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Abstract: A linear dynamic model of a front-loading type washing machine was developed in this
study. The machine was conceptualized with three moving rigid bodies, revolute joints, springs,
and dampers along with prescribed rotational drum motion. Kane’s method was employed for
deriving the equations of motion of the idealized washing machine. Since the modal and transient
characteristics can be conveniently investigated with a linear dynamic model, the linear model can
be effectively used for the design of an FL type washing machine. Despite the convenience, however,
the reliability of the linear dynamic model is often restricted to a certain range of system parameters.
Parameters relevant to the reliability of the linear dynamic model were identified and the parameters’
ranges that could guarantee the reliability of the proposed linear dynamic model were numerically
investigated in this study.

Keywords: washing machine; front-loading type; dynamic modeling; modal characteristic; transient
characteristic; model reliability

1. Introduction

Most washing machines manufactured today consist of a cabinet, tub, motor, drum,
and suspension that consists of springs and dampers. The drum is usually embraced by
a tub and it rotates around an axis that is either horizontal or vertical to the base plane.
If the rotating axis is vertical to the base plane, the washing machine is classified as the
top-loading type; if the rotating axis is horizontal to the base plane, it is classified as the
front-loading type (hereafter, FL type). Compared to the top-loading type, the FL type
generally uses less water and detergent and is known to cause less damage to clothes.
However, since the FL type initially had relatively limited washing capacity, it was mostly
used in Europe where water is expensive and hard to obtain [1]. Usage of the FL type has
increased recently because its washing capacity has significantly increased. However, since
the FL type is generally heavier than the top-loading type, its energy efficiency has not
been satisfactory. In order to enhance its energy efficiency, its weight has been continuously
reduced, but this has resulted in the serious problem of harsher vibrations [2].

Compared to the top-loading type, the FL type is, by the nature of its configuration,
more likely to face problems such as rotating mass unbalance and machine walking. Such
problems mostly occur during the machine’s fast-spin cycle and are caused by unevenly
distributed clothes attached to the inside surface of the drum. During wash and rinse
cycles, the operation speed is relatively slow such that significant vibration hardly occurs.
During the dehydration cycle at high operation speeds, however, clothes unevenly attach
to the inside surface of the drum and create rotating mass unbalance. This unbalance often
induces excessive vibration, which may result in various undesirable phenomena such as
unpleasant noise, machine walking, and structural failures of the machine components.
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Many studies have been conducted in order to analyze the dynamic behavior of the FL
type washing machine exhibiting rotating mass unbalance. These machines usually have
friction dampers and rubber bushings that have nonlinear dynamic characteristics. For
designing such washing machines, it is hard to develop a reliable computational model to
predict their dynamic behavior. Previous studies mostly used simplified numerical models
for the dynamic analysis of an FL type washing machine. Conrad and Soedel [3] made a
simple 2-D model of an FL type washing machine in order to investigate machine walking
phenomena. Papadopoulos and Papadimitrious [4] proposed a simple 3-D model of a
portable FL type washing machine and improved its dynamic stability. They provided
expert insight on how an analytical model of an FL type washing machine could be devel-
oped and used for the dynamic analysis, design, and control of such machines. However,
the effects of the machine’s springs and dampers were not considered in their model.

Boyraz and Gündüz [5] proposed a 2-D model of an FL type washing machine in-
cluding springs and dampers and conducted an optimization to minimize the vibration
amplitudes of the tub. Buśkiewicz et al. [6] proposed a 3-D model of an FL type washing
machine that included a rotating drum and a non-rotating tub. The drum rotated inside
the tub but other relative movements between the tub and drum were not considered; thus,
possible clashing between the tub and the drum under excessive vibration could not be pre-
dicted with the model. Lim et al. [7] proposed a 3-D model of an FL type washing machine
that included additional degrees of freedom to consider the effect of elastic deformation
between the tub and the drum. They also considered the bearings between the tub and
the shaft as stiffness elements in the radial direction; thus, the clashing phenomena could
be predicted with their model. Kamarudin et al. [8] derived linear equations of motion of
an FL type washing machine and conducted dynamic, frequency response, and relative
movement analyses between the tub and drum. The linear equations of motion were useful
for the modal and frequency response analyses and control system design, but in some
cases the dynamic behavior of the machine could not be accurately predicted with the
linear dynamic model. In other words, the limitations and reliability of the linear dynamic
model were not investigated in their work.

