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Abstract: This study analytically and numerically modeled the dynamics of a gyroscopic rigid rotor
with linear and nonlinear cubic damping and nonlinear cubic stiffness of an elastic support. It has
been shown that (i) joint linear and nonlinear cubic damping significantly suppresses the vibration
amplitude (including the maximum) in the resonant velocity region and beyond it, and (ii) joint
linear and nonlinear cubic damping more effectively affects the boundaries of the bistability region
by its narrowing than linear damping. A methodology is proposed for determining and identifying
the coefficients of nonlinear stiffness, linear damping, and nonlinear cubic damping of the support
material, where jump-like effects are eliminated. Damping also affects the stability of motion; if
linear damping shifts the left boundary of the instability region towards large amplitudes and speeds
of rotation of the shaft, then nonlinear cubic damping can completely eliminate it. The varying
amplitude (VAM) method is used to determine the nature of the system response, supplemented
with the concept of “slow” time, which allows us to investigate and analyze the effect of nonlinear
cubic damping and nonlinear rigidity of cubic order on the frequency response at a nonstationary
resonant transition.

Keywords: modeling of dynamics; gyroscopic rotor; non-linear stiffness; linear damping; non-
linear damping

1. Introduction

Rotary machines are widely used in many industries and have been studied for a
long time. However, there are many unsolved problems related to the effect of mass imbal-
ance on vibrations and stability, and subsequently, stabilization and control of resonant
vibrations of rotor machines.

A simplified model with lumped parameters of the rotor system, as a rule, was used
to study the dynamics of the shaft of one rotor on the bearing supports. It is very important
to use the properties and characteristics of the material of the supports for attenuation
and damping of vibration in order to stabilize the movement of an unbalanced rotor and
vibration systems. Supports are the means of connecting the device between the rotor
and the supporting structure, which have various shapes and designs, depending on
specific assumptions. A convenient way to introduce attenuation to support bearings in a
rotor system is by using viscoelastic flexible rubber supports [1]. With the development
of material modeling to enhance its nonlinear damping effect [2–4] and to describe the
complexity of material properties, the use of viscoelastic components in the dynamics
of the rotor and vibration systems as a whole, including nonlinear elastic characteristics
and damping, has increased. For example, in [5], the parametric effect of various types of
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attenuation on the performance of nonlinear vibration isolators under harmonic excitation
was investigated. In [6–11], the effectiveness of passive vibration isolators with linear
damping and nonlinear cubic damping in resonant and non-resonant vibration regions of a
system with linear and nonlinear stiffness was examined. Nonlinear damping, in contrast
to linear damping, not only significantly suppresses the maximum resonant amplitude of
vibrations, but also preserves the vibration isolation of the system in the region beyond the
resonant frequency of vibrations. The introduction of nonlinear rigidity into an oscillatory
system with purely linear rigidity [6,9] not only improves the transfer of the transmission
force to the region beyond the resonant frequency (angular velocity), but also leads to the
appearance of jumping effects, and nonlinear cubic damping can weaken these effects, and
even completely eliminate them [7,10,11].

In [10–12], the effects of the linear and nonlinear vibration damping of the elastic
support rubber material were experimentally confirmed. With the phenomenological
model of nonlinear damping adopted in [6–11], the results of analytical studies are in
satisfactory agreement with the results of experimental studies.

In [13], previous studies of the effects of nonlinear damping on the parametric gain
are generalized and expanded.

The focus of [14] is the effect of nonlinear cubic viscous damping in a vibration
isolation system consisting of a magnetic spring with positive nonlinear stiffness and a
mechanical inclined spring with geometric nonlinear negative stiffness. The results show
that, in comparison with the competing linear vibration isolation system, the described
nonlinear system transmits less vibrations around the resonant peak.

In [15,16], the narrowing of the width of the instability region as the magnitude of
nonlinear quadratic damping increases is more noticeable in the region close to the resonant
frequency.

Geometrically nonlinear damping is effective when the response of the insulation
system increases; therefore, the insulation region is not affected [17].

From the above literature review, the dominant position of nonlinear cubic damping
over linear vibration damping of an oscillating system with mainly one degree of freedom
(SDOF) is obvious. In reality, rubber, caoutchouc and other viscoelastic materials for
support can simultaneously have linear and nonlinear elastic and damping characteristics.
If we take into account that jumping effects pose threats to the safety of the system,
including rotary, then promising directions are the study of the effect of joint linear damping
and nonlinear cubic damping, adopted on the basis of a phenomenological model, not
only on the maximum amplitude and on the amplitude of the response of the system
beyond the resonant region of the oscillation frequency, but also on the boundaries of the
bistability region to weaken the jumping effects, until they are completely eliminated, on
the boundaries of the regions of stable and unstable modes of motion in order to completely
narrow the instability region, on transients through the resonant region. In this case, the
response amplitudes of a weakly nonlinear rotary system in a stationary mode are averaged.
For a resonant transition, the method of varying amplitude used is supplemented by the
concept of “slow time”.

2. Materials and Methods
2.1. Related Work

Applications of nonlinearity in passive vibration control devices to provide an un-
derstanding of how nonlinearity is applied and useful in the implemented system are
discussed in the review [18].

Recently, structures with a complex structure have begun to be used in vibration
isolation devices. The results of the experiment in [19], in order to reduce the harm from
vibration of construction machinery, show that the analytical solution and the FE (finite
element) modeling method of the HDRM (damping rubber mount) systems are reliable
and accurate when excited with a larger amplitude. Based on this, the effects of the
main rubber spring and the PHDRM inertial track (hydraulic damping rubber mount) on
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low-frequency dynamic characteristics when a larger amplitude is excited are analyzed
and discussed accordingly. In [20], the aim is to evaluate the effectiveness of nonlinear
viscoelastic damping in controlling vibrations excited by the base. A dynamic model was
obtained to study a simple structure, the insulation of the base of which is provided by a
rubber-layered roller bearing (RLRB) (rigid cylinders rolling on rigid plates with highly
damping rubber coatings) equipped with a nonlinear cubic spring, which provides both
nonlinear damping and rigidity. Adjusted nonlinear RLRB provide isolation of loads in a
wider range of excitation spectra compared to conventional linear insulators.

In addition, applications for nonlinearity can also be expanded in energy collection
devices, nonlinear energy receivers, and metamaterials for vibration isolation and energy
collection. Composite materials, materials with negative mechanical and physical proper-
ties are used as metamaterials. The article [21] investigates the nonlinear characteristics
of damping and forced response of multilayer composite cylindrical shells taking into
account the internal damping of composite materials. The results show that the damp-
ing ability of the scattering of a composite cylindrical shell depends on the amplitude,
and the influence of the amplitude on the nonlinear damping characteristics gradually
decreases with increasing ratio of length to radius. The angle of inclination of the layer
not only affects the magnitude of the resonant peak, but also significantly changes the
degree of soft and hard spring characteristics of the composite cylindrical shell. With
increasing damping of the inner material, the amplitude-frequency curve of the composite
cylindrical shell changes from the coexistence of hard and soft characteristics to the soft
characteristics only. In [22], a modified adaptive negative stiffness device (MANSD) is
proposed, capable of providing both lateral negative stiffness and nonlinear damping by
adjusting linear springs and linear viscous dampers. Negative stiffness and nonlinear
damping are realized by means of a lever mechanism. It is proved that a system with
nonlinear damping depending on displacement and velocity has attractive advantages
over linear damping in reducing transmittance in the resonant region without increasing
it in the high-frequency region. Compared to linear damping, MANSD with nonlinear
damping can provide additional reduction of displacement and acceleration in large-scale
earthquakes, especially intense ones.

The nonlinear energy collection system demonstrates numerous possibilities for col-
lecting energy from a wide range of excitations. For example, in [23], a nonlinear energy
sink (NES) refers to a light nonlinear device that is attached to a primary linear or weakly
nonlinear system for passive localization of energy within itself. This paper studies the
dynamics of NES with geometrically nonlinear attenuation with a SDOF and 2 degrees
of freedom. In a similar paper [24], the dynamics of 1-dof and 2-dof NES with nonlinear
damping and combined stiffness connected to a linear generator is investigated. The
vibration suppression effect of the proposed NES with nonlinear damping and combined
stiffness is analyzed and verified by the energy spectrum, as well as shows that the 2-dof
NES system demonstrates the best performance. In [25], the steady-state dynamics of a
Jeffcott rotary system with a horizontal support under nonlinear restoring forces was inves-
tigated. The reduction in rotor vibration was explored using linear tuned mass dampers
(TMDs), nonlinear energy absorbers, and combined energy absorbers. The results showed
that all three types of absorbers have good indicators for reducing the vibration of the
primary rotor system. The findings show that TMD-NES, TMD, and NES have better
characteristics for reducing vibration. On the other hand, the combined TMD-NES, NES,
and TMD provided a wider frequency range of stability.

The strong nonlinearity of stiffness and damping in mechanical systems consisting of
oscillators, linear elastic and/or dissipative elements obeying linear basic laws, and their
practical application were considered in [26,27].

Recently, nonlinear damping identification (NDI) has attracted significant research
interest and intensive research. Various NDI strategies, from conventional to advanced,
have been developed for various structural types. With distinct advantages over classical
linear methods, these strategies can quantify nonlinear damping characteristics and provide
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powerful tools for analyzing and designing complex vibration isolation systems. Relevant
studies are discussed here.

This paper [28] presented a procedure for determining the parameters of nonlinear
cubic damping and geometric rigidity of a model with a SDOF from large-amplitude
oscillations of harmonically forced continuous systems. The parameters were estimated
based on the harmonic balance method. The identification methodology is divided into
the cases of (i) pure curing and (ii) softening behavior. An independent assessment of the
nonlinear stiffness is performed along the curve of the spine, followed by an assessment
of the damping at resonance. In the first case, the least squares method was applied to
experimentally measure the first harmonic. In the second case, the new cascade procedure
consists of (i) estimating the parameter of the one-term harmonic balance, which serves as
an initiation, and (ii) minimizing the distance between the data and the two-term harmonic
balance model by means of a genetic algorithm. These procedures were confirmed by the
identification of parameters based on synthetic (numerically obtained) and experimental
frequency characteristics.

