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Abstract: Feature extraction from a signal is the most important step in signal-based fault diagnosis.
Deep learning or deep neural network (DNN) is an effective method to extract features from signals.
In this paper, a novel vibration signal-based bearing fault diagnosis method using DNN is proposed.
First, the measured vibration signals are transformed into a new data form called multiple-domain
image-representation. By this transformation, the task of signal-based fault diagnosis is transferred
into the task of image classification. After that, a DNN with a multi-branch structure is proposed to
handle the multiple-domain image representation data. The multi-branch structure of the proposed
DNN helps to extract features in multiple domains simultaneously, and to lead to better feature
extraction. Better feature extraction leads to a better performance of fault diagnosis. The effectiveness
of the proposed method was verified via the experiments conducted with actual bearing fault signals
and its comparisons with well-established published methods.

Keywords: bearing fault diagnosis; deep learning; deep neural network

1. Introduction

Rolling element bearings are the most important components in rotary machines. The
health condition of bearings has a profound effect on the performance of the machines.
According to a literature review, about 40% of failure cases in large machinery systems and
90% in small rotary machines are caused by bearing defects [1]. In the industry, bearing
faults can lead to massive losses of time and money; therefore, early detecting fault of
bearings is a critical task in the industry.

Intelligent signal-based fault diagnosis is the most popular approach in machine health
monitoring. The signal types used for diagnosing can be vibration signal [2,3], acoustic
emission signal [4], or current signal [5,6]. Among those types of signals, vibration signal
is exploited most extensively because vibration signal is easy to measure and can provide
highly accurate information about the bearing health condition [7]. The fault diagnosis
performance of the signal-based approach highly depends on the procedure of feature
extraction in which discriminating features are extracted from vibration signals. After
extracting the fault features from the fault signals, an intelligent decision-maker based on
machine learning algorithms is exploited to determine the type of fault occurring.

Traditionally, feature extraction exploits signal processing techniques to extract infor-
mation from the fault signal in the time domain, frequency domain, and time-frequency
domain [8]. This traditional approach has some disadvantages, as follows. First, the
diagnosing accuracy depends on the signal processing technique and requires expert
knowledge [9]. Because of the expert knowledge requirement, it is difficult to propose
a generalized framework for feature extraction. It means that features used to make
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predictions under certain circumstances cannot ensure accurate predictions under other
circumstances; therefore, for each new fault diagnosis task, a new feature extractor must be
redesigned manually.

Deep learning (DL) or deep neural network (DNN) is a branch of machine learning
(ML) in which a neural network with many layers is exploited [10–12]. DL algorithms
with deep structures have the ability to learn hierarchical representations directly from
the input data. A huge number of DNN models had been introduced for many areas of
research and application. DL has been extensively used in signal-based fault diagnosis as
an effective feature learning tool [13–15]. DL-based fault diagnosis is an end-to-end fault di-
agnosis process in which the feature extractor is trainable; it can overcome the limitation of
hand-crafted feature extractor in traditional signal-based fault diagnosis [16,17]. Currently,
all DNN models can be considered as the extensions of five basic models: autoencoder
(AE), restricted Boltzmann machine (RBM), recurrent neural network (RNN), generative
adversarial network (GAN), and convolutional neural network (CNN). AE and RBM are
classified as unsupervised learning methods. Multiple AE or RBM can be stacked together
to construct deep models, named stacked autoencoder (SAE) and deep Boltzmann machine
(DBM), respectively. SAE and DBM are often used as feature extractors, and they require
additional classifiers in the classification tasks. RNN models are often applied to prognosis
problems. GAN is a special case since it is categorized as a semi-supervised learning
method [18]. CNN is a neural network that mimics the mammalian visual system [19].
Since the design concept of CNN possesses three key architectural ideas: local receptive
fields, weight sharing, and pooling in spatial domain, CNN is suitable for the recognition
of two-dimensional visual data [20,21]. As a result, CNN and its variants are extensively
exploited in the image classification topic [22,23]. To apply CNN in the bearing fault diag-
nosis task, authors and researchers often try to represent or convert 1-D bearing signals into
2-D forms. In this way, the fault diagnosis task is transformed into an image classification
task, which can exploit the advantage of CNN models. L. Wen et al. converted vibration
signals into gray pixel images [24]. They simply rearranged each signal with a length of
4096 samples to form a 64 × 64 gray pixel image. J. Wang et al. used eight different time-
frequency analysis methods to represent vibration signals under time-frequency images,
including short-time Fourier transform, constant-Q Gabor transform, instantaneous fre-
quency, fast kurtogram, Winger–Ville distribution, Hilbert–Huang transform, and Fourier
synchrosqueezed transform [25]. Using a different approach, L. Eren proposed a 1-D CNN
model to process bearing signals without converting them into the 2-D form [26].