In this study, a washing machine was modeled as a multibody system posessing three
rigid bodies, multiple joints, springs, and dampers along with a prescribed rotational drum
motion. The equations of motion were derived using Kane’s method [9]. The integrity of
the three rigid body model was previously well addressed in [6–8]. The accuracy of the
nonlinear analytical three rigid body model was first validated by comparing its numerical
results to those obtained with a commercial multibody dynamic analysis software [10].
Then, by linearizing the nonlinear equations, the linear equations of motion were obtained.
By using the linear analytical model, modal and transient analyses were conducted to
investigate the dynamic characteristics of the machine. Moreover, the reliability of the
linear analytical model was examined by comparing its transient results to those of the
fully nonlinear model. By a comparison study, the reliability and limitations of the linear
analytical model suggested in this study could be investigated.

2. Modeling an FL-Type Washing Machine
2.1. System Configuration

Figure 1 shows a schematic of the washing machine model. In the multibody model,
body T is the tub that is supported by four springs and two dampers; body S is the shaft
and rotor; and body D is the drum to which an unbalance mass is attached. Body T is
connected to the cabinet by four springs and two dampers, and the cabinet is assumed to
be fixed to the ground. In order to simplify modeling, the springs are idealized as linear
springs and the dampers are idealized as linear viscous dampers. Body S and body T are
connected with two bearings that are idealized as linear springs in the radial direction.
Body D is attached to the end of the shaft of body S. The bending stiffness between the two
bodies (D and S) is defined to consider the lateral elastic deformation of the drum-shaft
assembly. The effect of the stiffness model on the dynamic behavior of an FL type washing
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machine was discussed in previous studies [7,8]. In this study, the rotational motion of the
drum during the dehydration cycle was prescribed as a function of time.
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Figure 1. The schematic of a simplified front-loading type washing machine model.

2.2. Derivation of Equations of Motion

Using Kane’s method, the equations of motion of the idealized FL washing machine
model shown in Figure 1 were derived based on the following assumptions:

1. The cabinet is fixed to the ground.
2. Axial rotational motion of the tub is ignored.
3. Torsional deformation of the shaft relative to the tub is ignored.
4. Translational motion of the drum relative to the tub in the axial direction is ignored.
5. An unbalance mass is fixed to the drum.
6. The rotational motion of the drum is prescribed as a function of time.

Figure 2 shows the side and front views of the assemblies. In Figure 2a, PT is the
midpoint between the front and rear bearing centers. MT is the mass center of body T.
Lengths L f b, Lrb, and LT denote the distances of the front bearing center, rear bearing
center, and mass center from PT , respectively. Ff b and Frb denote the forces acting on
body T exerted by the front and rear bearings, respectively. The coordinate system ĉi′s
is attached to the cabinet C, which is assumed to be fixed in space, and point O is the
reference point fixed to the ground. The displacements of PT relative to O in the directions
of ĉ2 and ĉ3 are represented by two generalized coordinates, q1 and q2. The side and front
views of the drum-shaft assembly are shown in Figure 2b. PS is the midpoint between the
front and rear bearing centers in S. MS and MD are the mass centers of body S and body
D, respectively. PD is the center of the drum rear side, and PDE is the center of the drum
front side. Lengths LS and LD are the distances of MS and PD from PS, respectively. LDM
and LDE are the distances of MD and PDE from PD, respectively. The mass center MD is
shifted away from the central axis of the drum by e due to the unbalanced mass attached
to the drum. ĉ2 and ĉ3 measure numbers of the displacement of PS relative to O and are
represented by two generalized coordinates q3 and q4.

