic resonance. The wavelet coef-
ficients are adjusted according to the variance of each detail and approximation coefficient
and the frequency band in which the signal is located using the wavelet coefficients. The
parameters of the stable stochastic resonance model are selected by the a priori information
of the signal, and then the model parameters are adjusted according to the calculated
local signal-to-noise ratio. This method can effectively detect weak signal characteristics
hidden in strong noise. Z. H. Lai et al. [30] proposed an adaptive multi-parameter tuned
stochastic resonance method for bistable systems based on particle swarm optimization
algorithm, which generates optimal SR output by adaptively adjusting multiple parameters
to achieve fault feature extraction and further fault diagnosis of rolling bearings. However,
the cascaded bistable stochastic system involves multiple model parameters, the system
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parameters are difficult to adjust, the adjustment process is time-consuming, and engineers
with insufficient experience may be unable to obtain the optimal SR output. Importantly,
this makes the method of implementing stochastic resonance and fault diagnosis in prac-
tical engineering inefficient and unreliable. To solve these problems, various adaptive
parameter tuning methods have been proposed and studied using multi-parameter opti-
mization algorithms, such as particle swarm optimization [31] and genetic algorithms [32],
which can implement stochastic resonance online in an efficient and highly reliable manner.
To further improve the detection performance of the adaptive stochastic resonance method
and extend its application in fault diagnosis, it is necessary to consider multiple parame-
ters and propose the corresponding adaptive multi-parameter tuning cascaded stochastic
resonance method.

In summary, to achieve the detection of rolling bearing weak signals under strong
background noise, combining the respective advantages of noise reduction and signal
enhancement methods, this paper proposes an adaptive cascaded stochastic resonance
method for decomposition and reconstruction of rolling bearing multi-frequency weak
signals. Firstly, the original vibration signal is subjected to Hilbert transform to obtain the
envelope signal, the envelope signal is high-pass filtered to eliminate the interference of
low-frequency components on the response of the stochastic resonance system, the high-
pass filtered signal is input to the ACSRS for signal enhancement, and the quantum particle
swarm algorithm is used for adaptive optimization of the parameters in the cascaded
stochastic resonance. Secondly, the enhanced signal after adaptive cascaded stochastic
resonance is decomposed using the variational mode decomposition, and the energy loss
coefficient and correlation coefficient are used to jointly determine the position of the
characteristic frequency in the IMF component. The method can reduce the number of
VMD decomposition layers while adaptively seeking the optimization of the parameters of
the stochastic resonance system, so that the energy of the high-frequency noise is transferred
to the low-frequency fault characteristic component, thus enhancing the fault characteristic
information in the weak signal. Finally, the enhanced multi-frequency weak signal is
reconstructed, which provides some reference ideas and methods for rolling bearing weak
signal detection.

The rest of this paper is organized as follows: Section 2 introduces the variational
mode decomposition theory method. Section 3, the proposed multi-frequency weak signal
reconstruction based on adaptive cascaded stochastic resonance. Section 4 focuses on the
experiment of rolling bearing compound fault validation of the proposed method. Finally,
the conclusions are given in Section 5.

2. Variational Mode Decomposition Theory

VMD is a non-recursive adaptive signal decomposition method proposed by
Dragomiretskiy et al. By solving the constrained variational problem, the arbitrarily
complex multicomponent signal is adaptively decomposed into a series of IMF compo-
nents based on the center frequency and finite bandwidth. In the solution process, the
center frequency and bandwidth of each IMF component are continuously updated with
the iterative process. Assuming that each “mode” is a finite bandwidth with a central
frequency, the central frequency and bandwidth are continuously updated during the VMD
decomposition process, and, finally, decomposed adaptively into K modal functions with
the smallest sum of bandwidths u (t) and the sum of K modal functions is the input signal
S(t). The objective of estimating the frequency bandwidth of the modal function by:

Hibert transformations are performed on each modal function uy(t) to obtain the
analytic signal for each modal function, as follows:

o)+ L] x e M)
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Using the correction exponent e /%, the spectrum of each modal function is modu-
lated to the respective fundamental frequency band, as follows:

[(5(t)+j) X uk(t)} x e Jwit )

7Tt

The squared L? parametrization of the gradient of the demodulated signal in
Equation (2) is calculated to estimate the bandwidth of each modal function, corresponding
to the constrained variational problem as follows:

min K j iyt 2 K
(e}, {wi} {k—):1| 8{(‘5“)4@“) x “k(t)} x e IIZ} s.t.k;uk(t) =S(t) (3

where {u } denotes the individual variational modal components found, {u;} = {uq,- - - ug};
{wy} denotes the central frequency corresponding to each component, {wy} = {w1,- - wk};
K represents the number of variational modal components, ¢ denotes time, 9; is the partial
derivative of the function for time t, §(t) represents the unit pulse function, w is the cyclic
frequency, and S(t) is the input signal.