The article [29] describes a dynamic model with a SDOF, in which the nonlinearities
depending on the displacement and velocity are represented by power laws. The model
was designed to support the dynamic identification of structural components subjected to
harmonic excitation. Compared to other analytical expressions, the data-driven estimation
of nonlinear exponentials provides greater flexibility, which makes the generalized model
adaptable to a large number of different nonlinearities (quadratic and dry friction), in terms
of both stiffness and damping.

The systematic classification of nonlinear structures based on the response amplitudes
of the first, second, and third harmonics under harmonic excitation is discussed in the first
part of the article [30]. In the second part, the typical cubic nonlinearity of damping is
identified from the cubic nonlinearity of stiffness, and an algorithm for estimating nonlinear
and linear damping parameters is developed.

This article [31] presented a systematic classification of the nonlinearity of asymmetric
damping and developed an algorithm for estimating parameters using harmonic excitation
and response amplitude in terms of higher-order frequency response functions. The asym-
metry of the damping nonlinearity is modeled as a polynomial function containing square
and cubic nonlinear terms. The estimation algorithm is presented for nonlinear parameters
and then extended to estimate linear parameters, including the damping coefficient.

In [32], three different scattering models were used to determine the increase in
damping with the vibration amplitude for a rectangular rubber plate. The models are
based on modified Duffing oscillators with linear, quadratic, and cubic stiffness, (i) linear
viscous damping, (ii) nonlinear viscoelastic dissipation described by the loss coefficient,
and (iii) a standard linear solid-state viscoelastic model with nonlinear springs. First, a
reduced-order model was constructed: linear viscous damping at each excitation level in the
nonlinear mode was identified from experimental data for measuring linear and nonlinear
characteristics using laser Doppler vibrometers [33]. Second, three different models with the
same degrees of freedom were adjusted to the same experimental results. The dissipation
identified by various models confirms the main nonlinear nature of damping as a function
of the oscillation amplitude.

Experimental data from [34] show a strong and nonlinear dependence of damping
on the maximum oscillation amplitude achieved per cycle for macro- and microstructural
elements. The value of nonlinear damping is more than six times greater than linear
damping, as expected for the vibration of thin plates, when the vibration amplitude is
approximately twice the thickness. The nonlinear damping model, in contrast to the
phenomenological model, is presented in a different mathematical format. It is derived
from the standard solid model with fractional viscoelasticity by introducing geometric
nonlinearity into it. The resulting damping model is represented by the product of velocity
and the square of the displacement, and its frequency dependence can be tuned using
a fractional derivative in accordance with the material behavior. The studies carried
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out in [33,34] and other works show that the selected research areas are one of the most
promising in the development of theories of passive vibration isolation in mechanical
vibrating systems/structures, and may become an active research area in the future.

The approach proposed in [35] is a parametric method for identifying models of
nonlinear damping of mechanical systems using standard experimental techniques that are
commonly employed for linear systems. The identified model is valid for general excitation
forces, predicting the behavior of the system over a wider range of operations than the
linear equivalent model for specific tests.

To overcome the limitation that only the nonlinearity of stiffness can be estimated using
jump frequencies, the amplitudes of jumps are introduced in [36] as an additional condition
for evaluating the nonlinearities of stiffness and damping. The proposed method allows us
to estimate the stiffness and damping parameters of a system with strong nonlinearities.

The review paper [37] provides an overview of NDI methods, explaining the funda-
mental problems and possibilities of these methods based on the available literature. In
addition, this study offers a comprehensive overview of the various applications and future
directions of NDI research.

Although studies have addressed the combined effect of linear and cubic nonlinear
damping on the vibration isolation system, procedures for identifying the structure of the
nonlinearities in the future design of vibration isolation for nonlinear systems, including
rotary systems, and applying knowledge about the phenomena of nonlinear jumps are
more realistic approaches. However, the available literature on this subject is rather
limited. Because the current trend in many NDI applications tends toward more advanced
applications, the development of these methods is critical to keep pace with this progress.

In this paper, one of the results of analytical and numerical modeling of dynamics is
a methodology for determining and identifying coefficients of nonlinear stiffness, linear
viscous damping, and nonlinear cubic damping of the support material of a weakly linear
gyroscopic rigid rotor system. At the same time, averaged amplitudes of harmonic forced
oscillations are used in stationary mode.

2.2. Equations of Motion and Their Solutions

An ideal model of a rotor is considered, the structural diagram of which is shown in
Figure 1. The shaft with length L is installed vertically by means of the lower hinged and
upper elastic support at a distance of l0. At the free end of the shaft, the disk is fixed, which
has a mass m, a polar moment of inertia Ip, and a transverse moment of inertia IT , the same
for any direction. The speed of rotation w of the shaft is such that the rotor can be viewed
as a gyroscope, the fixed point of which is the lower shaft support. The position of the
geometric center of the disk S is determined by the coordinates x, y in a fixed coordinate
system Oxyz, and the position of the shaft and rotor as a whole in space by the Euler angles
α, β and the angle of rotation ϕ. The angles are small, and the movement of the rotor in
the direction of the coordinate axis z is neglected. Next, we denote the coordinates of the
center of mass m of the disk through xm and ym, respectively. It was assumed that the
linear eccentricity e lies on the N axis of the ONKZ coordinate system. The deviations in
the rotor axis were restricted to small values.

Expressing the projections of the angular velocity of the rotor in the coordinate axes of
the ONKZ system, the coordinates of the center of mass of the disk and the coordinates of
the upper support through the angular coordinates α, β and ϕ, finding expressions for the
kinetic energy, potential energy of the rotor, the Rayleigh function and the projections of
the moments of forces acting on the system, substituting them into the Lagrange equations
of the second kind (Appendix A) obtain the equations of motion of the rotor in the form:(

IT + mL2) ..
α + IPω

.
β + µd1

.
α + µd3

.
α

3
+
(
k1l2

0 − GL
)
α + k3l4

0α3 =
(
meω2L + Ge

)
cos ωt,(

IT + mL2) ..
β− IPω

.
α + µd1

.
β + µd3

.
β

3
+
(
k1l2

0 − GL
)

β + k3l4
0 β3 =

(
meω2L + Ge

)
sin ωt.

(1)
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On the right-hand part of the system of Equation (1), perturbations containing
..
ϕ were

discarded, because in the region close to the resonance velocity
..
ϕ � ω2, and perturba-

tions having a parameter IP (in what follows, assuming that IP � IT) and values of the
second and higher orders of smallness with respect to α, β, their derivatives, and their
combinations. The indicated disturbances are small in comparison with disturbances, the
amplitudes of which are proportional ω2.

Let us introduce the following dimensionless parameters:

e = e/L; l = l0/L; t = tω0; Ω = ω/ω0; Ip = Ip/
(
mL2); IT = IT/(mL2); K1 = k1/

(
mω2

0
)
;

K3 = k3l4
0/
(
mL2ω2

0
)
; G = G/

(
mLω2

0
)
; µ1 = µd1/

(
mL2ω0

)
; µ3 = µd3ω0/

(
mL2), (2)

where

ω0 =

√
k1l2

0 − GL
mL2 −

(
Ip − IT

) (3)

is the natural frequency of the rotor system (1). Using (2), we obtain the equations of
motion (1) in a compact dimensionless form:(

1 + IT
)
α′′ + IpΩβ′ + µ1α′ + µ3α′3 +

(
K1l2 − G

)
α + K3α3 = e

(
Ω2 + G

)
cos Ωt,(

1 + IT
)

β′′ − IpΩα′ + µ1β′ + µ3β′3 +
(
K1l2 − G

)
β + K3β3 = e

(
Ω2 + G

)
sin Ωt.

(4)

Here, prime denotes the derivative with respect to dimensionless time t.
After introduction of the designation of the dimensionless natural frequency of the

linear rotor system at IT � Ip. √
K1l2 − G

1 + IT
= ωn, (5)

and the following designations for the dimensionless dynamic parameters of the oscillatory
system

µ1
1+IT

= µ1, µ3
1+IT

= µ3, K3
(1+IT)

= K3,

IP
1+IT

= IP1, e
1+IT

= er

(6)
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the equations of motion (4) can be given the following form

α′′ + IP1Ωβ′ + µ1α′ + µ3α′3 + ω2
nα + K3α3 = er

(
Ω2 + G

)
cos Ωt,

β′′ − IP1Ωα′ + µ1β′ + µ3β′3 + ω2
nβ + K3β3 = er

(
Ω2 + G

)
sin Ωt.

(7)

Consider a rotor system that is nearly linear. For this system, the equations of mo-
tion (7) are solved using an asymptotic method, for example, by the varying amplitude
method (VAM) [38].

To apply the method of slowly varying amplitudes, the following restrictions were con-
sidered. The projections of the moments of the damping forces µ1α′, µ1β′ and µ3α′3, µ3β′3,
as well as the moment of the cubic component of the restoring force K3α3, K3β3, the mo-
ments of the inertial force of the mass imbalance, and the gravity force er

(
Ω2 + G

)
cos Ωt,

er
(
Ω2 + G

)
sin Ωt are considered small in comparison to other moments of forces acting on

the system. Assuming that Ip � IT the projections of the moment of the passive gyroscopic
force, IP1Ωα′ and IP1Ωβ′, can also be considered small. Besides, considering a spinning
rotor, Ω2 � G, and motion in the resonance range, where the frequency of free oscillations
ωn is close to the frequency of forced oscillations Ω, ξ = εξ1 = Ω− ωn � ωn is a small
parameter, and ε� 1.

Equation (7), at small values of the quantity ξ and the accepted constraints of the
problem, takes the following form:

α′′ + Ω2α = erΩ2 cos Ωt− IP1Ωβ′ − µ1α′ − µ3α′3 −ω2
nα− K3α3 + 2ξα,

β′′ + Ω2β = erΩ2 sin Ωt + IP1Ωα′ − µ1β′ − µ3β′3 −ω2
nβ− K3β3 + 2ξβ.

(8)

Equation (8) is a system of second-order nonlinear ordinary differential equations
with respect to α, β.

To investigate the forced fundamental resonant oscillations, solutions (8) are analyzed
at the frequency of the exciting moment:

α = A
(
t
)

cos
[
Ωt + θ

(
t
)]

, (9)

β = A
(
t
)

sin
[
Ωt + θ

(
t
)]

. (10)

Here, A
(
t
)

is the slowly varying amplitude, θ
(
t
)

is the phase shift of the oscillations
relative to the forced harmonic moment.