Figure 3 shows the body 2-3 rotations of the three rigid bodies. The coordinate systems
t̂i (i = 1, 2, 3), ŝi (i = 1, 2, 3), and d̂i (i = 1, 2, 3) are fixed to body T, body S, and body D,
respectively. Each body has 2 degrees of freedom for the rotational motion. The generalized
coordinates q̂i (i = 5, 6, 7, 8) represent the Euler angles of body 2-3 rotations of body T and
body S relative to the cabinet. Generalized coordinates q̂i (i = 9, 10) represent the Euler
angles of body 2-3 rotation of body D relative to body S. A prescribed motion θ(t) is given
to body S in the direction of the shaft axis ŝ1. Table 1 shows the direction cosine tables
among the four coordinate systems.
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Table 1. Direction cosine tables among the four coordinate systems.

t̂1 t̂2 t̂3 d̂1 d̂2 d̂3 ŝ1 ŝ2 ŝ3

ĉ1 c5c6 −c5s6 s5 ŝ1 c9c10 −c9s10 s9 ĉ1 c7c8 s7 sin θ − c7s8 cos θ c7s8 sin θ + s7 cos θ
ĉ2 s6 c6 0 ŝ2 s10 c10 0 ĉ2 s8 c8 cos θ −c8 sin θ
ĉ3 −s5c6 s5s6 c5 ŝ3 −s9c10 s9s10 c9 ĉ3 −s7c8 c7 sin θ + s7s8 cos θ −s7s8 sin θ + c7 cos θ
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In order to derive the equations of motion using Kane’s method, velocities of the mass
center points and the angular velocities of the three rigid bodies need to be expressed
in terms of generalized speeds. The following simplest form of generalized speeds is
employed in this study.

ui =
.
qi (i = 1, 2, · · ·, 10) (1)

Now, the velocities of points PT and PS are expressed as follows.

→
v

PT
= u1ĉ2 + u2ĉ3 (2)

→
v

PS
= u3ĉ2 + u4ĉ3 (3)

The angular velocities of the three rigid bodies can be expressed as follows:

→
ω

T
= u5s6 t̂1 + u5c6 t̂2 + u6 t̂3 (4)

→
ω

S
= (

.
θ + u7s8)ŝ1 + (cos θc8u7 + sin θu8)ŝ2 + (− sin θc8u7 + cos θu8)ŝ3 (5)

→
ω

D
=
→
ω

S
+

S→D
ω (6)

where the angular velocity of D in S can be expressed as follows.

S→D
ω = u9s10d̂1 + u9c10d̂2 + u10d̂3 (7)

In Equations (4), (5) and (7), and Table 1, si denotes sin θi, and ci denotes cos θi.
Now, the velocities of the three mass centers MT, MS, and MD can be obtained using

the following formulas:
→
v

MT
=
→
v

PT
+
→
ω

T
× LT t̂1 (8)

→
v

MS
=
→
v

PS
+
→
ω

S
× (−LS)ŝ1 (9)

→
v

MS
=
→
v

PS
+
→
ω

S
× (−LS)ŝ1 (10)

where the following is the case.

→
v

PD
=
→
v

PS
+
→
ω

S
× LD ŝ1 (11)

In order to derive the generalized inertia forces, the angular accelerations of the three
rigid bodies and accelerations of the three mass centers need to be obtained using the
following formulas.

→
α

T
=

d
→
ω

T

dt
(12)

→
a

MT
=
→
a

PT
+
→
ω

T
× (
→
ω

T
× LT t̂1) +

→
α

T
× LT t̂1 (13)

→
α

S
=

d
→
ω

S

dt
(14)

→
a

MS
=
→
a

PS
+
→
ω

S
× (
→
ω

S
× (−LS)ŝ1) +

→
α

S
× (−LS)ŝ1 (15)

→
a

PD
=
→
a

PS
+
→
ω

S
× (
→
ω

S
× LD ŝ1) +

→
α

S
× LD ŝ1 (16)

→
α

D
=

d
→
ω

D

dt
(17)

→
a

MD
=
→
a

PD
+
→
ω

D
× (
→
ω

D
× LDMd̂1) +

→
α

D
× LDMd̂1 (18)
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If the velocity of the mass center of the kth rigid body is described as
→
v

k
and the

angular velocity of the kth rigid body is described as
→
ω

k
, the partial velocity of the kth rigid

body mass center
→
v

k
r and the partial angular velocity of the kth rigid body

→
ω

k
r are obtained

as follows.
→
v

k
r =

∂
→
v

k

∂ur
(19)

→
ω

k
r =

∂
→
ω

k

∂ur
(20)

Then, the generalized inertia force F∗r can be obtained by using inertia force
→
F
∗
k and

inertia torque
→
T
∗
k of the kth rigid body as follows:

F∗r =
3

∑
k=1

(
→
v

k
r ·
→
F
∗
k +

→
ω

k
r ·
→
T
∗
k

)
(21)

where the following is the case.
→
F
∗
k = −mk

→
a k (22)

→
T
∗
k = −

↔
I k ·

→
α k −

→
ωk ×

↔
I k ·

→
ωk (23)

In the above equations, mk is the mass of the kth rigid body,
→
a k is the acceleration

of the mass center of the kth rigid body,
→
ωk and

→
α k are the angular velocity and angular

acceleration of the kth rigid body, and
↔
I k is the inertia dyadic of the kth rigid body about its

mass center. The inertia dyadics of the three rigid bodies (tub, shaft, and drum) about their
mass centers can be expressed as follows:

↔
I 1 = IT

11 t̂1 t̂1 + IT
22 t̂2 t̂2 + IT

33 t̂3 t̂3 (24)

↔
I 2 = IS

11ŝ1ŝ1 + IS
22ŝ2ŝ2 + IS

33ŝ3ŝ3 (25)
↔
I 3 = ID

11d̂1d̂1 + ID
22d̂2d̂2 + ID

33d̂3d̂3 + ID
12d̂1d̂2 + ID

21d̂2d̂1 (26)

where the products of inertia ID
12 and ID

21 originate from the unbalance mass attached to
the drum. Table 2 shows the mass and mass center locations of the three rigid bodies, and
Table 3 shows the moments and products of inertia of the three rigid bodies. In Table 2,
x, y, and z denote ĉ1, ĉ2, and ĉ3, which measure numbers of the mass center relative to
the origin point O, respectively. The unbalance mass is considered as a point mass (400 g)
attached to the drum at a point that is 0.2 m above the drum center in d̂2 direction.

Table 2. Mass and mass center locations of the three rigid bodies.

Body Mass (kg) x (mm) y (mm) z (mm)

Body T 23.87 240.61 0 0
Body S 4.34 18.11 0 0
Body D 4.04 209.9 19.8 0

Table 3. Moments and products of inertia of the three bodies.

Body I11 (kg ·mm2) I22 (kg ·mm2) I33 (kg ·mm2) I12 = I21 (kg ·mm2)

Body T 1,030,000 1,610,000 1,530,000 0
Body S 55,300 38,400 38,400 0
Body D 196,000 162,000 177,000 −7207
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Forces acting on the washing machine are classified into conservative and non-
conservative forces. Forces from the springs and bearings, the bending stiffness of the
drum-shaft assembly, and gravitation are conservative, while those from dampers are
non-conservative. Generalized active forces related to the conservative forces can be con-
veniently obtained by differentiating the potential energy of the system with respect to
generalized coordinates. Figure 4 shows a spring and damper that connect the tub and
cabinet. Table 4 shows the initial end point locations of the four springs and two dampers
relative to the origin.
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Table 4. Initial end point locations of 4 springs and 2 dampers relative to the origin.

Point Fixed to Cabinet Point Fixed to Tub

Spring 1 (326.8, 300.2, 250.6) (326.8, 162.6, 162.6)
Spring 2 (326.8, 300.2, −250.6) (326.8, 162.6, −162.6)
Spring 3 (86.8, 300.2, 250.6) (86.8, 162.6, 162.6)
Spring 4 (86.8, 300.2, −250.6) (86.8, 162.6, −162.6)

Damper 1 (306.8, −280.0, 280.0) (306.8, −162.6, 162.6)
Damper 2 (306.8, −280.0, −280.0) (306.8, −162.6, −162.6)

Figure 5a shows the translational displacement measure between the front bearing
centers: (P f b)T is attached to body T, and (P f b)S is attached to body S. Figure 5b shows
the angular displacement measure φ between body D and body S about the axis d̂3 (or ŝ3).
The angular displacement measure can be obtained by using the cross product of ŝ1 and
d̂1. The generalized active forces Fr consists of two components as follows:

Fr = (Fr)C + (Fr)N (r = 1, 2, · · · , 10) (27)

where the following is the case:

(Fr)C = −∂UC
∂qr

(r = 1, 2, · · · , 10) (28)

UC = UE + UG (29)

UE =
1
2

[
4

∑
k=1

Kk(∆Lk)
2 + KDφ2 + K f br2

f b + Krbr2
rb

]
(30)

UG =
3

∑
k=1

mkghk (31)
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(Fr)N =
2

∑
k=1

→
v

Pk
dP

r ·
→
F

k

dP (r = 1, 2, · · · , 10) (32)

→
F

k

dP = −(Cdp
→
v

Pk
dP ·

→
r

k
dP∣∣∣∣→r k
dP

∣∣∣∣ )
→
r

k
dP∣∣∣∣→r k
dP

∣∣∣∣ (33)

and where the following is obtained.

