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Abstract: Nowadays, traffic congestion has become a significant challenge in urban areas and densely
populated cities. Real-time traffic signal control is an effective method to reduce traffic jams. This
paper proposes a particle swarm optimisation with linearly decreasing weight (LDW-PSO) to tackle
the signal intersection control problem, where a finite-interval model and an objective function are
built to minimise spoilage time. The performance was evaluated in real-time simulation imitating a
crowded intersection in Dalian city (in China) via the SUMO traffic simulator. The simulation results
showed that the LDW-PSO outperformed the classical algorithms in this research, where queue
length can be reduced by up to 20.4% and average waiting time can be reduced by up to 17.9%.

Keywords: particle swarm optimisation; real-time traffic signal control; simulator of urban mobility

1. Introduction

Nowadays, with the industrialization of the world, the population in cities has grown
exponentially. The urban areas will accommodate about 68% of the world’s population
by 2050, according to a forecast of the world urbanisation, undertaken by the United
Nations (U.N.) in 2018 [1]. This increasing population has brought many problems to the
developing cities, such as traffic congestions, environmental pollution, safety, and fuel
wastage [2—4]. According to [5], in 2014, congestion cost North Americans approximately
an extra 6.9 billion hours to travel, consuming around 3.1 billion litres of additional fuel,
resulting in a waste of 160 billion dollars.

Developing strategies to control or reduce vehicular traffic problems mainly involves
solutions in two areas: infrastructure reconstruction and city topology optimisation. But
in many cases, this is infeasible and always expensive. Hence, researchers have proposed
other strategies to deal with these problems. One of these is traffic signal control. It is
possible to divide the exiting traffic signal systems into two subgroups: fixed-cycle or
adaptive signal control systems [6]. To a significant extent, the inefficiency of today’s traffic
signal systems, which primarily use fixed-cycle signal control systems, leads to traffic
congestion. All control parameters in the fixed-cycle signal control system, including cycle
length, phase duration, and sequence, are preset offline according to historical traffic flow
information, regardless of the number of vehicles. Although it has an excellent performance
in traffic regimes with constant traffic flow or small fluctuations [7], the adaptability of
this control method to traffic fluctuations is limited. Thus, it is impossible to treat with
sudden changes in traffic flow [8]. Fixed-cycle methods” major disadvantage is open-loop
control since they can not adapt to real-time traffic fluctuations. And when the traffic
condition changes, fixed-cycle approaches may aggravate the congestion. Therefore, the
fixed-cycle signal control system is highly sub-optimal and needs to be replaced by better
closed-loop methods.
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Recently, an adaptive signal control system, which is still widely used commercially,
has been proposed. The traffic regimes obtained from loop detectors or other traffic sensors
can change the cycle length, phase splits, and sequence reasonably. The fluctuations of
these changes are limited to a predetermined fixed range. Current research efforts in the
field of adaptive traffic signal control are directed to two main initiatives. On the one
hand, the automatic model of adaptive signal control is designed to change the control
strategy when traffic regimes change. It depends on the use of traffic sensors and the
real-time calculation of traffic flow. Although these tools have been operated successfully
in several cities worldwide, the actual management of the traffic network usually causes a
high operational cost. Besides, traffic flow in the real world tends to repeat traffic patterns,
such as rush hour and holidays.

On the other hand, modern simulators [9] have great significance in traffic manage-
ment since they can provide researchers with immediate traffic flow information and
reliable solutions. Many studies in traffic flow simulation have been performed repre-
senting both macroscopic [2] and microscopic [10] traffic flow. Over the past few years,
efforts have concentrated on combing accurate microscopic modelling of traffic flow with
heuristic algorithms. Bio-inspired computation has been proven to solve complex problems
with a non-polynomial computational complexity in real-world applications, especially in
programming traffic signal cycles; see [11-15].

Several features led us to use PSO instead of other optimisation methods. First, PSO is
a well-known algorithm that performs fast convergence to optimal solutions [16]. It is a
highly desirable property for an optimal traffic signal cycle program, where new traffic
signal schedules must be updated immediately when traffic regimes change. Second, the
canonical PSO is easy to implement and adjust because of the few required parameters [17].
Third, in recent years, many researchers have demonstrated that the PSO algorithms and
variants of PSO have successful applications in traffic signal optimisation [4].

