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Abstract: High-speed motorized spindle heating will produce thermal error, which is an important
factor affecting the machining accuracy of machine tools. The thermal error model of high-speed
motorized spindles can compensate for thermal error and improve machining accuracy effectively.
In order to confirm the high precision thermal error model, Beetle antennae search algorithm (BAS)
is proposed to optimize the thermal error prediction model of motorized spindle based on BP neural
network. Through the thermal characteristic experiment, the A02 motorized spindle is used as the
research object to obtain the temperature and axial thermal drift data of the motorized spindle at
different speeds. Using fuzzy clustering and grey relational analysis to screen temperature-sensitive
points. Beetle antennae search algorithm (BAS) is used to optimize the weights and thresholds of the
BP neural network. Finally, the BAS-BP thermal error prediction model is established. Compared
with BP and GA-BP models, the results show that BAS-BP has higher prediction accuracy than BP
and GA-BP models at different speeds. Therefore, the BAS-BP model is suitable for prediction and
compensation of spindle thermal error.

Keywords: high-speed motorized spindle; thermal drift; temperature-sensitive points; Beetle anten-
nae search algorithm; thermal error modeling

1. Introduction

High-speed cutting is the main development direction of machining in the future. As
a key part of a high-speed CNC machine tool, the performance of the motorized spindle
affects the ability of the machine tool [1]. Thermal error caused by thermal drift accounts
for 40–70% of the total error of machine tools [2,3]. Motorized spindles at high-speed will
generate a lot of heat because they are not easy to heat, resulting in thermal deformation
and reducing the machining accuracy of machine tools. Therefore, effective prediction
and control of thermal error of motorized spindle is an important method to improve the
machining accuracy of machine tools. At present, thermal error prevention and thermal
error compensation are the main methods to solve the thermal error problem. Since
there is no need to change the structure of the spindle, the thermal error compensation
method is widely used at present [4,5]. In thermal error compensation, in order to obtain a
good compensation effect, it is very important to establish a high-precision thermal error
prediction model to accurately predict thermal error.

Firstly, the selection of temperature-sensitive points is the basis of establishing a
thermal error model. It determines the accuracy and robustness of the model. Too many
temperature sensitive points will increase the calculation amount and cost, while too few
temperature sensitive points can not accurately reflect the change of temperature field,
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which affects the accuracy of the thermal error compensation model. Therefore, it is par-
ticularly important to select reasonable temperature-sensitive points. Ma et al. [6] based
on fuzzy clustering theory and statistical correlation analysis, proposed a grouping and
selection method for typical temperature variables. This method reduces the number
of temperature measurement points, eliminates multicollinearity between temperature
variables, and improves the accuracy of the thermal error model. Li et al. [7] proposed a
temperature-sensitive point selection method based on integrated temperature informa-
tion (STI), which solved the problem of incomplete clustering and the same number of
temperature-sensitive points with different errors. Chiu et al. [8] used the Pearson correla-
tion coefficient method to remove the temperature point with low correlation. Li et al. [9]
used the method of combining fuzzy clustering with average influence value (FCM-MIV)
to group temperature variables and select temperature sensitive points. Zhou et al. [10]
used the K-means algorithm to cluster the temperatures of measuring points at different
positions, and Pearson correlation coefficient was used to calculate the correlation between
the temperature and the thermal error of the spindle. The selected temperature-sensitive
points showed a significant linear relationship with the thermal error. Therefore, the op-
timization of temperature measuring points requires the selected temperature sensitive
points to simplify the number of temperature variables as much as possible on the premise
of reflecting the temperature change of the motorized spindle, which provides convenience
for the subsequent thermal error modeling and at the same time improves the robustness
of thermal error modeling.