Using the method of varying amplitude relative to the angular coordinates (9) and
(10), conditions imposed (A11) and (A12) on variables A and θ (Appendix B), we obtain a
system of abbreviated equations:

A′ = − 1
2π

2π/Ω∫
0

[erΩ2 cos Ωt +
(
2ξΩ− IP1Ω2)A cos

(
Ωt + θ

)
+ µ1ΩA sin

(
Ωt + θ

)
+µ3Ω3 A3 sin3(Ωt + θ

)
− K3 A3 cos3(Ωt + θ

)
] sin

(
Ωt + θ

)
dt

(11)

Aθ′ = − 1
2π

2π/Ω∫
0

[erΩ2 cos Ωt +
(
2ξΩ− IP1Ω2)A cos

(
Ωt + θ

)
+ µ1ΩA sin

(
Ωt + θ

)
+µ3Ω3 A3 sin3(Ωt + θ

)
− K3 A3 cos3(Ωt + θ

)
] cos

(
Ωt + θ

)
dt

(12)

After integrating Equations (11) and (12), we derive the system of equations for
transient oscillations of the rotor:

A′ = −1
2

erΩ sin θ − 1
2

µ1 A− 3
8

µ3Ω2 A3, (13)

Aθ′ = −1
2

erΩ cos θ − 1
2
(2ξ − IP1Ω)A +

3K3

8Ω
A3. (14)
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Equations (13) and (14) can also be obtained using Equations (10), (A8) and (A12),
along with the method of slowly varying amplitude applied to the second equation of the
system (8).

Stationary modes of motion are determined under the conditions
.
A = 0 and

.
θ = 0 by

equations

− 1
2

erΩ sin θ0 =
1
2

µ1 A0 +
3
8

µ3Ω2 A3
0 (15)

1
2

erΩ cos θ0 = −1
2
(2ξ − IP1Ω)A0 +

3K3

8Ω
A3

0. (16)

Equations (15) and (16) with the use of the designation for the frequency detuning
ξ∗ = ξ − 1

2 IP1Ω with a correction taking into account the passive gyroscopic torque gives
the expression for determining the amplitude of stationary oscillations{(

µ1Ω +
3
4

µ3Ω3 A2
0

)2
+

(
3
4

K3 A2
0 − 2ξ∗Ω

)2
}

A2
0 =

(
erΩ2

)2
. (17)

2.3. Nonlinear Frequency Characteristics

For calculations, the general parameters of the system were selected in accordance with
various design parameters of the centrifuge used in [10] for experimental studies, and have
the following dimensionless values: er = 0.0346, ωn ≈ 1, IP1 = 0.021 (IP = 0.026, IT = 0.213).
The values of the parameters, K3, µ1, µ3 and Ω are selected in the course of numerical
experiment taking into account the remaining known design parameters necessary to
create effective vibration isolation for the gyroscopic rotor. Figures 2 and 3 show the
resonance curves on the plane (A0, ξ∗) for different values of the linear damping coefficient
µ1 = 0.01, 0.02, 0.03, 0.04 at µ3 = 0, K3 = 0.05 and the non-linear cubic damping coefficient
µ3 = 0.010, 0.020, 0.043, 0.060 at µ1 = 0.01, K3 = 0.1, respectively. It is clearly seen that
when µ1 is equal to or greater than a certain value µ∗1 = 0.03, and µ3 equal to or greater than
a certain value µ∗3 = 0.043, the resonance curves resemble those of a linear rotor system
with linear damping.

If µ1 is equal to or less than a certain value µ∗1 = 0.03, and µ3 is equal to or less than a
certain value µ∗3 = 0.043, the maximum of the resonance curves is shifted towards higher
speeds of the shaft rotation, given that the natural frequency of the nonlinear rotor system
increases with increasing amplitude of oscillations (rigid material of an elastic support,
K3 > 0). If, with an increase in the amplitude of oscillations, the natural frequency of
the nonlinear rotor system decreases (soft material of an elastic support, K3 < 0), then
the maximum of the resonance curves shifts toward lower speeds of the shaft rotation.
Suppression of the vibrational amplitude peak is clearly visible in the resonant region under
the combined influence of the linear and nonlinear cubic damping of an elastic support.
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The stability analysis of various branches of the resonance curves in Figures 4 and 5
shows that the middle branch, marked with a dotted line from point 1 to point 2, is unstable.
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(𝜇1Ω +
3
4
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9
4
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3
4
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9
4
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2.4. Analysis of Solutions of Motion Equations

When changing the disalignment, moving along the curve from left to right, we
observe the following: At ξ∗ = 0, the exact resonance for the linear approximation, the
amplitude of the oscillations is far from the maximum. The maximum amplitude A0m
was observed for a certain value of disalignment, ξ∗ > 0. With a further increase in the
disalignment and when ξ∗ = ξ∗1 , the amplitude decreases, and the jump of oscillations to a
much smaller amplitude occurs. In the reverse course of the disalignment, a jump occurs
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at ξ∗ = ξ∗2 < ξ∗1 , and the amplitude increases sharply. The values of the amplitudes A01
and A02, at which jumps occur, are determined from the equation

dA0

dξ∗
= ∞ (18)

(at points A01 and A02, vertically tangent to the resonance curve).
To determine ξ∗1 , ξ∗2 , A01, and A02 are differentiated by ξ∗ in Equation (17), taking into

account that ξ∗ only depends on A0 :

dA0

dξ∗
=

2Ω
( 3

4 K3 A2
0 − 2ξ∗Ω

)
A0(

µ1Ω + 3
4 µ3Ω3 A2

0
)(

µ1Ω + 9
4 µ3Ω3 A2

0
)
+
( 3

4 K3 A2
0 − 2ξ∗Ω

)( 9
4 K3 A2

0 − 2ξ∗Ω
) . (19)

The values ξ∗1 and ξ∗2 , A01 and A02 can be found from the simultaneous solution of
equation(

µ1Ω +
3
4

µ3Ω3 A2
0

)(
µ1Ω +

9
4

µ3Ω3 A2
0

)
+

(
3
4

K3 A2
0 − 2ξ∗Ω

)(
9
4

K3 A2
0 − 2ξ∗Ω

)
= 0 (20)

and Equation (17) for the resonance curve. The roots ξ∗1 and ξ∗2 in Equation (20) must satisfy
the conditions of a positive discriminant for 9K2

3 − 27µ2
3Ω6 > 0.

The values of the damping coefficients µ∗1 and µ∗3 at which hysteresis appears on the
resonance curves or hopping effects are completely eliminated are determined from the
condition of equality of the roots (20)

ξ∗1 = ξ∗2 =
3K3 A2

0
4Ω

, (21)

i.e., vanishing of its discriminant(
9K2

3 − 27µ2
3Ω6

)
A4

0 − 48µ1µ3Ω4 A2
0 − 16µ2

1Ω2 = 0 (22)

Here, the value K3 included in Equation (22) is squared, and therefore, this equation is
feasible in the case K3 > 0 and in the case K3 < 0.

At µ3 = 0 out of (22) it follows:

A2
0 =

4µ1Ω
3K3

. (23)

Substituting (23) into (21), we obtain:

ξ∗1 = ξ∗2 = µ∗1 . (24)

Substituting (23) and (24) into (17), we find:

µ∗1 =
1
2

3
√

3e2
r (±K3)Ω. (25)

At µ1 = 0 out of (22) we find:

µ∗3 =
±K3√

3Ω3
. (26)

In expressions (25) and (26), the “plus” sign corresponds to the rigid elasticity charac-
teristic, and the “minus” sign corresponds to the soft elasticity characteristic of the support
material.

From (25) and (26), it can be concluded that as the values of er and K3 increase, the
amount of damping for the elastic support material required to eliminate the hopping
effect increases.
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For a given µ3 = 0, er = 0.0346, and K3 = 0.05, the coefficient of linear damping of
the support material is µ∗1 = 0.0282 ≈ 0.03, and with µ1 = 0, er = 0.0346, and K3 = 0.1, the
coefficient of nonlinear cubic damping of the support material is µ∗3 = 0.0577.

By equating expression (19) for the derivative to dA0/dξ∗ zero, we find the value of
the maximum vibration amplitude:

A2
0m =

8ξ∗Ω
3K3

Then from (17), it follows:

0.75µ3Ω2 A3
0m + µ1 A0m − erΩ = 0 (27)

and

A0m =
3

√√√√ er

1.5µ3Ω
+

√(
µ1

2.25µ3Ω2

)3
+

(
er

1.5µ3Ω

)2
+

3

√√√√ er

1.5µ3Ω
−

√(
µ1

2.25µ3Ω2

)3
+

(
er

1.5µ3Ω

)2
. (28)

At µ3 = 0 in (27), we get

A0m =
erΩ
µ1

, (29)

and at µ1 = 0 in (27), it follows

A0m = 3

√
er

0.75µ3Ω
. (30)

By analyzing Equations (29) and (30), we can say that the greater the eccentricity of the
rotor mass, the greater the maximum amplitude, and to suppress the maximum amplitude,
a significant damping of the elastic support material is required.