To transform the constrained variational problem into an unconstrained one, a quadratic
penalty factor « is introduced to ensure the accuracy of signal reconstruction and conver-
gence under noise conditions, a Lagrange multiplier operator L is introduced to ensure the
stringency of the constraints. The extended Lagrangian expression with the introduction of
two parameters is:

2

K ; . 2 K
L b A) = a & 13 (00 +4) x wl®)] > et [ 4] 8(1) — & ue(t) |
k=1 k=1 2 4)

where « represents the quadratic penalty factor; A (t) denotes the Lagrangian multiplier.
The multiplicative operator alternating direction method is used to solve the extended
Lagrangian expression, which is implemented as follows:

1. Initialize {a1}, {®}}, A, n;
2. Execute theloopn =n+1;
3.  Forall w > 0, update uy and wy;

S(w) — Lizfii(w) + AW)

uAfl+l W) — (5)
e 1+20(w — wp)?
; 2
w1, Jo wlik(w)"dw
Wk 00| ~ 2 (6)
Jo 1ik(w)["dw
san+1 an A K 1
AN w) A (w) +7|5(w) — Y 2 (w) )
k=1
4.  Stop the iteration if the following convergence conditions are met, otherwise return
to step 2.
= 1 2 2
Z(lﬁZ+ = aglla/1agllz) <e (8)
k=1

Ending the iteration, the IMF component with the minimum sum of K bandwidths
is obtained.

Due to the complexity and diversity of the measured signal, the difficulty and key
of the VMD algorithm are how to choose the appropriate decomposition number K and
penalty parameter value . When using VMD, it is necessary to choose the preset decompo-
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sition number K and penalty parameter «. The smaller the penalty parameter « in the VMD
algorithm, the larger the bandwidth of each IMF component obtained by decomposition.
The larger the value of the decomposition number K, the more likely it is to cause infor-
mation loss. Before parameter optimization, the fitness function needs to be determined.
k is chosen in such a way that no new central frequency maxima or minima appear, thus
ensuring that the VMD decomposition does not miss higher or lower central frequencies.
Therefore, the IMF component energy growth factor can be used as the fitness function. The
energy growth factor g is defined as the ratio of the energy difference between the current
decomposition component and the previous decomposition component to the energy of
the original signal.

o _ I Zumt) —Tua () |3

Is(t) 13

where } u; is the energy of the current decomposition component, ) uy_; is the energy
of the previous decomposition component, S(f) is the original signal. In this paper, the
energy growth factor is used to determine the index of the number of modes, and the
energy growth factor threshold g is set to 0.01 [33]. The maximum decomposition modulus
K is set to 10 and the maximum penalty parameter « is set to 6000. Thus, by finding the
minimum value of the energy growth factor, the number of decomposition modes and the
penalty parameter can be determined adaptively, and the parameter optimization process
of VMD is intuitively described as solving the minimization problem of the fitness function.
In this paper, the correlation degree between the IMF component and the original signal is
determined by the correlation coefficient r, which is calculated as follows:

©)

_ Coov(uy,S)

T’(le, S) 0. 05
k

(10)

where Cov(uy, S) is the covariance of uy and S, 0y, and og are the variances of u; and S,
respectively. The value of r usually ranges between [0, 1], and the correlation degree can
be empirically classified as follows: when |r| > 0.8, it is considered highly correlated
when 0.5 < |r| < 0.8, it is considered significantly correlated when 0.3 < |r| < 0.5,itis
considered as low correlation, and when |r| < 0.3, it means that the correlation between
two variables is extremely weak and is considered uncorrelated [34]. Therefore, the IMF
components with a correlation greater than 0.65 are screened out, and the IMF components
with significant correlation and high correlation with the original signal are screened out.
The specific signal decomposition process of VMD is shown in Figure 1.

Original signal

- K=K+1
<
] 0
= 4
<2

OMIED Mg YW Initialize the number of D
o —» decompositions K and ¥ .
2 pre-decomposition
Sood penalty parameter &
;i‘bl)l

Ul) 100 00 3 400 500 600

Frequency(Hz)

Acquisition of bearing
vibration signals

Obtain the fault AE Obtain the number of
. IMF2 .
characteristic < decompositions K and

component IMFk penalty parameter &

Figure 1. VMD signal decomposition flow.
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The original vibration signal of the bearing is obtained from the accelerometer of
the rotating machinery failure experiment bench. The number of decomposition layers
K and penalty parameter « are set before the VMD decomposition, and then the VMD
pre-decomposition is performed. The decomposed IMF components are judged, if the
energy growth factor threshold g is less than 0.001 and the correlation value r is greater
than 0.65, the current number of decomposed layers K and the penalty factor « are output,
and the current IMF is obtained. If it does not meet the requirement of increasing the
number of K decomposition, then K = K + 1, return to execute VMD pre decomposition
until the condition requirements are met. The fault characteristic component of the rolling
bearing vibration signal can be identified by VMD, but due to the influence of strong
noise interference, the fault characteristic amplitude is low and the interference frequency
amplitude is high, so it is difficult to identify the fault characteristic accurately. Therefore,
it is necessary to transfer the high-frequency noise energy to the low-frequency signal
through adaptive cascaded stochastic resonance, to strengthen the characteristic amplitude
of weak multi-frequency signal and make it easier to identify its fault characteristics.

3. Multi-Frequency Weak Signal Reconstruction Based on Adaptive Cascaded
Stochastic Resonance

3.1. Adaptive Cascaded Stochastic Resonance Model

SR can be described as a non-linear phenomenon, a Brownian particle is bistable by
the weak periodic force and the stochastic force of the potential, and between the two, the
particle can bounce off the potential well after the frequency of the weak periodic force
with the assistance of the appropriate stochastic force.