The main contributions of this paper are as follows:

e  Combing SUMO and LDW-PSO, a new model is proposed to reduce queue length and
average waiting time in an isolated intersection with hundreds of vehicles. Besides,
the objective function’s property is evaluated by this paper.

e  Our experiment with traffic data is analysed under three conditions: under saturated,
saturated, and oversaturated, compared with previous works only considering one
specific scenario. Besides, more than 900 vehicles are simulated in oversaturated
conditions to represent the high load state, which is a big challenge.

e  Further comparisons against B.A., standard PSO optimisation method justify the prop-
erty of the LDW-PSO. In this paper, the results obtained by LDW-PSO are compared
with B.A., which is rarely compared by previous studies.

The rest of this paper is organised as follows: after the introduction, Section 2 presents
the related work. Section 3 presents the microscopic simulator SUMO and the algorithms
compared. Section 4 describes the objective function of the simulation model used to
optimise real-time traffic signals. The experimental setup and the results of the simulation
are presented in Section 5. Lastly, concluding remarks and future works are given in
Section 6.

2. Related Work

Traditional metaheuristic algorithms have become very popular for solving traffic
signal control problems related to biologically inspired techniques. In [18], a bi-level model
based on the Stackelberg game was used to solve traffic signal optimisation problems.
Bat algorithm was compared with ant colony optimisation, genetic algorithm, and hybrid
algorithm in different node conditions. The article indicated that B.A. explored a wide range
of solutions, although it did not get the best average wait time. An ant colony algorithm
(ACA) [19] has been proposed for traffic light timing. The uncertainty and convergence of
ACA were analysed numerically, although in the scope of one simple traffic intersection
with a 2-phase lighting system. Focusing on two large and heterogeneous urban scenarios
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located in Malaga and Seville, Olivera et al. [15] experimented with hundreds of traffic
lights to optimise the traffic lights timing programs through particle swarm optimisation
(PSO). They used a mono-objective function based on the traffic emission model to reduce
fuel consumption and gas emissions, although they did not consider the vehicular flow for
sections for heavy traffic.

Besides traditional algorithms, some new optimisation algorithms are also applied in
traffic signal control problems successfully. Celtek et al. [20] used social learning-particle
swarm optimisation (SL-PSO) to optimise the traffic control problem in Kilis city of Turkey.
In the cases of different particles and iterations, the performance of SL-PSO was tested
compared to PSO. The improvement in average travel time had proven the success of SL-
PSO for traffic control problems. In [21], the micro artificial system (MAIS) was developed
to reduce pollution rates for a specific region of Mexico City by optimising vehicular flow.
After the optimisation process, the vehicle’s waiting time was decreased and the speed was
increased, leading to a decrease in fuel consumption and environmental pollution. Besides,
the reason for the improved performance of the MAIS was analysed. Refs. [20,21] applied
new meta-heuristic algorithms to the traffic control problem and achieved significant
results. And this is the first of SL-PSO and MAIS to be used as a traffic signal optimiser.

Some efforts have concentrated on using multi-objective evolutionary methods to deal
with this problem. Perez et al. [22] used a specific methodology combing simulation and
multi-objective evolutionary methods to optimise the traffic signal control problem in the
city of Montevideo in Uruguay. Significant improvements in travel times and pollution
had been achieved because the specific methodology allowed exploring the whole search
space of possible configurations. A similar task was done by Damay [23], who used a
multi-objective genetic algorithm and SUMO optimising durations of the green light phases
to reduce emissions and improve vehicular flow in the city of Route in France.