→
r

k
dP =

→
r

PGk
Pk

dP (34)

→
v

Pk
dP =

→
v

PD
+
→
ω

D
×→r

PD Pk
dP (35)

→
v

Pk
dP

r =
∂
→
v

Pk
dP

∂ur
(36)
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Notations (Fr)C and (Fr)N denote the generalized active forces obtained by the con-
servative and non-conservative forces, respectively. Potential energy UC is the sum of the
elastic potential energy UE and gravitational potential energy UG of the three rigid bodies.
Notations Kk, K f b, Krb, and KD are the stiffness values of the kth spring, front bearing,
rear bearing, and drum-shaft assembly flexibility, respectively. Notations ∆Lk, r f b, rrb, and
φ are the translational and rotational deformation measures corresponding to the four
stiffness elements. In Equation (31), hk is the ĉ2 distance measure of the mass center of
the kth rigid body relative to origin point O. Notation Cdp is the damping constant of a

damper. Notation
→
r

k
dP is the vector defined by the two points of the kth damper shown

in Figure 4. The initial locations of the points are given in Table 4. Using the generalized
forces obtained in Equations (21) and (27), the equations of motion of the idealized washing
machine model can be obtained as follows.

F∗r + Fr = 0 (r = 1, 2, · · · , 10) (37)
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2.3. Linearization of the Equations of Motion

In order to efficiently obtain the linearized equations of motion of the idealized
washing machine model, we need to carefully consider two things. First, premature
linearization should be avoided. In other words, we should not linearize the velocities and
angular velocities until we obtain linearized partial velocities and linearized partial angular
velocities. Once we obtain those elements, we can linearize the velocities and angular
velocities, with which we can obtain the linearized accelerations and angular accelerations.
After we obtain the linearized partial velocities and linearized partial angular velocities in
Equations (19) and (20), we can linearize the angular velocities and velocities in Equations
(4)–(6) and Equations (8)–(10). Then, using the linearized angular velocities and velocities,
we can obtain the linearized angular accelerations and accelerations. Finally, the linearized
generalized inertia forces F∗r can be obtained as follows:

F∗r = Linearize

[
3

∑
k=1

(
ṽk

r · F̃∗k + ω̃k
r · T̃∗k

)]
(38)

where ṽk
r and ω̃k

r denote the linearized partial velocities and linearized partial angular
velocities, and F̃∗k and T̃∗k denote the linearized inertia forces and linearized inertia torques,
which can be given as follows:

F̃∗k = −mk ãk (39)

T̃∗k = −
↔
I k · α̃k − ω̃k ×

↔
I k · ω̃k (40)

where ãk, α̃k, and ω̃k denote linearized acceleration, linearized angular acceleration, and
linearized angular velocity.

Second, the generalized active forces should be linearized around the static equi-
librium of the washing machine. Thus, a first-order Taylor series expansion should be
obtained for the linearization of the nonlinear spring and damping forces. Then, the final
linearized equations of motions can be expressed by using a matrix form as follows:

M
..
q + C

.
q + Kq = F (41)

where M, C, and K are 10× 10 square matrices, and F is a 10× 1 column matrix. If the
rotational speed of the drum is constant, some elements of the mass and stiffness matrices
M and K are given as harmonic functions of time. However, since the unbalance mass is
very small compared to the tub and drum masses, the harmonic terms hardly affect the
modal characteristics of the total system. The harmonic terms that belong to F, however,
significantly affected the transient characteristics of the washing machine.