The core of thermal error compensation technology is the thermal error prediction
model. The thermal error prediction model with high accuracy and good robustness
can effectively improve the machining accuracy of CNC machine tools. Domestic and
foreign scholars have done a lot of research on thermal error modeling. Thermal error
modeling methods mainly include multiple regression, least square method, support
vector machine, neural network, grey system, mixed model and so on. Based on the
regression analysis method, Chen and Lei [11,12] established an autoregressive model
with temperature, thermal displacement and velocity as input variables. The results
show that the prediction accuracy of the displacement-based model is higher, which has
good effectiveness and robustness. However, the design of multiple regression models
is both time-consuming and complex. Yang, Jiang and Zhao [13–15] established the least
squares support vector machine (LS-SVM) model. The results show that the least squares
support vector machine model not only has high prediction accuracy, but also has good
robustness and generalization ability, which can well predict thermal errors. However,
thermal deformation will reduce the prediction accuracy of the model due to the influence
of the machining process and environment. As the most basic artificial neural network,
error back propagation (BP) neural network is widely used in thermal error modeling of
motorized spindles. Su and Liu [16,17] thermal error model is established by using the
BP neural network. The results show that the BP neural network model can compensate
for most of the thermal deformation. The parameters of the BP network are uncertain,
so the convergence speed is slow and the local minimum is easy to fall into, which is
difficult to obtain the global optimal solution. Huang and Li [18,19] use bat algorithm (BA),
genetic algorithm (GA), mind evolution algorithm (MEA) and particle swarm optimization
(PSO) to optimize the weights and thresholds of BP neural network, which is used to
overcome these shortcomings. In Cui et al. [20] multiple linear regression (MLR) method,
back propagation (BP) neural network method and radial basis function (RBF) neural
network method were used to establish the thermal error prediction model of motorized
spindle. The results show that the RBF neural network has the highest prediction accuracy.
As a result of the number of hidden layer neurons being uncertain, the weight learning
ability of the hidden layer is weak, which leads to the decline of learning ability and
prediction accuracy. Zhang and Fu [21,22] improve the prediction accuracy of the RBF
neural network by optimizing the base function center, width, hidden layer and output
layer weights of RBF neural network based on genetic algorithm, particle swarm algorithm
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and chicken flock algorithm. Wang et al. [23] combine grey theory and neural network,
and put forward a grey system model for thermal error prediction. The comparison of
thermal error experiments shows that the grey system model has a good prediction effect.
In order to establish a thermal error prediction model with high precision and strong
anti-interference ability, Yao et al. [24] combined the grey model with least squares support
vector machine, and proposed a new optimal and effective compound model (OM) for
thermal error prediction of spindle. Abdulshahed and Dai [25,26] combined the learning
rule of artificial neural networks with fuzzy logic theory, and established the thermal error
prediction model of adaptive neural fuzzy inference system (ANFIS). The results show that
the combined method can improve the accuracy and robustness of thermal error prediction.

BP neural network has strong linear mapping ability, strong generalization ability and
high prediction accuracy.However, BP neural network is easy to fall into local extremum,
which leads to slow convergence and low efficiency. Therefore, a large number of scholars
closely combine the population evolution algorithm with BP neural network method,
making full use of the advantages of population diversity of evolutionary algorithm and
the self-adaptive and self-learning characteristics of BP network, so that the optimized
model can obtain better prediction effect.Beetle antennae search algorithm is a monomer
search algorithm which has the advantages of simple principle, fewer parameters and less
computation, and has great advantages in dealing with low-dimensional optimization
objectives. The biggest difference between the Beetle antennae search algorithm and other
intelligent algorithms is the quantity. Other heuristic algorithms are basically based on
groups, which cooperate with each other to obtain information. However, the Beetle
antennae search algorithm relies on a single individual to optimize in space, and it has
obvious advantages in optimization speed and calculation amount. In this paper, the
BAS-BP neural network thermal error prediction model is established by combining the
Beetle antennae search algorithm with BP neural network. Firstly, fuzzy clustering is used
to cluster the temperature of measuring points at different positions, and the correlation
between temperature and spindle thermal error is calculated by grey correlation degree,
so as to screen out temperature sensitive points. The weight and threshold of the BP
neural network are optimized by the Beetle antennae search algorithm, which improves the
optimization ability of BP neural network, improves the prediction accuracy and reduces
the prediction error. In order to verify the performance of the BAS-BP neural network
model, it is compared with the GA-BP model.The thermal error model of A02 motorized
spindle was verified at different rotational speeds. The results show that the prediction
accuracy of the BAS-BP thermal error model is higher than that of the GA-BP model, and
the amount of calculation is small. Therefore, this paper provides a feasible method for
thermal error modeling of motorized spindles.