3. Background
3.1. Simulaiton of Urban Mobility

Many algorithms applied in Traffic Signal Control System (TSCS) have been proposed
and developed in recent years. So, the real fields or simulator platforms are required
to test and evaluate them. If doing this in real fields, it will be sophisticated and time-
consuming work. Thus, traffic simulators are widely used for designing and evaluating in
TSCS. SUMO is an open-source microscopic multi-modal traffic simulator that can simulate
different types of traffic flow and provide output for future tests and analysis. One of its
features is the modeling of traffic systems, specifically public transport, road vehicles, and
pedestrians. Each vehicle is modelled explicitly, has its own route, and moves individually,
so SUMO is purely microscopic. The simulation created using SUMO needs three main
components: road network (.net.xml), route (.rou.xml) and configuration (.sumocfg) flies.
The road network file contains objective road information such as road and lane details,
traffic signal and phase information. It supports importing a digital map of a road network
from an original map view (see Figure 1a) and the SUMO network (see Figure 1b). The
routes of vehicle flow on the road network are defined by the route file, which can be
created using existing origin-destination matrices or manually. All the characteristics of
the vehicles are included, such as their speed, length, acceleration. The configuration file
is used to combine the road network and route file as well as some additional files. One
of the main advantages of SUMO is that many details of each vehicle, such as waiting
time, position, and average speed can be obtained. Thus, it is possible to implement any
algorithm to determine the programming of the traffic signal.



Machines 2021, 9, 280

40f17

(b)

Figure 1. Example of converting a map in OpenStreetMap. (a) Original map view of OpenStreetMap. (b) Network imported

into SUMO.

3.2. Optimization Algorithms

Compared with [24], the optimisation strategy of this paper is carried out by LDW-
PSO, which aims to find the optimal or “almost optimal” traffic signal cycle program.
This section explains the definitions and general frameworks of B.A., standard PSO, and
LDW-PSO.

Inspired by the behaviours and characteristics of micro-bats, Yang [25] proposed the
standard B.A. in 2010. For each bat (i), its position (x;) and velocity (v;) in a d-dimensional
search space should be defined initially, which are subsequently updated during the
iterations. The general framework of B.A. is shown in Algorithm 1.

Algorithm 1. B.A.—Bat Algorithm.

1. Initialise bat population x; and velocity v; (i =1,2,---, Max Generation,i € N)
2. Initialise frequency Q" and Q" , boundary LB” and UB’ , loudness A and pulse r
3. Initialise bf; = evaluate(x;)

4. Compute Leader bf™" and xbest

5. while (t < Max Generation) do

6. while (i < Max Population) do

7. Q; = uniform Qi Qex)

8. ot +1] = o] + (xi[f] —21) x Q;

9. xi[t-i-l]:xi[t]-i-vi[t-i-l]

10. if (uniform(0,1) > r) do

11. xi[t + 1] = x;[t + 1] + gaussian(0,1)

12. end if

13. x;[t + 1] = bound (x,- [t+1],LBY, UBb)

14. bf" = evaluate(x;[t + 1))

15. if (bf"*" < bf&uniform(0,1) < A) do

16. x; = x;[t + 1]

17. bf; = bfrew

18. end if

19. end while

20. Update Leader bf™" and xt°

21. end while

Eberhart and Kennedy developed standard PSO, a population-based metaheuristic
optimisation technique [26], in 1995. Inspired by birds, standard PSO assumed that each
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particle (j) can use global and local best values to update its position (x;) and velocity (v;).
The definition of position and velocity for a standard PSO are as follows:

vj[g + 1] = wojg] + c1 (pbest; — x;[g]) + c2(gbest — x;[g]) 1)
xjlg +1] = x;[g] + vj[g + 1] @)

where:

pbest' is the local best solution of particle j
gbest is the global best solution of all particles
xj[g] and x;[g + 1] refer to the position of particle j in iteration g and g + 1

vj[g] and v;[g + 1] represents the velocity of particle j in iteration g and g + 1

In Equation (1), the w is called the inertia weight of the particle. Inertia weight
indicates how much of the previous speed is taken from the previous time step. Shortly,
inertia weight is used to balance the global and local search capability of the PSO. Large
inertia weight makes the global search easier while small weight makes the local search
easier. Usually in standard PSO, w € [0.8,1.2]. The linearly decreasing weight is used in
this paper because with PSO it is easy to be precocious and oscillate near the global optimal
solution in the later stage. The inertia weight decreases linearly through the optimisation
process by using the following equation:

w = (wini _ wend) % (Ngen _ g>/Ngen (3)
where:
e  w" is the initial weight
e w™ is the maximum weight
o NB3°"refers to the total iterations
o  grefers to the current iteration

The general framework of LDW-PSO is shown in Algorithm 2.

Algorithm 2. LDW-PSO—Particle Swarm Optimization with Linearly Decreasing Weight.