The responses of the gyroscopic rotor system in solving the equations of motion by
different methods are evident in the oscillograms of the shaft rotation angle α = α

(
t
)
,

shown in Figure 6. With K3 = 0.05, linear µ1 = 0.04 (case a), and with K3 = 0.1, joint
damping µ3 = 0.043, µ1 = 0.01 (case b). The angular velocity of the shaft Ω = 0.7 and the
other parameters of the rotor were previously given. Although the results show agreement,
a slight difference in the maximum value of the responses is explained by the notion
that in the VAM, the oscillation span is averaged, and when using the HBM, the main
harmonic expansion of the solutions of the equations of motion for the same initial phase
of oscillations was limited. Figure 6b shows a comparison of the effect of joint damping
with that in Figure 6a.
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Figure 6. Responses of the gyroscopic rotor system in solving the equations of motion by different methods: (a)—K3 = 0.05
and linear damping with µ1 = 0.04; (b)—K3 = 0.1 and joint damping with µ3 = 0.043, µ1 = 0.01.
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2.5. Stability of Stationary Motion

To consider the stability of the stationary motion of the rotor system, Equations (13)
and (14) are reduced to the following form:

dA
dt

= Φ(A, θ),
dθ

dt
= Ψ(A, θ), (31)

where
Φ(A, θ) = −1

2
erΩ sinθ − 1

2
µ1 A− 3

8
µ3Ω2 A3 (32)

and
Ψ(A, θ) = − 1

2A
erΩ cosθ − ξ∗ +

3K3

8Ω
A2 (33)

are smooth functions of variables A, θ.
In stationary motion, that is, at A = A0 and θ = θ0, the right-hand sides of the

system of Equation (31) vanish. We set small deviations from the equilibrium point
η = A− A0, ζ = θ − θ0 and expand the functions in a series Φ(A, θ) and Ψ(A, θ) in a
small neighborhood A = A0 of and θ = θ0, limiting ourselves to the first degrees for A and
θ. Then, the system of Equation (31) can be written in the form:

.
η =

(
∂Φ
∂A

)
0

η +

(
∂Φ
∂θ

)
0

ζ, (34)

.
ζ =

(
∂Ψ
∂A

)
0

η +

(
∂Ψ
∂θ

)
0

ζ, (35)

where derivatives (
∂Φ
∂A

)
0
= − 1

2 µ1 − 9
8 µ3 A2

0,(
∂Φ
∂θ

)
0
= − 1

2 erΩ cosθ0,(
∂Ψ
∂A

)
0
= 1

2A2
0
erΩ cosθ0 +

3
4Ω K3 A0,(

∂Ψ
∂θ

)
0
= 1

2A erΩ sinθ0

(36)

was taken at the point of equilibrium. Specifying the solutions of this system of equations
in the form η ∼ eλt, ζ ∼ eλt, to determine the characteristic exponent λ, we obtain the
following equations: [(

∂Φ
∂A

)
0
− λ

]
η +

(
∂Φ
∂θ

)
0

ζ = 0, (37)(
∂Ψ
∂A

)
0
η +

[(
∂Ψ
∂θ

)
0
− λ

]
ζ = 0, (38)

For a homogeneous system of equations to have a nontrivial solution, it is necessary
to require the equality of its determinant to zero∣∣∣∣∣∣∣

(
∂Φ
∂A

)
0
− λ

(
∂Φ
∂θ

)
0(

∂Ψ
∂A

)
0
η
(

∂Ψ
∂θ

)
0
− λ

∣∣∣∣∣∣∣ = 0 (39)

Hence,

λ2 +
(

1
2 µ1 +

9
8 µ3Ω2 A2

0 −
1

2A0
erΩ sinθ0

)
λ− 1

2A0
erΩ sinθ0

(
1
2 µ1 +

9
8 µ3Ω2 A2

0

)
+ 1

2 erΩ cosθ0

(
1

2A2
0
erΩ cosθ0 +

3
4Ω K3 A0

)
= 0
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and

λ1,2 =
(

1
2 µ1 +

9
8 µ3Ω2 A2

0 −
1

2A0
erΩ sinθ0

)
±

1
2

√(
1
2 µ1 +

9
8 µ3Ω2 A2

0 +
1

2A0
erΩ sinθ0

)2
− 4 1

2 erΩ cosθ0

(
1

2A2
0
erΩ cosθ0 +

3
4Ω K3 A0

)
.

(40)

Taking into account (15) and (16), expression (40) can be written as

λ1,2 = −1
2

(
µ1 +

3
2

µ3Ω2 A2
0

)
± 1

2

√√√√√−
ξ∗ −

3K3

4Ω
− 3

8

√
K2

3
Ω2 + µ2

3

A2
0

ξ∗ −

3K3

4Ω
+

3
8

√
K2

3
Ω2 + µ2

3

A2
0

. (41)

The roots of the characteristic equation determine the stability or instability of the

equilibrium state. It can be seen from (41) that at ξ∗ <

(
3K3
4Ω −

3
8

√
K2

3
Ω2 + µ2

3

)
A2

0 and

ξ∗ >

(
3K3
4Ω + 3

8

√
K2

3
Ω2 + µ2

3

)
A2

0, the roots λ1,2 are complex, and the equilibrium state is a

stable focus. At
(

3K3
4Ω −

3
8

√
K2

3
Ω2 + µ2

3

)
A2

0 < ξ∗ <

(
3K3
4Ω + 3

8

√
K2

3
Ω2 + µ2

3

)
A2

0, the roots are

real. In this case, the root λ2 is negative, so the state can be either a stable node or a saddle.
A change in the nature of stability occurs for the positive root λ1, that is, atξ∗ −

3K3

4Ω
− 3

8

√
K2

3
Ω2 + µ2

3

A2
0

ξ∗ −

3K3

4Ω
+

3
8

√
K2

3
Ω2 + µ2

3

A2
0

 = −
(

µ1 +
3
2

µ3Ω2 A2
0

)2
(42)

2.6. Non-Stationary Oscillations

To study the unsteady processes, Equations (13) and (14) are reduced to the following
form:

dA/dt = −(1/2)erΩ sinθ − (1/2)µ1 A− (3/8)µ3Ω2 A3, (43)

dθ/dt = −(2/2A)erΩ cosθ − (Ω−ωn − IP1Ω/2) + (3K3/8Ω)A2. (44)

Equations (43) and (44) describe unsteady processes when their right-hand parts do
not vanish, and when the processes develop in the resonance region. In such nonstationary
processes, θ will be a slowly varying function of time t, which follows from the structure of
Equations (43) and (44). Equation (43) describes the change in the amplitude of oscillations
and the behavior of the envelope of the oscillatory process of angular coordinates α and β;
Equation (44) describes the change in the initial phase θ of the oscillatory process.

Starting from some initial conditions, the rotor system tends towards the nearest stable
stationary mode of motion.

At the initial conditions of the problem t = 0, A = A(0), θ = θ(0), it is convenient
to choose the values close to their resonance or maximum values in stationary modes of
motion.

Functions A, θ are easily obtained by numerically integrating Equations (43) and (44).
In the future, to construct oscillograms of the oscillations of angular coordinates,

Equations (9) and (10), Equations (A9) and (A10), taking into account (13) and (14), will be
represented in the form:

α = A
(
t
)

cos
[
Ωt + θ

(
t
)]

, (45)

α′ =
dA
dt

cos
(
Ωt + θ

)
− A

(
Ω +

dθ

dt

)
sin
(
Ωt + θ

)
, (46)

β = A
(
t
)

sin
[
Ωt + θ

(
t
)]

, (47)
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β′ =
dA
dt

sin
(
Ωt + θ

)
+ A

(
Ω +

dθ

dt

)
cos
(
Ωt + θ

)
. (48)

To study the effect of nonlinear cubic damping of the elastic support material on the
dynamics of the transient process, through the resonance region, following the method
used in [39], the differential equations of the rotor motion in a compact dimensionless form
are obtained:

α′′ + Ω2(τ)α = erΩ2(τ) cos ϕ− IP1Ω(τ)β′ − µ1α′ − µ3α′3 −ω2
nα− K3α3 + 2ξα,

β′′ + Ω2(τ)β = erΩ2(τ) sin ϕ + IP1Ω(τ)α′ − µ1β′ − µ3β′3 −ω2
nβ− K3β3 + 2ξβ,

(49)

where Ω(τ) is the dimensionless speed of the shaft rotation, depending on τ = εt “slow”
dimensionless time [39]. Here, ε� 1 is a small parameter.

In the oscillatory system, after a lapse of time, oscillations of one tone should be
established, which in most cases occurs because of the presence of damping forces and
external disturbances. The damping forces cause attenuation of the higher harmonics,
and single-frequency oscillations of the basic tone with a frequency close to the forcing
frequency are established in the system.

The single-frequency method allows us to consider both stationary oscillations and
the process of the rotor transition through critical speeds under general conditions, causing
the variability of the coefficients of the differential equations, in the presence of elastic
supports with a non-linear characteristic of elasticity and nonlinear damping. Although
the law of variation of the angular speed of the rotor can be obtained only on the basis of
processing the results of experimental studies of acceleration and running down of the
machine, to determine the general nature of the transient process, the single-frequency
method solves the problem with the arbitrary law of variation of angular speed of the rotor.
The only limitation that determines the applicability of this method is the requirement for
a slow change in the angular velocity with respect to the natural frequency of the system
under study.

Therefore, solutions (49) are in the form:

α = A
(
t
)

cos
[
ϕ + θ

(
t
)]

, (50)

β = A
(
t
)

sin
[
ϕ + θ

(
t
)]

. (51)

Further, using the method of varying amplitude and proceeding as in Section 2, the
equations of the transient process are obtained in the form

dA
dt = −[erΩ2(τ)cos ϕ +

(
2ξΩ(τ)− IP1Ω2(τ)

)
A cos(ϕ + θ) + µ1Ω(τ)A sin(ϕ + θ)

+µ3Ω3(τ)A3 sin3(ϕ + θ)− K3 A3 cos3(ϕ + θ)] sin(ϕ + θ),
(52)

A dθ
dt = −[erΩ2(τ)cos ϕ +

(
2ξΩ(τ)− IP1Ω2(τ)

)
A cos(ϕ + θ) + µ1Ω(τ)A sin(ϕ + θ)

+µ3Ω3(τ)A3 sin3(ϕ + θ)− K3 A3 cos3(ϕ + θ)] cos(ϕ + θ).
(53)

After averaging Equations (52) and (53), the system of equations for the transient
process of the rotor is obtained as follows:

dA
dt

= −1
2

erΩ2(τ) sin θ − 1
2

µ1Ω(τ)A− 3
8

µ3Ω3(τ)A3, (54)

dθ

dt
= − 1

2A
erΩ2(τ) cos θ −

(
Ω(τ)−ωn −

1
2

IP1Ω(τ)

)
Ω(τ) +

3
8

K3 A2. (55)

3. Results
3.1. Stability of Stationary Motion

Now, we define the regions of the existence of singular points by introducing the
characteristic Equation (51) into the form of the determinant of the Jacobi matrix [40]:
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λ2 − Sλ + J = 0, (56)

where

S = −
(

µ1 +
3
2

µ3Ω2 A2
0

)
(57)

and

J =
(

µ1 +
3
4

µ3Ω2 A2
0

)(
µ1 +

9
4

µ3Ω2 A2
0

)
+

[
3K3

4Ω
A2

0 − (2− IP1)Ω + 2ωn

][
9K3

4Ω
A2

0 − (2− IP1)Ω + 2ωn

]
. (58)

Solving Equation (56), we obtain two roots:

λ1 = S/2 +
√

S2/4− J and λ2 = S/2−
√

S2/4− J. (59)

First, we assume that the discriminant of Equation (56) is positive. Second, both
eigenvalues are real and distinct. If both eigenvalues are negative, then the perturbation
decays over time and tends to zero, i.e., the rotary system approaches a special point
referred to as a stable point. If at least one eigenvalue is greater than zero, then the
corresponding component of the perturbation will increase, i.e., the rotor system will move
away from a special point referred to as an unstable point.