2. Experiment on Temperature Field and Thermal Error of Motorized Spindle
2.1. Experimental Platform Construction

In this paper, the thermal error measurement experiment is carried out on the A02
motorized spindle which is used in the joint laboratory of SKY NC High Speed Motorized
Spindle of Harbin University of Science and Technology. K type thermocouple is used to
measure the surface temperature of a motorized spindle. PT100 thermal resistor measures
the internal temperature of the motorized spindle. K type thermocouple temperature
measurement range 0–1300 ◦C. The allowable margin of error is ±0.75%t. t is the mea-
sured temperature value of the temperature sensing element. It has the advantages of
relatively stable performance, simple structure and good dynamic response. The tempera-
ture measuring range of PT100 thermal resistor is −200–850 ◦C. The allowable margin of
error is 0.15 + 0.002 × |t|. It has the advantages of high sensitivity, strong stability, good
interchangeability and accuracy.

The layout of temperature measuring points should meet the following conditions:
the temperature points should be near the heat source; the temperature points should be
able to describe the temperature field; the temperature points should be closely related
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to the thermal error. Based on laboratory research of A02 motorized spindles and the
published literature [26], 10 temperature measurement points are selected in this paper.
The installation location of the temperature sensors is shown in Figures 1 and 2. The layout
diagram is shown in Figure 3. Table 1 shows the layout scheme of temperature sensors.

Figure 1. Front end temperature sensor.

Figure 2. Axial temperature sensor.

Figure 3. Schematic diagram of temperature sensor layout.

Table 1. Design of temperature measuring point scheme.

Temperature Sensor No. Position

T1,T2 Front
T3,T4 Front bearing outside housing

T5 Inside front bearing
T6,T7,T8 Inside the motor housing

T9 Rear bearing outside shell
T10 Inside rear bearing
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The motorized spindle has axial and radial thermal drift at different speeds. Compared
with axial thermal drift, radial thermal drift is very small to be ignored [27,28]. In this
paper, the LK-H020 laser displacement sensor is used to collect axial thermal error data of
the motorized spindle. The sensor is installed on the experimental platform by magnetic
table. The red laser beam is aligned with the front end of the spindle shank. The red laser
is reflected back to the CCD linear camera inside the sensor through the front end of the
spindle shank. According to the angle of laser emission and reflection and the distance
between the laser and the camera, the distance between the sensor and the measured
object can be calculated using the digital signal processor. It can accurately obtain the axial
thermal drift data of the motorized spindle during high-speed rotation. The installation of
the laser displacement sensor is shown in Figure 4.

Figure 4. Installation of laser displacement sensor.

2.2. Analysis of Experimental Results

In actual processing, high-speed motorized spindles often work at a constant speed for
a long time. Moreover, the rated speed of A02 high-speed motorized spindle is 9900 r/min.
The experiment was divided into three groups according to the rotation speed from
4000 r/min to 8000 r/min. The working time of each group was 180 min. Collect the
data of temperature and thermal error of the motorized spindle. In order to minimize the
influence of ambient temperature on experimental data, the ambient temperature of the
laboratory was set to 22 ◦C. Motorized spindle internal structure is tight and not easy to
heat. In order to reduce the interaction between the three experiments, the interval of each
experiment was 12 h. The next group of experiments was performed after the motorized
spindle was completely cooled. The temperature and thermal error data of the three groups
were collected according to the above scheme, as shown in Figures 5–8.

It can be seen from Figures 5–7 that the temperature at each measuring point gradually
rises over time and reaches dynamic equilibrium. The temperature variation of each
measuring point is similar under different rotational speeds. Temperature measurement
points T5 and T10 are higher due to their proximity to the internal heat source. The
motorized spindle cooling water used in the experiment did not cool the rear bearing,
so the temperature of the rear bearing T10 was higher than that of the front bearing T5.
Other temperature measuring points are located on the surface of the motorized spindle,
resulting in allowed temperature. It can be seen from Figure 8 that the axial thermal error
variation trend of motorized spindles at different speeds is roughly the same. The thermal
error of the spindle increases with the increase of rotational speed. The temperature and
thermal error data obtained from the experiment provide data support for the temperature
measurement point optimization and thermal error modeling of the motorized spindle.
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Figure 5. Temperature measuring point curve of motorized spindle at 4000 r/min.