1. Initialise particle swarm x; and velocity v; (j =1,--- NP??,j € N)
Initialise acceleration coefficients ¢; and cp , position boundary LB? and UBY

2 , velocity boundary LBY and UB?, inertia weight w™ and w®"?
3. Initialise pf; = evaluate (x])
4. Initialise pbest; and gbest
5. while (g < N8“") do
6. while (j < N?°7) do
. vilg+1] = [(wi”i — we”d) x ng\;’:;g + wmd] x v;[g] + ¢1 X rand() x
(pbestj - xj[g]) + ¢y x rand() x ( gbest — xj[g]>
vj[g + 1] = bound (v]- [¢+1],LBY, UB”)

. xjlg +1] = x;[g] + vj[g + 1]
10. xjlg+1] = bound(xj[g—l-l],LB”, UBV>
11. pf"? = evaluate (xj[g +1]
12. if (pf" < pf;) do
13. pbest; = xj[g +1]
14. Pf] = pfrew
15. end if
16. end while
17. Update gbest

18. end while
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4. Objective Function of the Simulation Model

This section explains the objective function, which is a minimisation function. We take
the fitness function designed by Jintamuttha et al. (see [24]), but with some changes for our
simulation model. We change the reward part of the number of vehicles passing through
the intersection, related to Equations (11)—(13). The main task is to determine the proper
phase duration of the traffic signal, which can minimise queue length and average waiting
time to maintain efficient traffic flow on the intersection. In this study, the programming of
phase duration is represented by a solution vector, which SUMO supports. Each element
of the solution vector represents a phase duration of a state at an intersection.

In this study, each particle of LDW-PSO represents one solution vector. The following
fitness equation evaluates each solution vector containing the optimal cycle values. The
objective function is to minimise spoilage time at an isolated intersection for a phase
duration, which is regarded as a solution vector.

fitness = min(i C?;“ ) 4

n=1

The spoilage time is defined as three components’ discrete-time summation (S): wait-
ing time (T%), loss of start-stop time (T7), and time reward (T*), as shown in (5).

GTy

Su=Y (T¥ld) + Tild] - Ta)) 5)
d=1

where:

n=1,2,.--,mrefers to the index of all phases in a traffic cycle.
GT, represents the duration of the green time on phase n.
d=1,2,---,GT, is the index of discretised green time duration of phase n.

Since the maximum range of cycle time is suggested to take between 60 s and 120 s,
the effective green time of each phase GT, should be limited between lower boundary (LB)
and upper boundary (UB), as shown in (6).

LB < GT, < UB (6)

Before introducing three components of the spoilage time, two concepts should be
explained with Figure 2: vehicular route and traffic road. Figure 2 shows an isolated
intersection that is in a specific phase. The isolated intersection is combined with four
roads; each of them has 2 incoming and 2 outcoming lanes. In this phase, the vehicular
routes that allow vehicles to cross the intersection are indicated by green lines. A vehicular
route from road v heading to road w is represented by (v, w) relying on the schematic table
that assigns route authority in phase n. For example, assume in this phase, the route that
allows vehicles from road 1 head to road 3 is represented by (1,3). Besides, the term L (%)
is introduced as the traffic road of route (v, w). For example, in Figure 1, road 1 (v = 1)
has two lanes where the lanel_1 has 2 possible outgoing routes (road w = 2 and 3), and
the lanel_2 has 1 provided route going to road w = 3. Given that all possible routes have
equal traffic load, then L(12) = 0.5, L(13) =05+ 0.5.

The following Equation (7) is used to define the waiting time (T™) at discretised time
d of phase n.

VNS )

T = Y < 3 <wn§“w)>q[d}>/L<%w) @)
(ij)eR q=1

where:

e  Rrepresents all vehicular routes that allow vehicles to pass in phase n.
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. VN,(lv’w) [d] is the vehicle number of halting vehicles on route (v, w) on time d of phase
n, and a halting vehicle is defined as its speed below 0.1 m/s.

o (WT,(lv’w) ), d] refers to the waiting time of vehicle 4 on time d of phase n. Specifically,
the vehicle’s waiting time is accumulated over a specific time interval, rather than the
time spent with a speed below 0.1 m/s since the last time it was faster than 0.1 m/s.

e L) is the previously defined traffic load from road v heading to road w.

| Road2 |
D [Lane2 2|
S

~
| Lane3 2150
|Lane3_1

| >

Figure 2. An illustrative diagram of an isolated intersection.