Now, we let the discrimination of Equation (56) be negative. Both eigenvalues are
complex, λ1,2 = S/2± i

√
J − S2/4, and one eigenvalue is obtained from the other eigen-

value by means of a complex conjugation operation. The time dependence of perturbations
in this case is determined by an expression of the form exp

(
λ′t
)

cos
(
λ′′ t + ϕ

)
, where λ′ is

the real part of the eigenvalue and λ′′ is the imaginary part of the eigenvalue. The singular
point is stable if the real part λ′ < 0 is stable; if λ′ > 0, the singular point is unstable.

The main interest is the typical situation to which the internal points of the regions
shown in Figure 7 correspond. Special roles are played by the line S = 0 in the vicinity of
which conservative systems “live” and the line J = 0. We emphasize that for the singular
point “center”, the damping coefficients µ1 = 0, µ3 = 0, and therefore, the axis J is the
dividing line of the regions of dissipative systems with positive damping and systems with
negative damping. The position of the axis S is determined by the condition J = 0, that is,
the stability criterion:(

µ1 +
3
4

µ3Ω2 A2
0

)(
µ1 +

9
4

µ3Ω2 A2
0

)
+

[
3K3

4Ω
A2

0 − (2− IP1)Ω + 2ωn

][
9K3

4Ω
A2

0 − (2− IP1)Ω + 2ωn

]
= 0 (60)

Therefore, the axis S is the axis of the joint influence of linear and nonlinear cubic
damping, because it is determined by Equation (57). On the other hand, the boundary of
the regions of stability (stable focus and stable node) and regions of instability (saddle) are
located in quadrants II and III, where µ1 > 0 and µ3 > 0.

As shown in Figure 7, with joint linear and nonlinear cubic damping, the boundary
lines of the regions of a stable (unstable) focus and a stable (unstable) node are slightly
shifted to the center, which shows a weak nonlinearity of the gyroscopic rotor system under
consideration.

Thus, the stability criterion (60) was allegedly obtained from the determinant of the
matrix, which can also be obtained from the condition that the vertical tangent to the
resonant curve corresponds to the stability boundary:

dΩ
dA0

≈ ∂F
∂A0

= 0, (61)
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where

F =

{(
µ1Ω +

3
4

µ3Ω3 A2
0

)2
+

[
3
4

K3 A2
0 − (2− IP1)Ω2 + 2ωnΩ

]2
}

A2
0 −

(
erΩ2

)2
= 0 (62)

This equation expresses the frequency response of an oscillatory gyroscopic rotary system.
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Figure 7. Areas of singular points with boundary lines of a stable (unstable) focus and a stable
(unstable) node at 1—µ1 = 0.01, µ3 = 0 and 2—µ1 = 0.01, µ3 = 0.01.

The boundaries of the instability regions with different stiffness characteristics of the
nonlinear elasticity of the support and different values of the damping coefficients are
shown in Figures 8–11. In the case of a rigid characteristic of the nonlinear elasticity of the
support, an increase in the value of the linear damping coefficient shifts the left boundary
of the instability region towards large oscillation amplitudes and shaft rotation speeds
(Figure 8a).
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After the jump effects are eliminated, the instability region becomes “disconnected”
from the frequency response of the rotor system and will exist in part of the space behind
the resonant rotation speed (Figure 8b). Simultaneously, the upper boundary practically
coincides with the vertebral curve. The nonlinear cubic damping of the support material,
with its linear damping, narrows the instability region from all its boundaries (Figure 9a).
In the absence of jumping effects, the instability region can be located significantly below
the vertebral curve. Its dimensions can significantly decrease depending on the magnitude
of the joint damping (Figure 9b) and can even completely disappear, for example, at
µ3 = 0.03788, µ1 = 0.01 and other known data values. In the case of a soft characteristic
of the nonlinear elasticity of the support, the nature of influence of linear damping and
nonlinear cubic damping on the boundaries of the instability region is the same: an increase
in the values of damping coefficients slightly shifts the near-resonant right boundary of
the instability region towards lower shaft rotation speeds (Figures 10a and 11a). The
difference is that under the influence of nonlinear cubic damping, the ordinates of the
lower and upper boundaries of the instability region are significantly shifted downwards.
Figures 10b and 11b show locations of the boundaries of the instability region relative to
the frequency response with the vertebral curve. If Figure 10b is similar to Figure 8b, only
with a difference in the deviation of the curves in the other direction, then in Figure 11b the
resonant curve has a section of a nonlinear jump and is covered by a small section of the
boundary lines of the instability region. Thus, if linear damping shifts the left boundary of
the instability zone to the region of large amplitudes and speeds of rotation of the shaft,
then joint linear and nonlinear cubic damping completely eliminate it.

In the solutions of the equations of motion (8) by the VAM, the averaged values of the
maximum response of the system in the stationary mode exhibit minimal differences from
the values of the real variable amplitude. Therefore, using this method, the display of the
boundary of the stable motion of the system is more realistic.

In the non-uniqueness area, the resonance curve has three branches, the boundaries
between which are determined from condition (18). Under this condition, Equation (20)
takes the form (42). Consequently, the intermediate branch corresponds to an unstable
equilibrium state, whereas the upper and lower branches correspond to stable states. In
Figures 4 and 5, the unstable branch is indicated by a prime.

The nonlinear rotor system demonstrated bistability in the area where hysteresis
was realized. This corresponds to the presence in the phase space of two coexisting
attractors, one of which corresponds to forced oscillations of small, and the other, of large
amplitude. The occurrence of one or the other regime depends on the initial conditions.
The trajectory comes to a specific attractor starting from the set of points in the phase
space. For example, in Figures 12–17, the oscillograms α = α

(
t
)
, β = β

(
t
)

and phase
trajectories α′ = α′(α), β′ = β′(β) qualitatively show the transition process from the
initial conditions: t = 0 : Ω = 1.070, A = 1.157, θ = 0.7365 to an attractor with a smaller
amplitude of stationary oscillations. In the transient process, damped beats were observed.
The trajectories of the rotor shown in Figures 16 and 17 show that in the transition process to
the attractor, over time, the trajectories represent tilting, twisting clockwise, and decreasing
elliptical spirals. The oscillograms of the deflection angle, the phase trajectory, and the
trajectory of the rotor were constructed from the results of numerical solutions of the
system of equations of the rotor motion (15), using the MathLab-Simulink package (R2021a
(9.10.0.1602886) 64-bit (win61) 17 February 2021). In this case, the following values of
the system parameters were used: er = 0.0346, ωn ≈ 1, IP1 = 0.021, K3 = 0.1, µ1 = 0.01, and
µ3 = 0.01. An increase in the value of the nonlinear cubic damping coefficient to µ∗3 = 0.043
at µ1 = 0.01 did not affect the behavior of the transient process.
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Figure 17. Trajectory of the rotor α = α(β) corresponding to a single oscillation cycle and a time interval:
(a)—t = 306.5÷ 327.2, (b)—t = 425.1÷ 445.5, (c)—t = 700.5÷ 714.5.

Representation of the system behavior on the parameter planes (ξ∗, µi) and (A0, µi)
is useful, where i = 1, 3. Figures 18 and 19 show the corresponding diagrams, where the
abscissa shows the values of the linear and nonlinear cubic damping coefficients of the
support and ordinates show the detuning (impact frequency) and vibration amplitude
values, respectively. The bistability is limited by two lines with values of the disalignment
ξ∗1 and ξ∗2 , oscillation amplitudes A01 and A02, each of which corresponds to one of the
roots of Equations (20) (or (42)) and (17). From Figures 18 and 19, it can be seen that as the
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values of the linear damping coefficients or nonlinear cubic damping increase, the width
of the bistability (hysteresis) area narrows, the distance between the jumps (attractors)
decreases and the bordering lines intersect at the point ξ∗1 = ξ∗2 , A01 = A02 with the values
µ∗1 and µ∗3 , respectively, the jumps (attractors) disappear. A change in the characteristic of
the nonlinear elasticity of the support leads to a change in the coordinates of the boundary
curves in the plane (ξ∗, µ), and the nature of the dependencies A01,= f (µi), i = 1, 3 remains
unchanged. The significant influence of the combined linear and nonlinear cubic damping
of the support material is evident.
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Let us consider an additional way to represent the behavior of a rotor system on the
plane of its parameters. To do this, we consider the case where the angular speeds of rota-

tion of the shaft Ω and ωn are close and, with the designation A∗ =
3K3 A2

0
4µ1ωn

, F =
3K3(erω2

n)
2

4µ3
1ω3

n
,

Ξ = 2ξ∗

µ1
, M3 = µ3ω3

n
K3

, reduce the equation of the resonance curve (17) to the following form:

A∗
[
(1 + M3 A∗)2 + (A∗ − Ξ)2

]
= F. (63)

Figure 20 shows diagrams at various values of the normalized nonlinear cubic damp-
ing coefficient M3 of the support. In the diagrams, the horizontal line shows the normalized
exposure frequency Ξ, and the ordinate is the normalized exposure amplitude F. This
figure can be thought of as a set of partially overlapping sheets [40], each of which cor-
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responds to one of the roots of Equation (63) at a certain value of µ3 and given values
er, µ1 = 0.01, K3 = 0.1, and Ω ≈ ωn ≈ 1. The overlapping area of the sheets is the
bistability region bounded by two fold lines that converge at a point called the assemblage
point [40]. The fold lines and the assemblage point are found using methods similar to
those previously reported for ξ∗1 and ξ∗2 .
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Figure 20. Effect of µ3 on the fold lines (a) and the assemblage point (b).