Figure 6. Temperature measuring point curve of motorized spindle at 6000 r/min.

Figure 7. Temperature measuring point curve of motorized spindle at 8000 r/min.
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Figure 8. Axial thermal drift curve of motorized spindle.

3. Optimization of Temperature Measuring Point of Motorized Spindle

The temperature-sensitive points of the motorized spindle should not only reflect the
temperature field distribution of the motorized spindle, but also consider the correlation
and co-linearity among temperature measuring points. In this paper, fuzzy clustering and
grey correlation analysis are used to optimize temperature measuring points and screen
out temperature sensitive points. This method eliminates the colinearity of temperature
variables and ensures the robustness of the thermal error model.

3.1. Fuzzy Clustering

In this paper, the fuzzy clustering method is used to analyze temperature measurement
points. Fuzzy clustering analysis is to establish fuzzy relations according to the correlation
between temperature variables. It constructs fuzzy similarity matrices and temperature
variables for cluster analysis. The methods and steps are as follows:

(1) Determine the category of object. Set X = {x1,x2,...,xn} is the set of n temperature
variables. Where, xi = {xi1,xi2,...,xim} (i = 1,2,...,n) is the m observed values of the i
temperature variable.

(2) Data normalization. In order to make the data easy to compare, the data normalization
method is used to normalize the temperature samples. Mi = max{xi1,xi2,...,xim} is the
maximum value of each column of matrix X. Calculate x’ij = xij/Mi (i = 1,2,· · · ,n, j =
1,2,· · · ,m).

(3) Solve the fuzzy similarity matrix. Fuzzy similarity matrix is established by the
correlation coefficient method. The correlation coefficient can be calculated as a
Formula (1):

rij =

m
∑

k=1
(xik − xi)

(
xjk − xj

)
√

m
∑

k=1
(xik − xi)

2

√
m
∑

k=1

(
xjk − xj

)2
(1)

(4) Solve the fuzzy equivalent matrix. Only when the matrix satisfies three conditions
of reflexivity, symmetry and transitivity can it be classified reasonably. The fuzzy
similarity matrix R is not necessarily transitive. Therefore, the fuzzy similar matrix
R should be constructed as a fuzzy equivalent matrix. The transitive closure t(R) of
R is found by the flat method. The existence of k after a finite number of operations
makes. Let t(R) = R2k (k ≥ 1), t(R) is the fuzzy equivalent matrix.

(5) Fuzzy clustering. According to the fuzzy equivalence matrix t(R), the threshold λ is
selected in [0, 1]. Let the element value of Rij > λ be 1, otherwise 0, so as to achieve
the purpose of temperature variable classification.
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3.2. Grey Relational Analysis

Grey relational analysis is a systematic analysis based on mathematical theory accord-
ing to the close degree of each characteristic parameter series in the system. Grey relational
analysis was used to determine the tightness of the relationship between thermal error
and temperature measurement points of the motorized spindle. The analysis steps are
as follows:

(1) Standardized data. The interval value method is used for dimensionless data, and its
calculation is shown in Equation (2):

x(k) =
x(0)(k)−min x(0)(k)

max x(0)(k)−min x(0)(k)
(2)

where, x (k) is the temperature data after normalized processing. x(0) (k) is the
original data.

(2) Calculate the correlation coefficient. Set the thermal error data as x0 = {x0(k)|k = 1,2,...,m}
and the temperature measurement point data as xi = {xi(k)|i = 1,2,...,n; k = 1,2,...,m}.
Then the correlation coefficient of x0 to xi at the k point is Equation (3):

ξoi(k) =
min

i
min

k
|xo(k)−xi(k)|+ρmax

i
max

k
|xo(k)−xi(k)|

|xo(k)−xi(k)|+ρmax
i

max
k
|xo(k)−xi(k)|

(3)

where, ρ is the resolution coefficient, generally ρ = 0.5. In practical calculation, the ρ

value can be adjusted appropriately to improve the resolution.
(3) Find the correlation degree. The correlation between the thermal error series and

the temperature measurement point series can be calculated as the average of the
correlation coefficients at each moment of the two series. The calculation is shown in
Equation (4).