This process can be represented by the stochastic differential equation as follows:

dx(t)

— = —U(x) + S(t) + N(b) (11

where x is the particle trajectory, dt is the differentiation of the time, the low-frequency sim-
ple harmonic signal Sy (t) = Ag cos(27fot + 1p) is the periodic signal with the frequency
fo much less than 1. Sy(t) is the low-frequency weak signal to be detected, 1 are initial
phase angles of low-frequency signal, N(f) is the zero-mean additive Gaussian white noise,
the autocorrelation function satisfies (N(t), N(0)) = 2D4(t), where D is the noise intensity,
U(x) is the SR potential function. There are various types of SR potential functions, here
only the classical bistable symmetric potential is considered as follows:

U(x) = —%aon + %box‘* (12)
where g9 and by are potential parameters with positive real numbers, which are usu-
ally set within [0, 2] empirically. Figure 1 shows a schematic diagram of the Brownian
particle jumping between bistable potential wells. The potential depth is calculated as
AU = ag?/(4bg). Assuming that the initial phase is @ = 0, the red dot indicates the initial
position of the particle at the left-hand potential well, as shown in Figure 2a. Att =T/4,
the potential is tilted under the excitation of the periodic signal S(¢), while the particle can
jump from the left to the right potential well under the excitation of a suitable noise N(t),
as shown in Figure 2b. At t = T/2, the potential well is re-equilibrated to S(T/2) = 0, as
shown in Figure 2c. At + = 3T /4, the potential is re-tilted by S(¢) and the particle can jump
from the right to the left potential well, as shown in Figure 2d. Thus, under the combined
excitation effect of S(t) and the appropriate noise N(t), the particle oscillates between
the two potential traps. Based on the particle trajectory x(), the weak signal drowned in
the noise is enhanced in the SR domain. Under the excitation of appropriate noise, the
second-order stochastic differential equation can be rewritten as:

dx(t)

3 = fx —box’ +5(t) + N(t) (13)
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(©)

Figure 2. Schematic diagram of Brownian particle jumping between bistable potential wells: (a) At
t=T;(b) Att =T/4;(c) At t =T/2;(d) At t = 3T/4.

Meanwhile, the SNR of the SR system can be expressed as [22]:

Dan2 An2e—AU/D A 2
SNR — fﬂo4bgD€2 :\/EAU(DO> e—AU/D (14)

The signal-to-noise ratio is influenced by the potential, signal, and noise parameters.
The signal-to-noise ratio increases as the noise intensity D increases. Unlike the conven-
tional filtering curve, in which the signal-to-noise ratio decreases as the noise increases.

The stochastic resonance model excited by the multi-frequency signal S(t)
= A1sin(2rtfit + ¢1) + Apsin(27fot + ¢2) can be expressed as [35]:

dx(t)

q - bx® + Aysin(27fit 4+ 1) + Apsin(27fot 4+ @2) + V2DE(H) (15)

where g and b are much greater than ay and by, A1, A; are signal amplitudes, f1, f» are
signal frequencies much greater than 1, ¢, ¢, are initial phase angles, ¢(t) is standard
Gaussian white noise with mean 0 and variance 1.

To introduce the implementation mechanism of the general variable scale approach,
alternative variables are introduced.

x(t) =z(1), T=mt (16)
where m represents the scale factor. Substituting Equation (16) into (15) gives:

dz(r) _ a, %23 + %sin(ZT(%T—I— 4’1) + %sin(ZTf%T-l— qu) + %é’(l’) (17)

dt m

Introducing alternative variables as:

a b f1 f2
—_— = ,—:b,—: , —
m “1 m Von fa m

= f 4 (18)
Substituting Equation (18) into (17), we obtain:

dz(t) Al . Ay . 2D
G M- bz® + - sin(27fo, T+ 1) + - Sin(27fe, T+ ¢2) + 4/ o &(t) (19)

When m is a large enough constant, a;, by, fg1r fg2 are smaller parameters and have
the same meaning as ag, by, fy parameters. From Equation (17), it is easily understood
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that the signal amplitude and noise intensity are reduced by 1/m times, to make them
equivalent in terms of dynamical properties, the signal amplitude and noise intensity are
amplified by m times, which can be rewritten as:

dz(T)
dr

=az — 012 + Ay sin(27fy, T+ 91) + Aosin(2mfe, T+ @2) + V2DE(T) (20)

Therefore, to satisfy the small parameter condition of classical stochastic resonance
theory, the large-parameter stochastic resonance model of the high-frequency signal in
Equation (15) can be rewritten as

dx(¥)
dt

=ax —ax’ + mA;sin(27fit + @1) + mAysin(2rfot + 2) + V2DmE(t) (21)

where, a, b, mA,, mAy, and fi, f, are large parameters. Equation (21) is the ordinary
re-scaling stochastic resonance model, which can detect weak signals with arbitrarily
large frequencies. The ordinary re-scaling stochastic resonance model can match different
noisy input signals with optimal potentials to improve the output signal-to-noise ratio.
Compared with the normalized re-scaling stochastic resonance method, the ordinary
re-scaling stochastic resonance method has obvious superiority in improving the signal-to-
noise ratio. Particularly for the target signal with completely unknown signal amplitude
and frequency, the ordinary re-scaling stochastic resonance method can further improve
the ability to enhance and detect weak signals.