Moving along the plane of parameters along the horizontal line F = const, then the
dependence of the vibration intensity on A∗ the disalignment parameters Ξ will be given
by the resonance curves of the family at various values of M3 = 0.1, 0.2 (µ3 = 0.01, 0.02), as
shown in Figure 3. If the considered horizontal line passes below the assemblage point,
the dependence of the amplitude on the disalignment is unique. If it passes above the
assemblage point, an area of ambiguity or hysteresis appears. It is limited by points Ξ1 and
Ξ2 (ξ

∗
1 and ξ∗2), where the tangent to the resonance curve is vertical. These are the points

where the line F = const intersects with the fold lines. The moment of the first appearance
of the vertical tangent to the resonance curve at a point Ξ1 = Ξ2 (ξ

∗
1 = ξ∗2) corresponds to

the assemblage point. The graphs in Figure 20 also show the narrowing of the width of the
bistability area as the coefficient of nonlinear cubic damping increases, and the expansion
of this area as the amplitude of the moment of inertia of the mass imbalance increases with
respect to the constant moments of the nonlinear elastic force and the linear damping force.

3.2. Non-Stationary Oscillations

When numerically integrating Equations (43), (44) and (7) in the resonant region, it
was assumed that dimensionless nonlinear coefficient stiffness K = 0.1, and linear damping
coefficient µ1 = 0.01.

The values of the parameters for the initial conditions are borrowed from the frequency
characteristics of the stationary oscillation.

The initial conditions were chosen as: t = 0: (1) Ω = 1.0423, A = 1.10863, θ = 0.6611
at µ3 = 0.01; (2) Ω = 1.0423, A = 1.0631, θ = 0.9913 at µ3 = 0.02; (3) Ω = 1.0423, A = 0.9150,
θ = 1.5080 at µ3 = 0.043.

The results of the integration of the system of Equations (43) and (44) in the resonance
region, taking into account the initial conditions, are presented in the form of graphs
A = A

(
t
)

and θ = θ
(
t
)

for different values of the nonlinear cubic damping coefficient
µ3 = 0.01, 0.02, 0.043, and µ1 = 0.01, K3 = 0.1, as shown in Figures 21 and 22. For all values
of µ3, the parameters t A, θ begin to fluctuate over time; for example, the amplitude A
first decreases, and then, having reached a minimum, it begins to increase, tending to
the next stationary value, and to values larger than the initial values, since the initial
values were less than the maximum values. The course of variation of the initial phase of
oscillations θ over time t is similar; however, it tends towards values that are smaller than
the initial values.
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non-stationary oscillations at µ1 = 0.01 and different values µ3.
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Figure 22. Dependences of θ = θ
(
t
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non-stationary oscillations at µ1 = 0.01 and different values µ3.

The reliability of the obtained results is achieved by comparing the results of the
numerical solution of the system of differential equations of the rotor motion (8) with the
results of the numerical solution of the differential equations of unsteady rotor oscilla-
tions (43) and (44). As shown in Figure 23, there is a considerable agreement between
these results.
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Figure 23. Graph of the angle α = α
(
t
)

at µ3 = 0.01 and = 0.01: 1—based on the results of numerical solution of the
Equation (8); 2—based on the results of numerical solution of the Equations (43) and (44).

The oscillograms of α = α
(
t
)

rotor oscillations at different values of the nonlinear
cubic damping coefficient µ3 = 0.01, 0.02, 0.043, and µ1 = 0.01, K3 = 0.1, by numerical
solutions of the differential equations of the unsteady rotor oscillations (43) and (44), are
shown in Figure 24. Similarly, Figure 25 shows the oscillograms according to the numerical
solutions of the system of differential equations of the rotor motion (8). In both solutions,
the effect of damping of the value of µ3 in the finite stationary values of the amplitude A,
where its initial values tend during the non-stationary process, is clearly seen.
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at different values: (a)—µ3 = 0.01, (b)—µ3 = 0.02, (c)—µ3 = 0.043 and at
µ1 = 0.01, based on the results of numerical solution of Equations (43) and (44).
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at different values: (a)—µ3 = 0.01, (b)—µ3 = 0.02, (c)—µ3 = 0.043 and at
µ1 = 0.01, based on the results of the numerical solution of Equation (8).

The MathLab and MathLab-Simulink packages (R2021a (9.10.0.1602886) 64-bit (win61)
17 February 2021) [41] were used for all numerical solutions of the equations of the nonsta-
tionary process and the system of equations of the rotor motion.

To illustrate the influence of the value of nonlinear cubic damping of the support on
the development of the oscillatory process when passing through the resonant region, we
consider the calculation of the unsteady mode of motion of the rotor system under the
assumption that the speed of rotation of the shaft Ω is a “slowly” increasing parameter
according to the law Ω = Ω0 + νt [39]. Transient Equations (52)–(55) were modeled
using the Mathlab-Simulink package (R2021a (9.10.0.1602886) 64-bit (win61) 17 February
2021) [42,43].

The initial conditions are chosen at K3 = 0.1, µ1 = 0.01 and t = 0 : (1) Ω = 0.81, A = 0.067,
θ = −0.02521 at µ3 = 0.01; (2) Ω = 0.79, A = 0.06254, θ = −0.02297 at µ3 = 0.02; (3) Ω = 0.79,
A = 0.0625381, θ = −0.0230614 at µ3 = 0.043.

Accepting the initial conditions at K3 = −0.1, µ1 = 0.01 and t = 0 : (1) Ω = 0.80,
A = 0.0664575, θ = −0.0240624 at µ3 = 0.01; (2) Ω = 0.79, A = 0.0626448, θ = −0.0230045 at
µ3 = 0.02; (3) Ω = 0.79, A = 0.0626447, θ = −0.0231013 at µ3 = 0.043.

The abscissa axis has two scales: the Ω scale and the corresponding time scale t.
The resonance curves of non-stationary rotor oscillations constructed on the results of
modeling of Equations (52)–(55) are shown in Figures 26–32. It can be clearly seen from
all the graphs that an increase in the value of the non-linear cubic damping of the elastic
support µ3 from 0.01 to 0.043 suppresses not only the maximum amplitude of the system
response and its variation around the mean value, but also the vibration amplitude and its
variation behind the rotation speed corresponding to the maximum amplitude. It shifts
the shaft rotation speed Ωm corresponding to the maximum amplitude Am with a rigid
nonlinear elastic characteristic (K3 > 0) of the support material downwards, and with
a soft nonlinear elastic characteristic (K3 < 0) of the support material upwards, i.e., in
both cases, the characteristics of the nonlinear stiffness Ωm of the support approach ωn.
A similar effect was obtained with linear damping in [39]. From Figures 26, 28 and 29
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it can be seen that with an increase in ν in absolute value from 0.00025 to 0.0005 during
the machine acceleration, the maximum amplitude shifts towards high speeds of rotation,
when braking the machine—towards low speeds of rotation and its value decreases [39].
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A comparison of Figures 26 and 27 and shows the identity of the results of solving the
equations of the transient process before averaging (52) and (53) with the results of solving
the equations of the transient process after averaging (54) and (55) over time, although
Figure 27 shows a variation in the values of the amplitude of oscillations in time along the
main curve around its mean values.

Changes in the nonlinear stiffness characteristics of an elastic support significantly
affect the description of the resonance curves. The amplitude-frequency characteristics of
the rotor during the transient process and the rigid characteristic of nonlinear elasticity
of the support (K3 > 0) are shown in Figure 31, with the soft characteristic of nonlinear
elasticity of (K3 < 0) the support—in Figure 32.

The values of the maximum amplitude and the corresponding rotational speed
in the frequency response during the acceleration (Figures 31a and 32a) and runout
(Figures 31b and 32b) of the rotary machine with |ν| = 0.00025, approximately determine
the positions of the jumping effects. As the nonlinear cubic damping coefficient increases,
the distance between these positions decreases, and its further increase can completely
eliminate the jumping phenomena.

The difference in the values of the maximum amplitude, in the values of the cor-
responding shaft rotation speed, with increasing (Figure 31a and/or Figure 32a) and
decreasing (Figure 31b and/or Figure 32b) shaft rotation speed is explained by jumping
transitions with different values of these parameters, during the takeoff run and the run-
down of the rotary machine. In the case of K > 0 and with ν > 0, the jump is performed
from a large amplitude to a lower amplitude (Figure 31a), with ν < 0 from a lower ampli-
tude to a higher amplitude (Figure 31b), and in the case of K3 < 0, vice versa (Figure 32a,b,
respectively). This is usually observed in experimental studies during acceleration and
deceleration of the machine [10]. With a rigid nonlinear elasticity characteristic of the
support K3 > 0, jumps will be located in the area of the shaft rotation speed, where Ω > ωn
(Figure 31), with a soft nonlinear support elasticity characteristic K3 < 0—In the range of
the shaft rotation speed, where Ω < ωn (Figure 32).

To ensure the reliability of the process of transition through resonance, from
Equation (17), setting the expression eΩ2 equal to zero, due to the moment of inertia of the
mass unbalance, and the damping coefficients, µ1and µ3, the equation of the reference line
of the resonance curve will be obtained:

Ω =
ωn

2− IP1
+

√(
ωn

2− IP1

)2
+

3K3 A2

4(2− IP1)
. (64)

At IP1 � 2 and K3 > 0 Ω > ωn, at K3 < 0 Ω > ωn.
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Assuming that, ν� Ω2 the maximum amplitudes and the corresponding rotational
speeds of the resonance curves approximately satisfy Equation (64). The correspondence
between the numerical (graphic) values of the peak amplitude A and the resonant velocity
Ω for the given values of the linear damping coefficient µ1 and angular acceleration ν, and
different values of the nonlinear stiffness coefficient K3 and the nonlinear cubic damping
coefficient µ3 (Figures 26 and 28), according to Formula (64), are given in Table 1.

Table 1. Compliance between the oscillatory characteristics: numerical (graphical) values of the peak
amplitude A and resonant speed Ω according to the equation of the supporting curve (64).