In traditional signal-based fault diagnosis, extracting fault features from multiple do-
mains of signals is a popular approach; however, it can be observed that one common point
in current DL-based fault diagnosis methods is that their DNN models only attempt to ex-
tract features from a single domain of vibration signals, such as time domain [24], frequency
domain [27], or time-frequency domain [25,28]. In literature, research that tries to extract
features from multiple-domain image representation of vibration signals is rare. This point
may be a drawback since the goal of feature extraction is to extract as much information as
possible from the signal. Moreover, it is shown that multiple domain feature models can
achieve better performance compared to single domain feature models [8]. Based on this
observation, in this paper, a bearing fault diagnosis method based on the multiple domain
feature model approach is proposed. First, a new method transforming vibration signals
into high-dimensional data is proposed. In this method, vibration signals are simultane-
ously converted into time domain images and time-frequency images. This representation
type of vibration signal is named here as multiple-domain image-representation (MDIR)
data. A CNN-based deep model named multi-branch deep neural network (MB-DNN) is
proposed to classify the MDIR data. The proposed MB-DNN has two main characteristics.
Firstly, it inherits the deep learning ability of DL. Secondly, it has a multi-branch structure
to extract features from multiple domains of signals simultaneously. More details of the
MDIR data and the MB-DNN are explained in Sections 2 and 3 of this paper. The task
of signal-based fault diagnosis is now considered as the task of image classification. The
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effectiveness of the proposed method is verified through experiments with actual bearing
fault data supplied by Case Western Reverse University [29]. The major contributions of
this paper are summarized as follows:

1. Proposing a method to represent vibration signals in high dimensional form;
2. Proposing an MB-DNN with a multi-branch structure to handle the new representa-

tion of vibration signal in the high-dimensional domain;
3. Transforming the task of signal-based fault diagnosis into the task of image classification;
4. The proposed fault diagnosis method achieves significant classification accuracy.

The remainder of the paper is constructed as follows. Section 2 describes the way
of constructing MDIR data from vibration signals. Section 3 explains MB-DNN and
its application in bearing fault diagnosis. Experiments with actual bearing data were
conducted and are presented in Section 4. Section 5 concludes the paper.

2. Multiple-Domain Image-Representation of Vibration Signal

Originally, vibration signal is time-series data, which is a 1-D data form. A new
method to represent vibration signals in high dimensions is proposed. It is motivated by
three following facts:

1. It may be easier to understand and mine information in high-dimensional data [30].
2. CNN and its variants are suitable for the task of recognizing two-dimensional visual

patterns [31].
3. By transforming the signal into visual data, the task of fault diagnosis can be converted

into the task of image classification.

The vibration signal will be transformed into a time-domain image by a simple method
proposed by D. Nguyen et al. in [32]. Consider a signal xl with the number of samples is
n2, all the samples in the signal are rearranged into a square matrix with a size of n× n
as follows:

[
x1 . . . xn2

]
→


x1 x2 . . . xn

xn+1 xn+2 . . . x2n
...

...
. . .