roi =
1
m

m

∑
k=1

ξoi(k) (4)

3.3. Selection of Temperature-Sensitive Points

According to the measured temperature data, fuzzy clustering was performed on the
data of each temperature measurement point at 6000 r/min. According to the formulas in
Section 3.1, MATLAB is used to solve the fuzzy equivalent matrix t(R), t(R) is

t(R) =



1. 0000 0. 8865 0. 8585 0. 5771 0. 5771 0. 5771 0. 5771 0. 5771 0. 8585 0. 5771

0. 8865 1. 0000 0. 8585 0. 5771 0. 5771 0. 5771 0. 5771 0. 5771 0. 8585 0. 5771

0. 8585 0. 8585 1. 0000 0. 5771 0. 5771 0. 5771 0. 5771 0. 5771 0. 9862 0. 5771

0. 5771 0. 5771 0. 5771 1. 0000 0. 8228 0. 9802 0. 8881 0. 9775 0. 5771 0. 8228

0. 5771 0. 5771 0. 5771 0. 8228 1. 0000 0. 8228 0. 8228 0. 8228 0. 5771 0. 9284

0. 5771 0. 5771 0. 5771 0. 9802 0. 8228 1. 0000 0. 8881 0. 9775 0. 5771 0. 8228

0. 5771 0. 5771 0. 5771 0. 8881 0. 8228 0. 8881 1. 0000 0. 8881 0. 5771 0. 8228

0. 5771 0. 5771 0. 5771 0. 9775 0. 8228 0. 9775 0. 8881 1. 0000 0. 5771 0. 8228

0. 8585 0. 8585 0. 9862 0. 5771 0. 5771 1. 85771 0. 5771 0. 5771 1. 0000 0. 5771

0. 5771 0. 5771 0. 5771 0. 8228 0. 9284 0. 8228 0. 8228 0. 8228 0. 5771 1. 0000


According to the fuzzy equivalent matrix, fuzzy clustering is carried out according to

the threshold λ. The elements of t(R) were sorted as 0.9862, 0.9802, 0.9775, 0.9284, 0.8881,
0.8865, 0.8585, 0.8228, 0.5771. Different clustering results are obtained when λ is the above
values, respectively. The clustering results are shown in Table 2.
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Table 2. Clustering results.

λ Categories Clustering Results

1.000 10 [T1],[T2],[T3],[T4],[T5],[T6],[T7],[T8],[T9],[T10]
0.9862 9 [T1],[T2],[T3,T9],[T4],[T5],[T6],[T7],[T8],[T10]
0.9802 8 [T1],[T2],[T3,T9],[T4,T6],[T5],[T7],[T8],[T10]
0.9775 7 [T1],[T2],[T3,T9],[T4,T6,T8],[T5],[T7], [T10]
0.9284 6 [T1],[T2],[T3,T9],[T4,T6,T8],[T5,T10],[T7]
0.8881 5 [T1],[T2],[T3,T9],[T4,T6,T7,T8],[T5,T10]
0.8865 4 [T1,T2],[T3,T9],[T4,T6,T7,T8],[T5,T10]
0.8585 3 [T1,T2,T3,T9],[T4,T6,T7,T8],[T5,T10]
0.8228 2 [T1,T2,T3,T9],[T4,T5,T6,T7,T8,T10]
0.5771 1 [T1,T2,T3,T4,T5,T6,T7,T8,T9,T10]

After the completion of fuzzy clustering, choosing the optimal classification number
is the research content of clustering effectiveness, and using λ to judge the similarity. The
closer to 1, the more similar. In order to achieve accurate grouping with fewer measuring
points, this paper selects four categories as the optimal classification, that is, the clustering
with λ = 0.8865 as the optimal clustering result, as shown in Table 3.

Table 3. Optimal clustering results.