ωn ≈ 1, IP1 = 0.021, µ1 = 0.01, ν = 0.00025

K3 µ3 A Ω K3 µ3 A Ω

0.1

0.010 1.360 1.075

−0.1

0.010 1.163 0.960

0.020 1.125 1.060 0.020 1.050 0.967

0.043 0.910 1.041 0.043 0.900 0.980

To confirm the analytical study, Equation (8) was solved numerically. Figure 33 shows
the numerical results obtained for passing through the resonance region with a rigid non-
linear elastic characteristic of the support material and a “slowly” varying value of the
angular velocity of rotation Ω. This figure shows that oscillations in the region of the
maximum amplitude have a beat character, followed by damping beats, and the damping
effect of µ3 is clearly visible in the resonant velocity region and beyond it. Damped beats
occur due to the superposition of forced non-stationary oscillations and damped natural
oscillations with frequencies closely matching in the vicinity of the resonance [39]. These
results are consistent with the previous analytical results shown in Figures 26a and 28a.
The differences lie in the width of the region of clearly visible oscillations, the magnitude
of the amplitude maximum, and the shift in the time instant of the amplitude maximum
passage. Nevertheless, the basic behavior of the oscillatory process remains the same. No
jumping effects were detected.
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at the transition process with ν = 0.00025 based on the results of the numerical
solution of Equation (49) with: (a)—K3 > 0, (b)—K3 < 0.

3.3. Methodology for Measuring and Identification of Damping Coefficients

Equations (25) and (26), using the notation for (2) and (6), can be rewritten in di-
mensional form. The formulas for determining the values of the coefficients of linear
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damping and nonlinear cubic damping of the support material, at which the jumping
effects disappear, will have the form:

µ∗d1 =
1
2

3

√
3
( e

L

)2
mL2l4

0k3ω when µd3 ≈ 0 (65)

and

µ∗d3 =
k3l4

0√
3ω3

when µd1 ≈ 0 (66)

In the case of combined linear and nonlinear cubic damping of the support mate-
rial, the value µ∗d3 corresponding to the calculated values µd1 and k3 is determined from
Formula (29) in dimensional form:[(

µd1ω +
3
4

µd3ω3 A2
0

)2
+

(
3
4

k3 A2
0 − 2Ξ∗ω

)2
]

A2
0 =

(
emL2ω2/L

)2
, (67)

where

Ξ∗ =
(

mL2 + IT

)(1− 0.5IP

mL2 + IT

)
ω−

√
k1l2

0 −mgl
mL2 + IT

, (68)

A2
0 =

24µd1µd3ω4

9l8
0 k2

3 − 27µ2
d3ω3

+

√√√√( 24µd1µd3ω4

9l8
0 k2

3 − 27µ2
d3ω3

)2

+
16µ2

d1ω2

9l8
0 k2

3 − 27µ2
d3ω3

. (69)

Formula (69) is feasible only for the value µ∗d3 at µd1 6= 0. It should be noted that the
expressions (65), (66) and (67) are applied only for small vibrations of the rotor shaft.

In Formulas (65), (66), and (67), the value of the nonlinear stiffness coefficient k3
is determined from the equation of the reference curve [28] and from experimentally
constructed frequency characteristics with the same value k3 of the samples of the support
material of the proposed gyroscopic rotor design:

k3 =
8
(
mL2 + IT

)
3l4

0 A2
0

ω

(
1− 0.5IP

mL2 + IT

)
−

√
k1l2

0 −mgl
mL2 + IT

ω. (70)

The vertebral curve is common for curves of frequency characteristics with the same
value k3, including for a curve that satisfies condition (22).

First, we describe the methodology for determining the value µ∗d3 of the coefficient of
nonlinear cubic damping at a relatively small value µd1, which is the coefficient of linear
damping of the support material. We construct resonant curves with the same value k3 and
several different values, but values µd3 near the value µ∗d3 are calculated by Formula (66)

under the assumption that ω ≈
√(

k1l2
0 −mgl

)
/(mL2 + IT), according to the frequency

response Equation (67). Analyzing the roots of Equation (67) for all values of the rotation
speed of the entire range, from the constructed curves of the frequency response, we select
the first curve, starting from the top, that has only one branch, which corresponds to one
positive root of Equation (67) and a refined value µ∗d3.

Next, we construct experimental resonance curves with an increasing and then de-
creasing parameter ω, with the same value k3 and several values µd3 near the value µ∗d3
measured by a laser Doppler vibrometer [32,33]. Usually, the experimental curves of the
frequency response of the forward and reverse strokes in the field of jumping effects do
not coincide. We choose the resonant curves that coincide with the controlled acceleration
and run-out of the rotary machine, with the value µ∗d3. By comparing the analytically
constructed resonance curve that has the refined value µ∗d3 with the experimentally selected
analogous curve, we identify the nonlinear cubic damping coefficient with the value µ∗d3.
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The value of the linear viscous damping coefficient µ∗d1 of a sample with a nonlinear
stiffness coefficient k3 and without nonlinear damping properties of the support material,
determined by Formula (65), will be identified according to the abovementioned methodol-
ogy. The approximate value µ∗d3 of the coefficient of nonlinear cubic damping of the support
material, which simultaneously has linear damping (µd1 6= 0), is determined by Formula
(67), taking into account (69) and the value k3 obtained from the experimental resonance
curves with the same value µd1 < µ∗d1 and different values µd3, using Formula (70). Having
constructed the curves of frequency characteristics according to Formula (67) µd3 for values
near µ∗d3 and having analyzed the roots (67) of µ∗d3, we specify the value and corresponding
resonance curve. Next, the resonance curve with the specified value is compared to µ∗d3
with the corresponding experimental frequency response, and the value µ∗d3 is identified.

Thus, the methodology for determining and identifying the parameters k3, µ∗d1, µ∗d3
and µ∗d3 at µ∗d1 6= 0 was described. The procedure for identifying these parameters of
the support material and evaluating the values obtained in comparison with the results
obtained by experimental and other methods require a separate study.

By measuring the parameters of the linear and nonlinear characteristics of a rubber
rectangular plate according to the proposed methodology, it is possible to choose rubber
plates for a support with the necessary geometric, nonlinear elastic, and damping charac-
teristics. This finding suggests that based on the results of the above-mentioned research
and patent search, it is possible to propose 3D models (Figure 34) and designs (Figure 35)
of an elastic support and a centrifuge based on a vertical rigid gyroscopic rotor. Here,
the results of experimental studies [10] on confirming the linear and nonlinear damping
properties of the rubber support material were also taken into account. 3D modeling
was carried out in the Solide Works environment [44]. The main difference between the
centrifuge and its model proposed in [10] is the improved design of the elastic support.
In [10], a whole corrugated rubber was used as a damping material around the shaft. In
the design shown in Figure 34, rubber plates with the shape of a rectangular parallelepiped
installed in six grooves of the support structure adjacent to the coupling are selected for
this purpose. The shaft rotates freely on the bearing located in the coupling, which ensures
the simplicity of the design, easy changeability of similar materials with other elastic and
damping characteristics, and control of the number and location of rubber plates. Other
differences include the replacement of electromagnetic motion and rotation speed sensors
with more accurate laser sensors and the use of a computer to control and measure the
necessary parameters.
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Figure 35. Structural schemes of a centrifuge based on a rigid gyroscopic rotor (a) and an elastic
support (b).

In Figure 35, the centrifuge consists of a platform 1, a housing 2, a cylindrical con-
tainer 3, a drive motor 4, rigidly placed inside the cylindrical casing 5. The cylindrical
casing 5 is connected to the platform 1 by means of a universal joint 6. The shaft 7 of
the electric motor 4 is connected to the housing 2 by means of a bearing (not shown in
Figure 35) and elastic damping tabs 8. Elastic damping tabs 8 are made of a special type of
rubber or rubber and are tightly installed on the sides of the correct hexagon (Figure 35b).
An encoder 9 is attached to the lower part of the electric motor 4 for feedback with the
control unit 10. To control the characteristics of the rotor movement, a vibration sensor 11
is installed on the housing 2, and a laser speed sensor 12 is used to measure the speed of
rotation of shaft 7.

The device can operate in up to the critical speed range (low speed mode) and beyond
the critical speed range (high speed mode). The rotor speed is regulated by changing
the voltage of the current source. In this case, the rubber inserts 8 are selected in such a
way that the damping of a specially made rubber or rubber material helped to avoid the
hopping effect in the resonance curve resulting from the action of the nonlinear component
of the elastic force. This in turn allows the rotor to safely pass through the critical speed in
the event that the operating speed is determined beyond the critical speed.

4. Discussion

Formulas (65) and (66), which determine the value of the coefficient of the cubic
nonlinear damping µ∗d3 with a relatively small value µd1 of the coefficient of linear damping
of the material support, the value of the coefficient of linear damping µ∗d1 with a relatively
small value µd3 of the coefficient of the cubic nonlinear damping, at which hopping effects
disappear, are derived from the assumption that the coordinates (detuning frequency) of
the boundaries of the region of bistability are the same: ξ∗1 = ξ∗2 . The values µd1 and µd3
are compared in dimensionless form. These parameters in the dimensional form differ
significantly in dimension, in the order of representation [10]. The value µ∗d3 of the support
material at a constant value µd1 6= 0 is found from the nonlinear frequency response (67)
by studying its roots when (67) has only one positive real root. The determination µ∗d3 and
µ∗d1 according to the Formulas (65) and (66) is approximate, since the value of the shaft
rotation speed ω, at which the jumping effect completely disappears, is equal to the natural
frequency (shaft rotation speed) of the oscillatory gyroscopic rotary system, but their values
found are close to their true values. This methodology has an organic scope of application.
The rotor disk is dominated by the value of the transverse moment of inertia relative to the
polar moment of inertia of the disk (IT � Ip) and Formulas (65) and (66) are applicable
only at K3 6= 0. Formulas for determining damping coefficients in dimensionless form (25),
(26), (17) are more generalized. So, for example, µ∗1 ∼

3
√

e2
r K3Ω as well as µ∗3 ∼

K3
Ω3 , in

both formulas, there is a connection between the damping coefficients with the nonlinear



Machines 2021, 9, 276 32 of 37

stiffness of the support K3 and the speed of rotation of the shaft Ω, which is natural. When
switching to dimensional forms, taking into account their relationship with the coefficient
of nonlinear stiffness of the support, it is necessary to take into account almost all geometric
and dynamic parameters of the gyroscopic rotor system, i.e., it is necessary to take into
account the design features of the rotor, which limits the use of Formulas (65)–(70).