The Equation (7) has the following limitation (8).
(WT,(lv’w) ) gld] = 0 for VqvnVd¥ (v, w) (8)

The term, loss of start-stop time (T9), reflects the time influenced by queue length. It
is illustrated in (9):

md) = % (V) < or) /L0 ©)

(v,w)ER

where 67 is the linear function represents the start-stop delay relying on the queue length.
According to the observation of the simulation experiment, each vehicle in the queue has a
1-s delay. VN [d] and L(®%®) play a similar role as defined in (7).

The number of halting vehicles on the route (v, w) is limited by the capacity of road v.
Assume that MC? is the maximum capacity of road v, then the constraint of Equation (9) is
shown as (10).

Y VNS [d) < MCY - for VnVdvo (10)

The last term T7 represents the reward that the number of vehicles that can cross the
intersection in phase . It is shown in (11).

T)|d] = (v§€R ((Pvi*™)d] x or) /Lle)) (11)
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where PVn(v’w) [d] is the number of vehicles that can pass through the intersection in phase
n, it relies on R that plays a similar role as defined in (7). In Equation (11), the value of

PV\")[d] is defined by (12).
PV ] = min{ TN(d], RTS [d], RC 4] } (12)

where:

. TN,Sv’w) [d] is the total number of vehicles from v heading to road w, including halting
vehicles and moving vehicles.

. RT,SU’w) [d] represents the number of vehicles that can cross the intersection through
the remaining time of phase 7.

. RC,(lv'w) [d] refers to the remaining capacity of road w that can be changed over time
but limited by the maximum capacity of the outgoing road w as defined in (13).

0 < RC¥[d] < MCY (13)

5. Simulation and Results
5.1. Design of Experiment on SUMO

In this section, using LDW-PSO, the simulation is set to verify the model design and
obtain some insightful information from the benchmark with B.A. [24] and standard PSO.
First, the hardware and software condition used in this study is explained. Then the
parameters used in the application and simulation are given.

In this study, LDW-PSO was used as an optimisation algorithm. Besides, B.A. and
standard PSO were selected to compare with LDW-PSO to justify the property of the
LDW-PSO. We chose B.A. as a comparison algorithm because it was rarely used in the
traffic signal control problem. In [24], it was used in an isolated intersection scenario and
obtained significant achievements. Thus, we wanted to make some improvements. As for
standard PSO, acceleration coefficients c; and ¢, were set to 1.49445, and inertia weight w
was set to 0.729 as recommended in [26].

The simulation and three algorithms were applied on Python platform. SUMO traffic
simulator was used in the Windows operation system for simulation. The simulation
was performed using an Inter (R) Core (T.M.) i7-9750H CPU @ 2.6 GHz processor and
16.00 GB RAM. The Traci API of SUMO was used to retrieve simulated objects” values
and manipulate their behaviours instantly via the programmed optimisation algorithms.
The process will ultimately achieve the satisficing of the real-time traffic signal control as
designed. The theory of simulation using the SUMO traffic simulator is shown in Figure 3.

Tripinfo-output.xml

Optimization algorithm
Road Network File || — | Map

olutions

= , Configuration File Route File
{ Traffic Simulator
Routes
n+l Additional File

Traci API

Figure 3. Theory of simulation using SUMO traffic simulator.
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The simulation was conducted based on the simulated traffic environment from a
crowded intersection in Dalian city in China. Four ways are gathered to the intersection
whose information is shown in Table 1. The managed 4-phase authority is shown in
Figure 4.

Phase 4

Phase 2 Phase 3

Phase 1

Figure 4. Route authority of the intersection.

Table 1. Information of intersection.

Settings North South West East
Road length (m) 2280 1650 1620 7275
Number of lanes 2 2 4 4

Maximum capacity 608 440 864 324

Because of the nature of the intersection where East and West are the main streams
of the whole traffic, most of the vehicles from East and West will keep straight, and most
of the vehicles from North and South will turn left and right. The specific percentage of
outgoing flow from each arriving path is shown in Table 2.

Table 2. Percentage of outgoing flow.