Grouping 1 2 3 4

Temperature measurement points T1,T2 T3,T9 T4,T6,T7,T8 T5,T10

Through the grey relational analysis, the grey relational degree of each temperature
measuring point and axial thermal error of the motorized spindle at 6000 r/min is obtained,
as shown in Table 4.

Table 4. Grey relational degree between axial thermal error and temperature measurement points.

Temperature
Measurement Points

Gray Relational
Degree

Temperature
Measurement Points

Gray Relational
Degree

T1 0.4074 T6 0.4124
T2 0.4066 T7 0.4171
T3 0.4129 T8 0.4125
T4 0.4133 T9 0.4142
T5 0.5174 T10 0.7226

According to the grey relational degree of temperature measurement points and axial
thermal error, the clustering results of temperature measurement points were combined
and selected as the temperature sensitive points with the largest grey relational degree
from the optimal clustering groups. T1 of group 1, T9 of group 2, T7 of group 3 and T10 of
group 4 are obtained as temperature-sensitive points of the motorized spindle system.

4. Thermal Error Modeling and Validation
4.1. Construction of BP Neural Network

BP is a multi-layer feedforward neural network with forward propagation of signals
and backward propagation of errors. A three-layer BP neural network with temperature
sensitive points as input and axial thermal error as output was used to establish a thermal
error prediction model. The tangent S-type transfer function tansig and the linear transfer
function purelin are used as functions for the hidden and output layers. The structure of
the BP neural network is shown in Figure 9.



Machines 2021, 9, 286 10 of 16

Figure 9. Structure of BP neural network.

4.2. Principle of BAS

The BAS algorithm is suitable for the optimization of multi-objective functions. The
biological mechanism for Beetle antennae’s foraging is to obtain the strength of its food
from the sense of smell. The Beetle antennae fly to the side where food smells high in
the left and right antennae. BAS has the advantage that Beetle Antennae lookup does not
need to know the specific form of the function. It also does not require information about
effective gradients for function optimization. In addition, only one beetle is needed to
search, which can greatly reduce the amount of calculation, thus significantly improving
the search speed. The modeling steps are as follows:

(1) Create a random vector for Beetle Antennae that gets normalized

→
b =

rands(k, 1)
‖rands(k, 1)‖ (5)

where, rands() is a random function; k is the spatial dimension.
(2) Create Beetle left and right antennae space coordinates xrt= xt+d0 ∗

→
b /2

xlt= xt−d0 ∗
→
b /2

(t = 0, 1, 2, · · · , n) (6)

where, xrt and xlt represent the position coordinates of the right and left whisker of
Longicorn beetle in the t iteration, respectively. xt represents the centroid coordinates
of Beetle at the t iteration. d0 represents the distance between the whiskers.

(3) According to the fitness function, that is, the intensity of f(xl) and f(xr), the intensity
of left and right beard odor can be judged. F is a fitness function.

(4) Update the position of Beetle iteratively

xt+1= xt−δt ∗
→
b∗sign(f(xrt)−f(xlt)) (7)

where, δt represents the step factor at iteration t. Sign() is a symbolic function.

4.3. BAS-BP Neural Network Model

In the training process, the BP network completely depends on the adjustment of
initial weight and thresholds by error function. The initial weight threshold is usually
obtained by random initialization. Improper selection of it will greatly affect the training
results. BAS is used to optimize the initial weights and thresholds of the BP neural network.
It can train the network and greatly improve the performance of the network. In this way,
the problem of the network falling into local optimum caused by random initialization can
be greatly avoided.

The modeling procedure is as follows.

(1) Determine the structure of the BP network. The BAS-BP model is adopted in this
paper. Four nodes in its input layer are temperature-sensitive points T1, T7, T9 and
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T10. One node in the output layer is the axial thermal error of the motorized spindle.
The empirical formula H = (m + n) 1/2 + a is usually used to determine the number
of hidden layer nodes. Where, m is the number of nodes at the input layer. N is the
number of nodes at the output layer. A is an integer between 1 to 10. According to the
number of hidden layer nodes in the range of empirical formulae, training is carried
out through a training set. The hidden layer node corresponding to the minimum
training error is selected as the optimal number of hidden layer nodes. The initial
weights and thresholds of the BP neural network are random in each training, so the
number of optimal hidden layer nodes in each training is not fixed.