3. Numerical Results and Discussion
3.1. Validation of the Nonlinear Analytical Model

The nonlinear equations of motion derived in Section 2 were numerically solved
using MATLAB, and the results were compared with those obtained with the commercial
multibody dynamic analysis software RecurDyn, v. 9R1 [10]. To obtain the results, static
equilibrium analysis was carried out first before the transient analysis began. Thus, the
displacements shown in Figure 6 are the values obtained from the static equilibrium. The
stiffness coefficient of a spring is given as Kk = 8000 N/m, and the damping constant
of a damper is Cdp = 140 N · s/m. The bending stiffness of the drum-shaft assembly
is given as KD = 29670 N ·m/rad, and the radial stiffness of the bearing is given as
K f b = Krb = 2× 108 N/m. Starting from 0 rpm, operation speed increased up to 1200
rpm in 20 s and remained at the final angular speed until 30 s. Therefore, the prescribed
rotational speed of the drum is given as a function of time as follows.

.
θ(t) = 40π

[
t

20 −
1

2π sin
(
2π t

20
)]

0 ≤ t ≤ 20
.
θ(t) = 40π t > 20

(42)
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Figure 6 shows the horizontal and vertical displacements of the front center point
PTE of the tub and the front center point PDE of the drum from the equilibrium position,
which can be obtained by using equilibrium analysis. The figure shows that the transient
analysis results obtained with the nonlinear analytical model derived in this study are in
good agreement with those obtained with the RecurDyn software.
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3.2. Modal Analysis with the Linear Model

Modal analysis was conducted using Equation (41) obtained in the previous section. A
complex modal analysis method was employed by using the state-space formulation. Since
the drum rotates with the unbalance mass, some elements of the mass and stiffness matrices
in Equation (41) change periodically; thus, the linear dynamic model is not autonomous.
Given those periodic changes, the maximum variation of the natural frequencies due to
the rotating unbalance is less than 0.3% of the mean values of the natural frequencies
throughout the operation speed range (0 to 1200 rpm). The results are shown in Figure
7b. Thus, we may ignore the variation effect due to the rotating mass unbalance when we
solve the following complex eigenvalue problem:

{sM∗ + K∗}ψ = 0 (43)

where the following is the case.

M∗ ≡
[

0 M
M C

]
(44)

K∗ ≡
[
−M 0

0 K

]
(45)
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Figure 7. Lowest four natural frequencies and their maximum variations versus operation speed:
(a) lowest four natural frequencies with resonance line and (b) maximum variations of the lowest
four natural frequencies.

By solving the eigenvalue problem shown in Equation (43), the complex eigenvalue
s and the eigenvector ψ can be obtained. The lowest four natural frequencies versus the
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operating speed are shown in Figure 7a. Resonance might occur when the operating speed
coincides with the natural frequencies. Four possible resonance speeds are marked with
red stars in the figure.

Four mode shapes of the idealized washing machine model at the four resonance
speeds are shown in Figure 8. The first resonance mode is a rocking motion in the horizontal
plane at 99.9 rpm, and the second resonance mode is a rocking motion in the vertical plane
at 147.6 rpm. The third resonance mode is a translational motion in the horizontal plane at
162.3 rpm, and the fourth resonance mode is a translational motion in the vertical plane
at 261.6 rpm. These four resonance modes could be also exhibited by transient analyses
with the four resonance speeds using a nonlinear analytical model or the commercial
software RecurDyn.
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3.3. Comparison of the Nonlinear and Linear Analytical Models

Figure 9 shows the transient responses obtained with the nonlinear and linear ana-
lytical models. The simulation condition is same as the one provided in Section 3.1. As
shown in Figure 9, transient responses of the linear analytical model are in good agreement
with those obtained with the nonlinear analytical model. The gray vertical lines denote
the times when the operation speed passes the four resonance speeds. The first and third
mode shapes are related to the vertical movement of the drum front center, and the second
and fourth mode shapes are related to the horizontal movement of the drum front center.
In the transient responses, the transient response amplitude peaks do not exactly match
with the resonance speeds. The amplitude peaks occur after the operation speed passes
the resonance speeds; these phenomena of resonance delay were discussed in previous
studies [11,12]. The figure shows that the third and fourth translational modes are more
critical for tub vibration during the transient state than are the first and second rocking
modes. The variation of the minimum gap size between the tub and the drum during the
operation is also shown in Figure 9c. This shows that a clash between the tub and the drum
does not occur for the washing machine during operation.
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Figure 9. Comparison of transient responses obtained with the nonlinear and linear analytical models: (a) tub front center
horizontal displacement, (b) tub front center vertical displacement, and (c) minimum gap size between the tub and drum.