The stochastic resonance method has a unique signal processing mechanism for weak
signal detection, which enhances weak features while reducing noise by transferring high-
frequency energy from the signal to be measured to low-frequency to achieve weak feature
extraction in a noisy background. However, the weak feature enhancement capability of
single-stage stochastic resonance is limited, and the vibration signals generated by rotating
mechanical parts, such as rolling bearings are usually multi-frequency signals, which are
not effective for multi-frequency weak feature extraction in a strong noise background.
Thus, the cascaded form of stochastic resonance system is used to induce the high-frequency
energy in the signal to be measured to transfer to the low frequency continuously, so that
the low-frequency weak feature energy is enhanced step by step, and the output signal-to-
noise ratio of the system is further improved to finally realize the multi-frequency weak
feature extraction in the strong noise background. Several single-stage segmented linear
stochastic resonance systems are connected in series to form a cascaded bistable stochastic
resonance system. The cascaded bistable stochastic resonance system can be expressed as:

{ %;%;sm+N(t)’l.:213’mp @)
dy y dilx) — x4 (8)

where S(t) and N(t) denote the input signal and noise of the cascaded bistable stochastic
resonance system, respectively, P denotes the number of stages of the cascaded bistable
stochastic resonance system, x; denotes the output signal of the i-th level bistable stochastic
resonance system Uj;, which is also the input signal of the next level bistable stochastic
resonance system.

In a cascaded bistable stochastic resonance system, several single-stage systems are
organically connected through this series connection. For the single-stage system, the
input signal is assisted by the noise after stochastic resonance, the high-frequency noise
energy is transferred to the low frequency, and the low-frequency characteristic signal is
enhanced. However, the cascaded stochastic resonance system involves multiple model
parameters, and the system is unstable due to many parameters. In this paper, the quantum
particle swarm optimization (QPSO) is used to optimize the structural parameters a2 and
b in the stochastic resonance simultaneously, with the output signal-to-noise ratio of the
system as the objective optimization function, aiming to maximize and optimize the output
parameter values a and b. The optimal solution of the adaptive stochastic resonance method
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is obtained by adjusting the parameters. The cascaded stochastic resonance system has
multiple levels of parameters, and each level of parameters can affect the final output effect.
The adaptive cascaded bistable stochastic resonance model is shown in Figure 3. The steps
of the QPSO algorithm are as follows.

Quantum particle

swarm
optimization
Update Update
Update parameters
parameters
a b parameters ap, by
’ a, b2
4 v A 4

The first bistable The second The pth bistable

s(t) stochastic x'(t); bistable stochastic | () x1() stochastic | ¥(?)

resonance system resonance system resonance SyStCl’l’l
Ui(x) Un(x) Us(x)

n(f)
Figure 3. Adaptive cascaded bistable stochastic resonance model.

1. Initialize the particle positions and set the number of populations, the maximum
number of iterations, the dimensionality, and the search range of each dimension;

2. Leta; = a1, bj = bj;1, the adaptation value of the initial position of each particle
is calculated, and the output signal-to-noise ratio corresponding to each particle is
calculated according to the adaptation function, the corresponding signal-to-noise
ratio value of the first generation of particles is taken as the local optimum of a single
particle, and the maximum value of which is taken as the global optimum;

3. The particle position and velocity are updated according to the global optimum value
to obtain the next generation of particles, and if the obtained local optimum solution
or global optimum solution of a single particle is better than the previous generation
of particles, the velocity and position of the corresponding single particle are updated,
and the local and global optimum solutions are updated;

4. After reaching the maximum number of iterations, the optimal parameters a;, b;, a1,
b;; are obtained according to the positions of the final particles, and the values of
a;, b; are fixed, and the optimal solutions of a;,1, b;;1 are searched again in the range
around g;, b;;

5.  The parameters a,, b, of the P-level cascaded bistable stochastic resonance system
are calculated and the output signal is obtained.

3.2. Decomposition and Reconstruction of Multi-Frequency Weak Signals of Rolling Bearings

To achieve the detection of rolling bearing weak signals under strong background
noise, this paper proposes a method based on adaptive cascaded stochastic resonance
for multi-frequency weak decomposition and reconstruction of rolling bearings, which
improves the quality and accuracy of VMD while increasing the computing efficiency.
Therefore, the number of stages of the ACSRS needs to be chosen so that all the high-
frequency noise energy of the enhanced signal VMD is transferred to the low-frequency
modal components. The process of multi-frequency weak signal decomposition and
reconstruction is shown in Figure 4. The specific framework of weak signal decomposition
and reconstruction is as follows.

1. Hilbert transform of rolling bearing vibration signal to obtain the envelope signal;

2. High-pass filtering of the envelope signal eliminates the interference of low-frequency
components to the response of the stochastic resonance system;

3. Inputting the high-pass filtered signal into the ACSRS for signal enhancement pro-
cessing;
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4.  Adaptive optimization of the parameters in the cascaded stochastic resonance using
quantum particle swarm optimization;

5. The VMD decomposition is performed on the output signal of the first ACSRS to
determine the position of the characteristic frequency in the IMF component. The
algorithm stops if all the high-frequency noise energy is transferred to the low-
frequency modal component, g < 0.001, and the correlation r > 0.65;

6. Ifg>0.001orr <0.65 then continue with the VMD decomposition of the enhanced
signal from the next level of the ACSRS until the condition is satisfied;

7. Based on the extracted feature signal, the enhanced signal is reconstructed to achieve
multi-frequency weak signal fault detection.