(2) Initialize beetle parameters. The positions of the left and right antennae of the beetle
are Xl and Xr. The initial step δ0 = 25, the number of iterations T = 100.

(3) Determine the fitness function. Beetle assigns weights and thresholds to the network
structure. BP neural network is used to train the training set. The root mean square
error (MSE) of training data was used as a fitness evaluation function. The fitness
function is:

fitness = MSE =
1
N

=
N

∑
i=1

(yi−yi)
2 (8)

where, N is the number of samples in the training set. yi is the predicted value of the i
sample. yi is the actual value of the i sample. Therefore, when the algorithm iteration
stops, the position with the minimum fitness function value is the optimal solution.

(4) Initialize Beetle position and calculate its fitness function. It is stored in best X (the best
Beetle start position) and best Y (the best fitness function value for the start position).

(5) Update the spatial coordinates of the Beetle antennae, calculate the value of the fitness
function between the antennae and compare them. At this time, if the value of the
fitness function is better than best Y, update best y and best X. The update of beetle
position is to adjust the weights and thresholds of the BP neural network.

(6) Judge whether the fitness function value has reached the set accuracy or the maximum
iteration number. If it is full, then step (7). Otherwise, return to step (5) to continue
the iteration.

(7) Generate the optimal solution. When the algorithm stops iterating, the solution in
best X is the optimal solution for training. That is, the optimal initial weight and
threshold of the BP neural network. The optimal solution is put into the BP neural
network for secondary training and learning. Finally, the thermal error prediction
model of the motorized spindle is formed. Based on the above discussion, the specific
process of the BAS-BP regression prediction model is given, as shown in Figure 10.

Figure 10. BAS-BP neural network optimization flow chart.
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4.4. GA-BP Neural Network Model

In order to improve the performance of the BAS-BP model, it was compared with
GA-BP. The Genetic algorithm has the advantages of global optimization and automatic
acquisition of search space. The topology, weights and thresholds of the BP neural network
are optimized by using the characteristics of genetic algorithms, which improves the
convergence speed and precision of BP neural network.GA-BP thermal error modeling
process is shown in Figure 11. The traditional trial-and-error method is used to find the
optimal value of the model performance index, and the model parameters are determined
by the optimal performance index. Parameters of genetic algorithms are shown in Table 5.

Figure 11. GA-BP neural network optimization flow chart.

Table 5. Parameters of GA algorithm.

Size of Group Generations of Evolution Intersecting Rate Variation Rate

10 50 0.3 0.01

4.5. Verification and Comparison of Thermal Error Models

In this paper, 6000 r/min experimental data were used as training data sets, and
4000 r/min and 8000 r/min experimental data were used as validation data sets. Temperature-
sensitive points T1, T7, T9 and T10 were used as inputs and axial thermal errors as outputs
for the prediction model. The BAS-BP model was compared with the BP model and GA-BP
model. The comparison between the predicted value and the actual value of each model is
shown in Figures 12 and 13.

As shown in Figures 12 and 13, at 4000 r/min, the residual variation range of the
BP neural network prediction model was −6.48–5.31 µm, and the mean residual was
2.19 µm. The residual variation range of the GA-BP neural network prediction model
was −4.91–5.35 µm, and the mean residual was 2.07 µm. The range of residual error of
the BAS-BP neural network prediction model was −5.73–3.55 µm, and the mean residual
error was 1.60 µm. At 8000 r/min, the residual variation range of the BP neural network
prediction model was −3.27–6.35 µm, and the mean residual was 2.12 µm. The residual
variation range of the GA-BP neural network prediction model was −4.58–4.95 µm, and
the mean residual was 1.62 µm. The residual of the BAS-BP neural network prediction
model ranged from −3.68 µm to 5.50 µm, and the mean residual was 1.25 µm. Compared
with BP and GA-BP neural network prediction models, the variation range and mean value
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of the residual error of the BAS-BP prediction model are reduced. The method reduces
the instability of the prediction effect and improves the accuracy and robustness of the
prediction model. The three models have high prediction accuracy, and the prediction
accuracy of the BAS-BP model is higher than the GA-BP model at 8000 r/min. Although
these three models have good prediction accuracy at 4000 r/min. However, there is still a
small gap between it and the thermal error model corresponding to 8000 r/min. Therefore,
the robustness of the model needs to be further improved at 4000 r/min.