Outgoing Direction From North From South From West From East
Right (%) 40.0 40.0 15.0 15.0
Straight (%) 20.0 20.0 70.0 70.0
Left (%) 40.0 40.0 15.0 15.0

When the traffic regime changes, the efficiency of existing control goes down. Thus,
this paper’s traffic data used for testing contains three conditions: under saturated, satu-
rated, and oversaturated. As shown in Table 3, the model’s performance and algorithm
can be better evaluated through these three conditions.

Table 3. Proportion of simulation type.

Arrival Rate

Type (Vehicles/min) st () West(%)  North (%) South (%)
Type One: 45 18.60 33.73 25.18 22.49
under saturated
Type Twor 60 26.71 51.24 12.00 10.05
saturated
Type Three: 75 20.60 45.71 19.57 14.12
oversaturated

We assumed that the distribution pattern of all vehicles arriving at the intersec-
tion from every path follows the Poisson function for the simulation. With arrival rate
A = 45 vehicle/min, Type One is under saturated condition, where vehicles from West and
East are almost equal to those from North and South. With arrival rate A = 60 vehicle/min,



Machines 2021, 9, 280

10 of 17

Type Two represents the saturated condition, where West and East have 3 times the arrivals
as North and South. With arrival rate A = 75 vehicle/min, Type Three represents the
oversaturated condition where the number of vehicles from narrower paths (North and
South) has increased.

The number of vehicles PV((;})) (d) that can pass through the intersection will be limited

by the remaining capacity RC]@) (d). The dynamicity of an outgoing route’s available capac-
ity is defined by the Poisson distribution with A = MC;/1.25 for Type One, A = MC;/3.75
for Type Two and A = MC;/7 for Type Three.

Table 4 summarises the totality of the vehicle, B.A., standard PSO, and LDW-PSO
simulations considered. In this paper, the experiment simulation was executed for a finite
period of 10 cycles per run because we wanted to simulate an infinite cycle to ensure
effective traffic signal control.

Table 4. Simulation, Vehicle, B.A., standard PSO, and LDW-PSO.

Types Settings Value
Maximum simulation time (s) 2400
Simulation Number of cycles 10
Maximum number of evaluations per simulation 600
Average vehicle length (m) 5.0
Average vehicle gap (m) 2.5
Vehicle Average rate of acceleration (m/s?) 15
Average rate of deceleration (m/ s%) 45
The maximum speed (km/h) 120
Number of generations 30
Size of population 20
Loudness 0.7
BA Pulse 0.5
Frequency range [0, 6]
Position range [15, 50]
Number of generations 30
Size of population 20
acceleration coefficients ¢; and c¢; 1.49445
Standard PSO inertia weight w 0.729
Position range [15, 50]
Velocity range [—4, 4]
Number of generations 30
Size of population 20
acceleration coefficients ¢; and c; 2/2
LDW-PSO inertia weight w;,; and we,g 0.9/0.4
Position range [15, 50]
Velocity range [—4, 4]

5.2. Results and Discussions

The results and the analyses are presented in this section from several viewpoints.
As stated in the introduction, we mainly focus on queue length and average waiting
time in this work. These two factors are the most common embodiment of congestion
at an isolated intersection. To study the improvement of our proposal, we focus on the
comparisons between the two algorithms. And all the results and distributions of three
different conditions are based on the 8 selected runs (out of 12).

To show a first explanation view of the internal behaviours of LDW-PSO, Figure 5
plots the trace progress of the 8 independent runs of our technique when dealing with the
three conditions. In these plots, we can observe that the computed solutions are close in
quality, but there are some differences. As for Type One, the range of the final solutions



Machines 2021, 9, 280 11 of 17

of best fitness is around 1900. Similar behaviors can be observed for Type Two and Type
Three, where the best fitness range of the solution is around 3500 and 35,000.

Type Two: saturated

Type One: under saturated Type Three: oversaturated

24,000
22,000
20,000
18,000
4 16,000
i |
2 14,000 |
=
% 12,000
Z
10,000
I
8000
6000
4000
2000
0

100,000 4

6000 - 90,000

50004 80,000
70,000\ |

4000 4

best fitness

60,000\

best fitness

I\
30004 50,000

40,000 4

2000

30,000

T T T T T T
20 10 15 20 25 30

number of iterations number of iterations

(@) (c)
Figure 5. Trace progress of the best fitness values in 8 independent runs of LDW-PSO. (a) Type One; (b) Type Two;

number of iterations

(b)

(c) Type Three.