Collect vibration signals from
rolling bearing S(¢)

Obtain the envelope signal by
Hilbert transform
v
Elimination of low frequency
interference components by
high pass filtering

| The first ACSRS \

The ith ACSRS
(i=2,3,... p)

Determine the position of the
characteristic in the IMF
component

| Reconstruct the output signal |

End

Figure 4. The method of multi-frequency weak signal decomposition and reconstruction.

3.3. Simulation Experimental Verification

The simulated signals are composed of sine signals and the test signals are generated
as follows:

S(t) = 0.1sin (27 x 50 + g) + 0.5sin (27 x 100t + g) + N(1) (23)

The number of sampling points is 10,000, the sampling frequency is set to 2000 Hz.
The noise simulation uses Gaussian white noise with noise intensity D = 1.2, and the
simulated signal and its frequency spectrum are shown in Figure 5a. Figure 5b shows
the time domain and frequency domain diagrams of the vibration simulated signals after
adding noise. It can be observed that it is difficult to notice the periodic signal from the
time domain waveform, and due to the large noise, only the frequency of 100 Hz can be
seen from the frequency spectrum, and the frequency component of 50 Hz is submerged in
the strong noise.
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Figure 5. Time—frequency domain waveform: (a) original simulated signal and (b) noised simulated signal.

First, the rolling bearing simulated signal is passed through the Hilbert transform and
then input to the high-pass filter, where the passband cutoff frequency and the stopband
cutoff frequency of the high-pass filter are set to 45 Hz and 30 Hz, respectively. The time-
frequency spectrum of the high-pass filtered signal is shown in Figure 6. The high-pass
filtered signal is then fed into the ACSRS for processing. The time scale m is taken as
1000 when the signal is pre-processed by an ordinary variable scale. The parameters
in the ACSRS are optimized using QPSO, setting the maximum number of iterations
Tax = 200, the population size H = 50, and the optimization search intervals for a;
and b; are [0, 2], respectively. The parameters of the first ACSRS optimized by QPSO are
a = 1.0025 and b = 2, the parameters of the second ACSRS are a = 0.888 and b = 1.4091.
The time-frequency domain waveform of the ACSRS is shown in Figure 7. After the
first ACSRS processing, the characteristic signal at 50 Hz in the input signal gradually
appears, and the output waveform of the second ACSRS is smoother than that of the first
ACSRS, and the cascaded stochastic resonance can obtain a higher signal-to-noise ratio.
At the characteristic frequency of 50 Hz, the peak of the output spectrum of the cascaded
stochastic resonance is much larger than the peak of the input spectrum, and the peak of the
output spectrum of the second ACSRS is larger than that of the first ACSRS, and the weak
feature enhancement of the cascaded stochastic resonance is stronger. By analyzing the
output signal-to-noise ratio of the cascaded stochastic resonance, we can see that the signal-
to-noise ratio of the simulated signal is 6.8642 dB, and the output signal-to-noise ratio of
the first ACSRS is 7.9734 dB, which is 1.1616 times higher than that of the input signal.
the output signal-to-noise ratio of the second ACSRS is 10.9773 dB, which is 1.3767 times
higher than that of the first ACSRS. The weak feature enhancement capability of cascaded
stochastic resonance is higher than that of single-stage stochastic resonance. However, the
transfer of high-frequency signal energy to low-frequency signal significantly increases
the energy of low-frequency signal, making the signal around the characteristic frequency
50 Hz increase more, affecting the effective identification of the characteristic frequency.
Since the adaptive cascade stochastic resonance alone does not identify multi-frequency
weak signals well, this paper proposes a method to decompose and reconstruct the original
signal by combining adaptive cascade stochastic resonance with the VMD decomposition
method. The energy-constrained variational mode decomposition is used to process the
noise-reduced simulated signal, and the energy convergence factor g = 0.001 is set. The
optimal number of decomposition layers k is determined based on the energy factor, and
the energy convergence factor g is derived as shown in Table 1.
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Figure 6. Time—frequency domain waveform after noise reduction by high-pass filtering.
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Figure 7. Time—frequency domain waveform: (a) first ACSRS; (b) second ACSRS.

Table 1. Energy growth factors.

Energy Growth Factors Value
g1 0.0676
&2 0.0601
g3 0.0172
84 0.0061
gs 0.0044
g6 0.00017

From Table 1, it can be seen that g, < g considers that the signal can be decomposed
completely when the modal number is 7. Therefore, the VMD decomposition of the sim-
ulated signal is performed and the decomposed time-frequency domain is obtained as
shown in Figure 8. It can be seen from the figure that the fault frequencies 50 Hz and
100 Hz appear in the first and second modal components, respectively, and the remaining
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components are multiples of the fault frequency, respectively, and the cascaded stochas-
tic resonance signal enhancement is performed on the decomposed signal, as shown in
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Figure 8. IMF components after VMD decomposition: (a) Time—domain; (b) frequency domain.
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Figure 9. IMF components after VMD decomposition by first ACSRS: (a) Time—domain; (b) frequency domain.