The model of nonlinear damping presented in [32–34], proportional to the product of
the n-th degree of displacement by velocity, differs from the phenomenological model of
nonlinear damping in essence and dimension. The latter model is mainly applicable for
solid-state materials and large-amplitude sample vibrations, therefore, both models may
come to different end results.

To use Formulas (65)–(67), it is initially necessary to determine the k3 coefficient of
nonlinear stiffness of the support material. The value k3 using the Formula (70) is located
at the intersection points of the reference curve with experimentally constructed nonlinear
frequency characteristics for 3 to 5 samples of material with the same elastic characteristics,
including non-linear, but different values of µd3 or µd1 and close to the value of µ∗d3 or
µ∗d1. There is a very important point here: the selection and purchase of materials with
the necessary elastic and damping characteristics, measured experimentally according
to the methodology of work [33]. For the correct construction of experimental frequency
characteristics, two frequency characteristics are combined, taken with increasing and
decreasing shaft rotation speed (with increasing and decreasing motor voltage) [10]. In
each stationary mode, the speed of rotation of the shaft and the corresponding amplitude
of vibrations are measured. If the vibration amplitude is variable, it is averaged over
the period. When the value µdi (i = 1, 3) is very close to the value µ∗di. (i = 1, 3), the
frequency characteristics during the run-up and run-out of the machine will practically
coincide. Further, according to the experimentally found values of the parameters of
the elastic and damping characteristics of the samples, resonant curves are constructed
according to the frequency response (67) and they are compared with similar experimental
curves and µ∗d3, µ∗d1 identified. In the case of determining µ∗d3 at µ∗d1 6= 0, the analytical
resonance curves constructed according to a particular characteristic (67) are compared
with similar experimental curves. By studying the roots (67) and the course of construction
of experimental frequency curves, the µ∗d3. is determined. The proposed methodology for
determining and identifying damping coefficients, in contrast to those presented in [28–35]
and others, differs in that it is aimed at determining and identifying only values µ∗d3, as
well as µ∗d1 and the vibration amplitudes used in (67) and (70) are averaged. It should be
noted that experimental measurement of parameters of elastic and damping characteristics
of samples of material for support and determination of values k3, µ∗d3 and µ∗d1, as well
as the identification of these parameters, the comparison of the results obtained with the
results of other models for evaluating this methodology, are of great interest and are the
subject of future research.

5. Conclusions

• The combined effect of linear and nonlinear cubic damping of an elastic support
with nonlinear stiffness on the dynamics of a vertical rigid gyroscopic rotor was
investigated by analytical and numerical modeling methods.

• It was shown that the combined linear and nonlinear cubic damping significantly
reduces the oscillation amplitudes, including the maximum resonant amplitude, and
has a greater effect on the boundaries of the bistability region—on the amplitudes and
frequencies (shaft rotation speeds) corresponding to jumps—than the linear damping
of the support material.

• A methodology has been developed for determining and identifying the coefficients
of linear damping and nonlinear cubic damping of the support material, at which
nonlinear jumping effects disappear, for a harmonically forced weakly nonlinear
gyroscopic rigid rotor system with a disk with a predominant transverse moment
of inertia.
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• It is shown that if linear damping shifts the left boundary of the instability region
towards large amplitudes and speeds of shaft rotation, then nonlinear cubic damping
can completely eliminate it. In this case, the stability criterion has been obtained by
the method of analysis of the characteristic equation in the form of Jacobi and the
results of studies of the region of specific points.

• The resonant transitions and the influence of nonlinear stiffness and nonlinear cubic
damping of the support material on the frequency characteristics of a non-stationary
process are considered because the VAM was employed to study the response of the
rotor system, supplemented by the concept of “slow” time and the parameter “slowly”
by changing the angular velocity of rotation.

• The analytical solutions and numerical solutions of the equations of motion of the
rotor show agreement.

• The results of analytical solutions of the equations of motion are in satisfactory agree-
ment with the results of numerical solutions.

• The subject of research for the near future is the experimental measurement of pa-
rameters of elastic and damping characteristics of samples of material for support
and determination of values µ∗d1 and µ∗d3 and theidentification of these parameters,
comparison of the results obtained with the results of other models.
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Appendix A

The angular velocity on the coordinate axes can be written in the form

ωN = −
.
β, ωK =

.
α cos β, ωZ =

.
ϕ +

.
α sin β

Assuming that in the case of small angles α and β sin β ≈ β, cos β ≈ 1 the previous
equations can be rewritten as follows:

ωN ≈ −
.
β, ωK ≈

.
α, ωZ ≈

.
ϕ +

.
α · β. (A1)

Based on Koenig’s theorem for the kinetic energy of the rotor, we obtain the expression

T =
1
2

m
( .

x2
m +

.
y2

m

)
+

1
2

(
IKω2

K + INω2
N + IZω2

Z

)
.

Considering that IK = IN = IT , IZ = IP and considering (A1), we obtain

T =
1
2

m
( .

x2
m +

.
y2

m

)
+

1
2

IT

(
.
β

2
+

.
α

2
)
+

1
2

IP
( .

ϕ +
.
αβ
)2 (A2)

where
xm = x + e cos ϕ = Lα + e cos ϕ,
ym = y + e sin ϕ = Lβ + e sin ϕ.

(A3)
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Considering the above, the projections of the angular velocity on the coordinate axes
can be written in the form

ωN = −
.
β, ωK =

.
α cos β, ωZ =

.
ϕ +

.
α sin β

The projections of the moment gravitational and the inertial force of the mass imbal-
ance have the form:

MK = (Lα + e cos ϕ)G, MN = (Lβ + e sin ϕ)G (A4)

where G = mg the weight of the disk.
Richards and Singh [3] found that rubber dampers exhibit both nonlinear damping

and nonlinear stiffness. To achieve a higher performance, the presence of nonlinearity in
the design must be considered. Consequently, the elastic support of the upper bearing of
the gyroscopic rotor can be made of non-linear materials such as gum, rubber, and other
polymers, which are widely used as vibration dampers. Taking all this into account, we set
the dissipative energy in the elastic support in the form of the Rayleigh function

Φ =
1
2

µd1

(
.
α

2
+

.
β

2
)
+

1
4

µd3

(
.
α

4
+

.
β

4
)

(A5)

where µd1 is the coefficient of linear viscous damping, and µd3 is the coefficient of nonlinear
cubic viscous damping. Given that the rotor shaft is rigid and only its upper support
possesses elasticity, and the elastic forces in mutually perpendicular Ddirections of coor-
dinates are, respectively, equal to Fx = k1x0 + k3x3

0 = k1l0α + k3l3
0α3,, Fy = k1y0 + k3y3

0 =
k1l0β + k3l3

0 β3, the potential energy of the system can then be represented in the form

V =
1
2

k1l2
0

(
α2 + β2

)
+

1
4

k3l4
0

(
α4 + β4

)
(A6)

where k1 is the stiffness coefficient of the support, and k3 is the coefficient of the nonlinear
term of the elastic force.

Lagrange equations of the second kind for a rotor system can be represented as:

d
dt

(
∂T
∂

.
qi

)
− ∂T

∂qi
+

∂V
∂qi

= −∂Φ
∂

.
qi

+ Qi. (A7)

Here, qi are generalized coordinates; Qi are generalized forces; i = 1, 2. The generalized
coordinates qi, q2 are α, β. The generalized forces Qi, Q2 are represented by MK, MN and
are determined by (A4).

Appendix B

New variables dα
dt and dβ

dt are introduced with respect to the angular coordinates α

and β:
dα

dt
= −AΩ sin

(
Ωt + θ

)
and

dβ

dt
= AΩ cos

(
Ωt + θ

)
. (A8)

These variables are not the result of differentiating α and β with respect to time t
because the true derivatives of α and β with respect to t have the form:

dα

dt
=

dA
dt

cos
(
Ωt + θ

)
− A

(
Ω +

dθ

dt

)
sin
(
Ωt + θ

)
, (A9)

dβ

dt
=

dA
dt

cos
(
Ωt + θ

)
− A

(
Ω +

dθ

dt

)
sin
(
Ωt + θ

)
, (A10)
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Therefore, to be consistent with expressions (18), we have to assume:

dA
dt

cos
(
Ωt + θ

)
− A

dθ

dt
sin
(
Ωt + θ

)
= 0, (A11)

dA
dt

sin
(
Ωt + θ

)
+ A

dθ

dt
cos
(
Ωt + θ

)
= 0 (A12)

These ratios can be considered as additional conditions imposed on variables A and θ.

Nomenclature

A vibration amplitude, rad
A0 vibration amplitude in stationary motion mode, rad
e linear eccentricity, m
er linear eccentricity, dimensionless
G disc weight, N
G disc weight, dimensionless
IP polar moment of inertia, kgm2

IP polar moment of inertia, dimensionless
IP1 polar moment of inertia, comparative, dimensionless
IT transverse moment of inertia, kgm2

IT transverse moment of inertia, dimensionless
k1 coefficient of linear stiffness, N/m
K1 coefficient of linear stiffness, dimensionless
K1 linear stiffness coefficient, comparative, dimensionless
k3 coefficient of nonlinear stiffness, N/m3

K3 coefficient of nonlinear stiffness, dimensionless
l0 distance between supports, m
l distance between supports, dimensionless
L shaft length, m
m disc mass, kg
t time, dimensionless
α, β angular coordinates, rad
θ vibration phase, rad
µd1 coefficient of linear viscous damping, Nms/rad
µ1 coefficient of linear viscous damping, dimensionless
µd3 coefficient of nonlinear cubic viscous damping, N ms3/rad3

µ3 coefficient of nonlinear cubic viscous damping, dimensionless
ν angular acceleration, dimensionless
ξ frequency detuning, rad
ξ∗ frequency detuning taking into account the gyroscopic moment, rad
τ slow time, dimensionless
ω shaft speed, rad/s
Ω shaft speed, dimensionless
ω0 the natural frequency of the rotary system, rad/s
ωn the natural frequency of the rotary system, dimensionless
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