The comparison of distribution fitness and computational time can be obtained from
Figure 6, where Figure 6a represents the boxplot of the distribution fitness, and Figure 6b
represents the boxplot of the distribution computational time of the complete optimisation
process. As expected, we can observe that both the mean fitness value and the mean
computational time obtained by the three algorithms increase with the number of vehicles
from Type One to Type Three. From a graphical point of view, the data distribution of
LDW-PSO in Figure 6a shows better lower quartiles, medians, means and upper quartiles
than B.A. and standard PSO. Figure 6b shows that the computational time obtained by
LDW-PSO in Type Two is lower than that obtained by B.A. and standard PSO, but Type
One and Type Three’s results are the opposite. However, the mean value of computational
times of these two types for the standard PSO and LDW-PSO algorithms is not much
different, and the range is in 5~8%, while the improvement of Type Two is 14.6%. We notice
that in Type One, the computational time of B.A. is significantly lower, and the reason is
that the solutions obtained by B.A. are trapped in the lower boundary because the lower
boundary is a local optimal solution.
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Figure 6. Boxplot representation of distribution results. (a) fitness; (b) computational time.
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Figure 7 shows the comparison of average phase durations and their error bars
obtained by the three algorithms. In Figure 7, it is obverted that the total phase durations
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increase with the number of vehicles. Besides, except for Type One, the error bars of
phase durations obtained by standard PSO and LDW-PSO are consistently lower than
those obtained by B.A., representing the convergences and stabilities of standard PSO and
LDW-PSO are better. For Type One, B.A. acquires shorter error bars because its results are
trapped in the lower boundary. Thus, B.A. lacks the exploration of the optimal solution.
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Figure 7. Histogram representation of distribution results of the average phase durations and their error bars. (a) Type One;

(b) Type Two; (c) Type Three.

In this paper, for each iteration step of three algorithms and individuals in the popula-
tion, the information obtained from each simulation about both queue length and average
waiting time had been saved. In this way, the progressive improvement from the initial
solutions to the final ones in the traffic flow can be distinguished throughout the complete
optimisation procedure. Figure 8 concerns the progressive reduction of queue length and
average waiting time throughout the optimisation procedure of LDW-PSO. The mean
values of B.A.’s and standard PSO’s best solutions are represented with dotted lines. In the
initial stages of the optimisation process, we can clearly see that generated optimisation
programs (by LDW-PSO) returned a high level of queue length and average waiting time
for the three conditions. However, as the optimisation process reached the middle stages,
they became lower, to stabilise in the final stages.

In three conditions, LDW-PSO always obtains better values than B.A. For Type One,
the reduction obtained by LDW-PSO (compared to B.A.) is 7.7% for queue length and 6.7%
for average waiting time. The reduction is 11.0% for queue length and 14.0% for average
waiting time for Type Two. And for Type Three, the two values of reduction are 20.4%
and 17.9%. Compared with standard PSO, the results obtained by LDW-PSO have a slight
improvement. For Type One, the reduction obtained by LDW-PSO (compared to standard
PSO) is —0.7% for queue length and 0.9% for average waiting time, which means standard
PSO has a better optimisation effect than LDW-PSO for queue length. But our objective
function is to minimise the weighted sum of queue length and average waiting time, so
in terms of overall optimisation, LDW-PSO has a better effect. The reduction is —0.3%
for queue length and 1.8% for average waiting time for Type Two. ForType Three, the
two values of reduction are 7.4% and 0.7%. It is worth mentioning that the improvement
reached by LDW-PSO (compared to B.A. and standard PSO) is higher in Type Three than
in Type One and Type Two. It means LDW-PSO has a stronger ability to deal with complex
situations with more vehicles.