Through the experiment, it can be found that after the original signal is decomposed
by VMD, the correlation analysis finds that the components of the signal are distributed
in each IMF component, and each IMF component is correlated with the original signal,
as can be seen from Table 2. After the first ACSRS, the number of decomposition layers
of the original signal by VMD decomposition is reduced to 6, and the correlation analysis
shows that the correlation of IMF1 is 0.6156 and the correlation of IMF2 is 0.6914, and
the energy of the high-frequency signal is transferred to the low-frequency component,
which enhances the fault characteristics to be consistent with the frequency band where the
fault characteristics are located in the simulated signal. Then, after the second ACSRS, the
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original signal is reduced to two layers by VMD decomposition signal decomposition, and
the correlation analysis yields IMF1 correlation of 0.8052 and IMF2 correlation of 0.6503.
The signal-to-noise ratio of the first ACSRS-VMD signal enhancement is 16.3357 dB, an
increase of 2.0488 times compared to the first ACSRS. The signal-to-noise ratio of the second
ACSRS-VMD signal enhancement is 20.5308 dB, an increase of 1.3878 times compared to
the first ACSRS-VMD. The characteristic frequencies 50 Hz and 100 Hz are in the IMF1
component and IMF2 component, respectively, and then the original signal is reconstructed
to obtain the reconstructed signal as shown in Figure 11, the fault rate can be observed
from the figure where the high-frequency noise component is well filtered, and the high-
frequency noise energy is transferred to the low-frequency component, which enhances
the intensity of the fault signal and enables the detection of multi-frequency weak signals.
To verify the effectiveness of the method in this paper, EMD decomposition and wavelet
packet decomposition are used to verify the comparison experiment, respectively.
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Figure 10. IMF components after VMD decomposition by second ACSRS: (a) Time—domain; (b) frequency domain.

The EMD adaptive decomposition into 9th order IMF component and 1st order
residual component Res is shown in Figure 12a. It can be seen from the figure that the
components related to the fault frequency are mainly concentrated in the first 5th order
IMF components, which shows that there is modal mixing in the signal and the fault
characteristics are relatively weak and not easy to identify. The EMD result after the first
ACSRS signal enhancement is shown in Figure 12b, the signal is decomposed into the
8th order IMF component and the 1st order residual component Res, the characteristic
frequency is decomposed in the first 4th order IMF, there is still modal aliasing, the signal-
to-noise ratio is 7.8294 dB compared to the input signal is improved by 1.1406 times. The
EMD result after the second ACSRS signal enhancement is shown in Figure 12¢; the signal
is decomposed into the 7th order IMF component and the 1st order residual component Res.
Compared with the EMD result after the first ACSRS, the number of decomposition orders
is reduced by one, and the characteristic frequency is decomposed in the first 3 orders
of IMF. The signal-to-noise ratio is 10.9843 dB, which is 1.4029 times higher than that of
the first ACSRS. The EMD result after the third ACSRS signal enhancement is shown in
Figure 12d, the signal is decomposed into six orders of IMF components and one order of
residual Res. Compared with the EMD result after the second ACSRS, the decomposition
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order is reduced by one order, and the characteristic frequency is decomposed in the first
two orders of IMFE. The signal-to-noise ratio is 11.5992 dB, which is 1.0559 times higher than
that of the second ACSRSR, and the reconstructed signal is shown in Figure 13.
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Figure 11. Time—frequency domain waveform of reconstructed signal enhanced by second ACSRS.
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Figure 12. IMF components frequency domain after EMD decomposition by ACSRS: (a) original signal; (b) first ACSRS;
(c) second ACSRS; (d) third ACSRS.
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Figure 13. Time—frequency domain waveform of reconstructed signal enhanced by third ACSRS.

The signal decomposed by wavelet packet is shown in Figure 14; the wavelet packet
adopts the wavelet basis function db3; the number of decomposition layers is 3 [36], the
characteristic frequency is concentrated in the 1-node frequency band of the third layer of
the wavelet packet, and the wavelet packet decomposed signal after the first ACSRS shows
that the 50 Hz frequency hidden in the noise background can be identified, as shown in
Figure 15. The signal-to-noise ratio is 7.0930. The wavelet packet decomposition signal after
the second ACSRS has an increased low-frequency characteristic spectrum peak compared
with the wavelet decomposition signal after the first ACSRS, and the signal-to-noise ratio is
10.6739 dB, which is 1.5048 times higher than that of the first stage, as shown in Figure 16.
The signal is reconstructed, and the first three wavelet packet node coefficients are selected
for reconstruction, and the reconstructed signal is obtained as shown in Figure 17, from



Machines 2021, 9, 275 18 of 27

which the characteristic frequencies of 50 Hz and 100 Hz can be identified, but there are
some interference components in the low-frequency part.
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Figure 14. Wavelet packet coefficients of the original signal: (a) Time—domain; (b) frequency domain.
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Table 2. Correlation values of different IMF component signals.