Figure 12. Prediction curves of each model at 4000 r/min: (a) BP prediction curve; (b) GA-BP prediction curve; (c) BAS-BP
prediction curve.

Figure 13. Prediction curves of each model at 8000 r/min: (a) BP prediction curve; (b) GA-BP prediction curve; (c) BAS-BP
prediction curve.

In order to evaluate the thermal error prediction model, the determination coefficient
(R2), root mean square error (RMSE), mean absolute error (MAE) and modeling accuracy
(η) were used as evaluation indexes. The results are shown in Figures 14 and 15.

Figure 14. Evaluation results of each model at 4000 r/min.
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Figure 15. Evaluation results of each model at 8000 r/min.

BAS-BP models have the best performance at different speeds. Compared with the BP
model, the RMSE of the BAS-BP and GA-BP models at 4000 r/min and 8000 r/min were
reduced by 20.36% and 8.73%, and 34.07% and 22.42%, respectively; the prediction accuracy
was improved by 2.3%, 0.4% and 2.3%, 1.2%. The BAS-BP model also outperforms the BP
and GA-BP models in R2 and MAE indexes. Therefore, the BAS-BP model can improve the
prediction accuracy of the BP model and is superior to the GA-BP model.

The running time of Beetle antennae search algorithm and Genetic algorithm is shown
in Figure 16. It can be seen from the figure that at 4000 r/min, the running time of the
Beetle antennae search algorithm is 20.766 s, and that of the Genetic algorithm is 31.408 s.
At 8000 r/min, the running time of the Beetle antennae search algorithm and the Genetic
algorithm is 21.408 s and 30.478 s, respectively. The running time of the Beetle antennae
search algorithm is shorter than that of the Genetic algorithm at different rotational speeds.

Figure 16. Running time of Beetle antennae search algorithm and genetic algorithm at different
rotational speeds. (a) 4000 r/min running time. (b) 8000 r/min running time.

Compared with the Genetic algorithm, the Beetle antennae search algorithm has
faster search speed and better search performance. This is because the Beetle antennae
search algorithm does not have crossover, mutation and other Genetic operations. Its
computational complexity is lower than that of the Genetic algorithm. This method does
not need to know gradient information to achieve the purpose of optimization. Only a
single Beetle is required during iteration, which greatly reduces the amount of computation
and is more efficient. Therefore, the BAS-BP model has advantages besides high prediction
accuracy and small computation.
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5. Conclusions

In this paper, the temperature field and thermal error of the A02 high speed motorized
spindle are measured. Fuzzy clustering method and grey relational analysis method are
used to optimize temperature measuring points. The BAS-BP thermal error prediction
model of the motorized spindle was established. The main conclusions are as follows:

(1) Fuzzy clustering and grey relational analysis were used to optimize the temperature
measuring points, which reduced the number of temperature measuring points from
10 to 4, and screened out the temperature-sensitive points, effectively eliminating the
co-linearity among temperature variables. It is of great significance to improve the
robustness and modeling accuracy of thermal error models.

(2) The weights and thresholds of the BAS optimization BP neural network are used to
train the root mean square error of data as the fitness function of BAS. This method
effectively avoids the shortcomings of the BP neural network model, such as poor
convergence, low prediction accuracy and easy to fall into the local extremum.

(3) A BAS-BP thermal error prediction model was established. The robustness and
prediction accuracy of the BAS-BP model were verified at different rotational speeds.
The mean axial absolute errors of the BAS-BP neural network prediction model
at 4000 r/min and 8000 r/min are 1.58 µm and 1.232 µm, respectively, and the
prediction accuracy is 94.1% and 96.6%, respectively. They are better than BP and
GA-BP neural network prediction models. Compared with the GA-BP thermal error
prediction model, the BAS-BP prediction model has the advantages of high precision
and small computation. Therefore, the GA-BP model is suitable for the prediction
and compensation of spindle thermal error, which is significant to improving the
machining accuracy of machine tools.
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