Figure 10 shows the comparison of transient responses obtained with the nonlinear
and linear analytical models when the damping constant Cdp is 140 N · s/m. The operation
speed increases and decreases linearly in the range of 0~350 rpm to determine whether
the previously obtained resonance mode shapes actually appear in the transient responses.
Again, the gray vertical lines indicate the times when the operation speed passes through
resonance speeds. The horizontal and vertical displacements of the mass center correspond-
ing to the third and fourth translational resonance modes are shown in Figure 10a,b; the
rocking angles in the horizontal and vertical plane corresponding to the first and second
rocking modes are shown in Figure 10c,d. Transient peaks can be observed after the op-
eration speed passes through the resonance speeds obtained in Figure 7. In other words,
resonance mode shapes and resonance speeds obtained from modal analysis are useful for
predicting the transient characteristics of the washing machine. In Figure 10c,d, we can
observe that the rocking angles obtained with the nonlinear analytical model are somewhat
different from those obtained with the linear analytical model. The difference appears when
the angular speed increases, but it almost disappears when the angular speed decreases.
This is a typical phenomenon that frequently occurs in a nonlinear vibration system. Such
a phenomenon, often called the jump phenomenon (see [13]), cannot be predicted with a
linear analytical model.
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Figure 11 shows the rocking angles in the horizontal and vertical planes obtained with
the nonlinear and linear analytical models when the damping constant Cdp is reduced
to 100 N · s/m, which is smaller than the previously used reference value 140 N · s/m.
Significant rocking motion in the horizontal and vertical planes can be observed with the
nonlinear analytical model after operation speed passes the fourth resonance speed. With
the linear analytical model, however, such violent rocking behavior cannot be predicted.
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This indicates that the reliability of the linear analytical model depends on the damping
constant employed for the model. The results shown in Figures 10 and 11 indicate that
the reliability of the linear model can be guaranteed with a sufficiently large damping
constant value.
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Figure 11. Comparison of the rocking angles obtained with the nonlinear and linear analytical models (when = 100 N · s/m):
(a) horizontal displacement of the mass center, (b) vertical displacement of the mass center, (c) rocking angle in the horizontal
plane, and (d) rocking angle in the vertical plane.



Machines 2021, 9, 289 16 of 17

Figure 12 shows the parameter range to guarantee the reliability of the linear ana-
lytical model. We obtained this reliability diagram by comparing the transient response
amplitudes obtained with the linear and nonlinear analytical models in the time range of
30–50 s When the maximum amplitude ratio (the transient response amplitude obtained
with the nonlinear analytical model to that obtained with the linear analytical model) in the
time range is smaller than two, the linear analytical model is considered reliable; otherwise,
it is considered unreliable. Therefore, the linear analytical model can be effectively used
for the design of an FL type washing machine when the unbalance mass and damping
parameters are chosen from the reliable range.
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Figure 12. Reliability diagram of the linear analytical model.

4. Conclusions

In order to investigate the vibration characteristics of an FL type washing machine,
a dynamic model consisting of three rigid bodies, revolute joints, linear springs, linear
dampers, and stiffness elements such as bearings and flexible hinges was introduced, and
the equations of motion of the idealized model were derived using Kane’s method. The
accuracy of the nonlinear analytical model was first validated by comparing the numerical
results with those obtained with the RecurDyn software. The nonlinear analytical model
was then linearized around the equilibrium position in order to obtain the linear analytical
model. Since the rotational motion of the drum was prescribed as a function of time,
the linear analytical model was a non-autonomous system. However, modal analysis
could be carried out effectively with the linear analytical model since the variations of
the natural frequencies due to the time-varying terms in the linear analytical model were
trivial. We could predict the resonance mode shapes with the linear model, and the
transient characteristics of the linear analytical model could be validated with the transient
responses obtained at the resonance speeds.

The parameter study showed that the reliability of the linear analytical model could
be guaranteed if the damping constant was larger than a certain value when a rotating
unbalance mass was given. When the damping constant was not sufficiently large, however,
we could not obtain reliable transient responses with the linear analytical model. As the
rotating unbalance mass increases, the damping constant should be increased to guarantee
the reliability of the linear analytical model. Therefore, the reliability range related to the
unbalance mass and the damping constant should be accurately identified before the linear
analytical model is used for the design or control of an FL type washing machine.
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