Correlation IMF1 IMF2 IMF3 IMF4 IMF5 IMFeé IMF7

VMD 0.3083 04507 03916 0.3720 0.3935 0.4076 0.3886
The first ACSRS—VMD 0.6156 0.6914 03510 0.2738 0.2222 0.1654 —
The second ACSRS—VMD  0.8052  0.6503
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Figure 15. Wavelet packet coefficients after the first ACSRS: (a) Time—domain; (b) frequency domain.
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Figure 16. Wavelet packet coefficients after the second ACSRS: (a) Time—domain; (b) frequency domain.
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Figure 17. Wavelet packet decomposition of time—frequency domain reconstructed signal enhanced
by second ACSRS.

4. Experimental Validation and Analysis of Results

To verify the effectiveness of the proposed method in terms of bearing fault diagnosis
under actual working conditions, a rotating machinery test bench was used to conduct
bearing fault simulation tests, which mainly included: SGM7]-04AFC6S servo motor, rated
speed 3000 RPM, YMC122A100 acceleration sensor, POD-0.6 Kg magnetic powder brake,
rated torque 6 N-m, and speed 2000 r/min. The 7204C/P5 bearing was used as the test
object with a sampling frequency of 1024 Hz, and the specific parameters are shown in
Table 3. Three bearing states were used for the test, and the bearing compound failure
experiment was conducted using wire-cut machining to simulate the degree of bearing
failure, which simulated the compound failure experimental data obtained from the inner
race, outer race, and ball race of the bearing at defects depth of 0.5 cm. The specific
structural components of the test bench are shown in Figure 18.

Table 3. The 7204C/P5 bearing parameters and failure frequency.

Quter Il‘mer Section Circle =~ Number of  Ball Diam- Contact Frequency Inner Race Outer Ball Race
Diame- Diame- . o . Fre- Race Fre- Fre-
Diameter/mm Balls eter/mm Angle/ Shift/Hz
ter/mm ter/mm quency/Hz  quency/Hz  quency/Hz
47 20 33.5 10 74 15 33.33 202.207 131.0972 72.01

Figure 18. Rolling bearing failure simulation test bench.

Figure 19a shows the composite fault vibration signal of a bearing with inner ring,
outer ring, and roller faults. The rolling bearing vibration signal was subjected to Hilbert
transform and then high-pass filtering, and the passband cutoff frequency and the stopband
cutoff frequency of the high-pass filter are set to 70 Hz and 60 Hz, respectively, and the time-
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frequency spectrum of the high-pass filtered signal is shown in Figure 19b. The high-pass
filtered signal is then fed into the ACSRS for processing. The two-parameter a = 1.207 and
b = 2 for the first ACSRS optimized by quantum particle swarm, and the two-parameter a
= 0.6865 and b = 2 for the second ACSRS. The output spectrum of the two-stage ACSRS
is shown in Figure 19. The signal-to-noise ratio of the original signal is 3.6438 dB, and
the signal-to-noise ratio of the first ACSRS is 7.8772 dB, which is an increase of 2.1618
times over the original signal. The signal-to-noise ratio of the second ACSRS is 9.0201
dB, which is an increase of 1.1451 times over the first ACSRS. The time-frequency domain
signal after the first ACSRS enhancement is shown in Figure 20a. The high-frequency noise
is partially transferred to the low-frequency region, enhancing the fault signature signal
amplitude, but it is still difficult to identify its fault signature frequency. The time-frequency
domain signal is shown in Figure 20b after being enhanced by the second ACSRS. The
fault characteristic signal amplitude is further enhanced, and the fault frequency at the
beginning of the ball race can be identified, while the rest of the fault frequencies are still
difficult to identify. Therefore, VMD decomposition is used to decompose and reconstruct
the signal, and the initial number of VMD decomposition layers is determined as eight
layers by energy loss factor, as shown in Table 4. The decomposed time-frequency diagram
is shown in Figure 21. The signal is decomposed into 8th order IMF components, and the
fault features are decomposed in the 2nd, 3rd, and 4th order IMFs. The rolling element
fault frequency is 78.266 Hz, the outer race fault is 139.813 Hz, and the inner race fault is
201.031 Hz. The error between actual fault frequency and theoretical fault frequency is less
than 10%. The correlation analysis obtained an IMF1 correlation of 0.3627, IMF2 correlation
of 0.3816, and IMF3 correlation of 0.3726.
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Figure 19. Compound faults time—frequency domain waveform: (a) original signal; (b) high—pass filtering signal.

Table 4. Energy growth factors.

Energy Growth Factors Value
g 0.0262
&2 0.0229
83 0.0221
g 0.0144
gs 0.0048
g6 0.0023

g 0.00050
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Figure 20. Compound faults time—frequency domain waveform: (a) first ACSRS; (b) second ACSRS.
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Figure 21. VMD decomposition of time—frequency domain signal of compound faults.