To better show the micro-optimisation, the best optimisation process of LDW-PSO
and B.A. for three conditions is shown in Figure 9. The mean values of queue length and
average waiting time obtained by LDW-PSO and B.A. are also represented with dotted
lines. Obviously, with the increase in the number of vehicles, the value of queue length and
average waiting time is gradually increasing. It is unavoidable because the heavy traffic
flow is a big challenge for the optimisation procedure. However, in most cases, solutions
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generated by LDW-PSO are lower than those generated by B.A. Thus, the improvement
is noticeable.
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Figure 8. Mean queue length and average waiting time of LDW-PSO solutions each iteration step. The mean values of
B.A.’s and standard PSO’s best solutions are represented with dotted lines. (a) Type One’s mean queue length; (b) Type
One’s mean average waiting time; (c) Type Two’s mean queue length; (d) Type Two’s mean average waiting time; (e) Type
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Figure 9. Three conditions’” best optimisation process of queue length and average waiting time. Their mean values are
represented with dotted lines. (a) Type One’s best optimisation process of queue length; (b) Type One’s best optimisation
process of average waiting time; (c) Type Two’s best optimisation process of queue length; (d) Type Two’s best optimisation
process of average waiting time; (e) Type Three’s best optimisation process of queue length; (f) Type Three’s best optimisation

process of average waiting time.

Therefore, we can claim that the combination of the optimisation model and LDW-PSO
can reduce queue length and average waiting time in an isolated intersection.

6. Conclusions and Future Works

In this work, an optimisation strategy of real-time traffic signal control has been
proposed to reduce queue length and average waiting time. A series of experiments and
analyses have been carried out from several points of view, including the internal behaviors
of this optimisation strategy, the improvement of fitness value, and the quality of solutions
regarding three different conditions.

The following conclusions can be drawn: Firstly, our optimisation strategy shows a
successful performance in the isolated intersection with hundreds of vehicles. Our method,
which practically converged after the first 10 iterations, performed a fast convergence for
the three different conditions. And this suggests that the use of our proposal for real-time
traffic signal control is advantageous. Secondly, the boxplot representation of distribution
results shows that LDW-PSO obtained better medians and means compared to B.A. and
standard PSO. Besides, histogram representation of distribution results shows that the error
bars of phase durations obtained by standard PSO and LDW-PSO are consistently lower
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than those obtained by B.A. in most cases. It means that standard PSO and LDW-PSO have
better convergences and stabilities compared to B.A. Lastly, the phase duration obtained by
LDW-PSO can reduce the queue length and average waiting time for the three conditions.
Compared to B.A., LDW-PSO can remarkably reduce the queue length by 20.4% and the
average waiting time by 17.9% regarding Type Three. And compared to standard PSO,
LDW-PSO also achieves better results in three conditions. It means LDW-PSO has a stronger
ability to deal with all these scenarios, especially complex situations with more vehicles.

This paper has confirmed that our optimisation strategy has a successful performance
in an isolated intersection. In fact, we are interested in larger dimension scenarios, such as
large urban areas with hundreds of traffic signals. So, in the future, we will use a larger
scene to carry out the experiment.
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Glossary

Optimisation Algorithm: Bat Algorithm
i Each bat in the bat population

X; Position of bat i

v; Velocity of bat i

xbest Global optimal solution of the bat algorithm
t Current generation

Q Frequency
LB’  Lower boundary of position
UB®  Upper boundary of position
A Loudness
r Pulse
bf Fitness of bat
Optimisation Algorithm: Particle Swarm Optimization with Linearly Decreasing Weight
j Each particle in the particle swarm
Xj Position of particle j
vj Velocity of particle j
pbest  Local best solution of each generation
gbest  Global best solution of the LDW-PSO

c1 Self-learning factor

o) Global learning factor

w Inertia weight of particle
N8 Max generation

g Current generation

NP Max population

LB”  Lower boundary of position
UBP  Upper boundary of position
LB’  Lower boundary of velocity
UBY  Upper boundary of velocity
pf Fitness of particle
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Objective Function of The Simulation Model
n Index of all phases in a traffic cycle
GT,  Duration of the green time on phase n
Index of discretised green time duration of phase n
Summation of three parts
™ Waiting time

»n

T Loss of start-stop time
Tv Time reward
LB Lower boundary of effective green time of each phase

UuB Upper boundary of effective green time of each phase

(vw)  Vehicular route from road v heading to road w

L Traffic load

R All vehicular routes that allow vehicles to pass

VN  Vehicle number of halting vehicles

WT  Waiting time

or Linear function represents the start-stop delay

MC  Maximum capacity

14 Number of vehicles that can pass through the intersection

TN Total number o vehicles, including halting and moving vehicles
RT Number of vehicles that can cross the intersection through the remaining time
RC Remaining capacity
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