The VMD results after the first ACSRS are shown in Figure 22, where the signal is
decomposed into 7th order IMF components, and the fault features are decomposed in
the 3rd, 5th, and 6th order IMFs. The correlation analysis obtained an IMF1 correlation
of 0.6140, IMF2 correlation of 0.5033, and IMF3 correlation of 0.4680. Figure 23 shows
the VMD result after the second ACSRS, the signal is decomposed into 3rd order IMF
components, compared with the VMD result after the first ACSRS, the decomposition
order is reduced by 4, and the correlation analysis obtained an IMF1 correlation of 0.8273,
IMF2 correlation of 0.6975, and IME3 correlation of 0.6980, as shown in Table 5. The fault
features are decomposed in the 3rd order IMF, and the feature frequencies are obvious and
easy to identify. The signal-to-noise ratio of the first ACSRS—VMD signal is 12.7407 dB,
which is 1.6174 times higher than that of the first ACSRS. The signal-to-noise ratio of the
second ACSRS—VMD signal is 17.6816 dB, which is 1.3878 times higher than that of the
first ACSRS—VMD. The decomposed signal is reconstructed, and the reconstructed signal
is obtained as shown in Figure 24. The location of the three fault frequencies of the rolling
bearing can be seen from the figure. The method transfers the high-frequency noise energy
to the low-frequency component, enhances the intensity of the fault signal, reduces the
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number of VMD decomposition layers, achieves the detection of multi-frequency weak
signals of rolling bearings, and verifies the effectiveness of the method.
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Figure 22. IMF components of compound faults after the first ACSRS—VMD: (a) Time—domain; (b) frequency domain.
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Figure 23. IMF components of compound faults after the second ACSRS—VMD: (a) Time—domain; (b) frequency domain.
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Table 5. Correlation values of different IMF component signals.

Correlation

IMF1 IMF2 IMF3 IMF4 IMF5 IMFe6 IMF7 IMF8

VMD
The first ACSRS—VMD
The second ACSRS—VMD

0.3627 0.3816 0.3726 0.3791 0.3742 0.3807 0.3655 0.3900
0.6140 0.5033 0.4680 0.3785 0.3042 0.2108 0.1448 —
0.8273 0.6975 0.6980 — E—

To further demonstrate the effectiveness of the proposed method, the method is
compared and validated with different weak signal enhancement methods from three
studies. The specific results are shown in Table 6.

Table 6. Comparison of the signal-to-noise ratio of different methods.

Author Method Noise Ratio (dB)
This paper ACSRS—VMD 17.6816
Siqi Gong et al. [29] WT-SR 8.1873
Shan Wang et al. [24] EMD-SR 8.3908
Peiming Shi et al. [26] EMD—-CMSRS 10.3459

From Table 6, it can be observed that in [29] the wavelet coefficients are adjusted
according to the variance of the approximation coefficients and the frequency band in
which the signal is located. The reconstructed signal was processed using a parametri-
cally optimized SR system and an enhanced feature signal with a signal-to-noise ratio of
8.1873 dB was obtained. In [24], the cross-correlation kurtosis was used as the basis for
screening the IMF components after EMD, and the signal enhancement of the preprocessed
signal was carried out using the stochastic resonance method, and the signal-to-noise ratio
of the reconstructed signal was obtained as 8.3908 dB. In [26], the authors used CMSRS
to preprocess the noise so that the energy gradually moves from high to low frequencies,
then performed EMD decomposition on the signal to obtain the enhanced characteristic
signal with a signal-to-noise ratio of 10.3459 dB. In this paper, the combination of VMD
decomposition and adaptive cascaded stochastic resonance can better identify the fault
characteristics under the bearing multi-frequency weak signal, and the signal-to-noise
ratio is 17.6816 dB, which has a higher signal-to-noise ratio and stronger noise immunity
compared with other methods. The signal-to-noise ratio of the reconstructed signal after
the cascade increase is significantly improved, and it is easier to accurately identify the
fault characteristics of the weak multi-frequency signals of rolling bearings.

5. Conclusions

In this paper, a rolling bearing multi-frequency weak signal decomposition and re-
construction method based on the adaptive cascaded stochastic resonance is proposed.
Moreover, this study combined the VMD noise reduction method with the ACSRS signal
enhancement method. The ACSRS uses quantum particle swarm optimization to achieve
adaptive adjustment of the internal parameters of the system compared with the single-
stage stochastic resonance. The noise can be used to further improve the detection of weak
signals. Compared with the noise reduction method using VMD alone, the ACSRS-VMD
method can improve the operational efficiency based on reducing the number of VMD
decompositions, transferring the high-frequency noise energy to the low-frequency feature
signals, enabling different fault features to be distributed in different frequency bands,
enhancing the fault feature amplitude while achieving multi-frequency weak signal sep-
aration. Based on simulation and experimental validation, the method is compared and
analyzed with other methods to verify the superiority of the ACSRS-VMD method. The re-
sults show that the method has good processing capability for multi-frequency weak signal
detection in strong noise background, and provides an important theoretical method for
the identification of early weak faults in rotating machinery. In future research, considering
the complex practical engineering application conditions of rolling bearings, the influence
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of real noise background on multi-frequency weak signals of rolling bearings should be
further studied.
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Abbreviations

WT Wavelet transform

IRF Iterative random forest

MIGA Multi-island genetic algorithm

IMF Intrinsic mode functions

EMD Empirical mode decomposition

EEMD Ensemble empirical mode decomposition
CEEMDAN  Complete ensemble empirical mode decomposition with adaptive noise
VMD Variational mode decomposition

SR Stochastic resonance

ACSRS Adaptive cascaded stochastic resonance system
CMSRS Cascaded multi-stable stochastic resonance system
QPSO Quantum particle swarm algorithm
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