...
x(n−1)n+1 . . . . . . xn2

 (1)

Then the obtained square matrix is normalized to range [0.0− 1.0] by the
linear normalization:

Iij =
Xij −min(X)

max(X)−min(X)
(2)

The normalized sample Iij, i, j ∈ [0, n] is placed at the row i, column j of the matrix.
The corresponding time domain image consists of pixels that are normalized samples of
the corresponding signal, as shown in Figure 1.

The time-frequency image representation is based on the continuous wavelet trans-
form (CWT). The CWT uses the same length of time data as in the previous transforma-
tion. A mother wavelet is a function ψ(t) with zero average (i.e.,

∫
R ψ− 0), normalized

(i.e., ‖ψ‖ = 1), and centered in the neighborhood of t = 0 [33]. Scaling ψ(t) by a positive
quantity s, and translating it by y ∈ R, a wavelet family can be defined as:

ψu,s(t) :=
1√

s
ψ

(
t− u

s

)
, u ∈ R, s > 0 (3)

Given x(t) ∈ L2(R), the continuous wavelet transform of x(t) at time u and scale s
(which inversely relates to frequency) is defined as:

W(s, u) := 〈x(t), ψs,u〉 =
1√

s

∫
x(t)ψ ∗

(
t− u

s
dt
)

(4)
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where ψ∗ denotes the complex conjugate of ψ. CWT decomposes the input signal x(t) into
a series of wavelet coefficients. The scalogram of x(t) is defined by the function:

S(s) := ‖W(s, u)‖ =

√∫ +∞

−∞
|W(s, u)|

2
du (5)

If a time interval [t0, t1] needs to be considered, the corresponding windowed scalo-
gram is defined by the function:

S[t0, t1]
(s) := ‖W(s, u)‖[t0, t1]

=

√∫ t1

t0

|W(s, u)|
2
du (6)

In other words, the scalogram is the absolute value of the CWT of a signal, plotted as
a function of time and frequency, as shown in Figure 2.
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By combining two transformations, each vibration signal is transformed simultane-
ously into image form: the time domain image and the time-frequency domain image
as shown in Figure 3. This representation of vibration signal is named multiple-domain
image-representation (MDIR). By using MDIR data, the problem of fault diagnosis based
on vibration signal can now be considered as a task of image classification.
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3. Proposed Multi-Branch Deep Neural Network

In the previous section, the multiple-domain image-representation (MDIR) of vibration
signal has been described. To handle the MDIR data, a multi-branch deep neural network
(MB-DNN) is proposed. The structure of MB-DNN is shown in Figure 4.
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The proposed MB-DNN consists of several types of layers, including convolutional
layer, batch normalization layer, pooling layer, feature fusing layer, dense layers, and
SoftMax layer.

The convolutional layer based on the convolution operation is the most important layer
type, which has been employed in many well-known DNN models such as LeNet [34],
AlexNet [35], VGGNet [36], ResNet [37], and DenseNet [38]. The convolutional layer
convolves the input with its kernels and feeds the obtained result into the activate function
to generate the output. Consider a convolutional layer with m kernels, the input has M
feature maps. The output of that layer can be calculated as follows:

yk = f

(
M

∑
i=1

ωk ⊗ xi + bk

)
, k = 1 : m (7)

where f denotes the activate function. In this paper, the Rectified Linear Unit (ReLU) is
used as the activate function since it is simple and easy to compute.

The batch normalization layer exploited the batch normalization technique proposed
in [39] to improve the training process of DNNs. The batch normalization ensures the
transformation inserted in the network by representing the identity transform. The pooling
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layer reduces the dimension of the input feature maps. The dimension reduction operation
can be conducted by max or average operation. The pooling layer computes the max value
or average value of a group of neurons at the previous layer.

For convenience in calling and easer in drawing the neural network structure, three
layers, including one convolutional layer, one batch normalization layer, and one pooling
layer, are grouped successively to construct a convolutional–batch normalization–pooling
(CBP) module. Assume that a CBP module with a convolutional layer with m kernels.
With the input feature map xM×n×n, the output of the CBP module will be ym×h×h where
h = n/2.

As shown in Figure 4, the proposed MB-DNN has two branches. While branch I
handles the time domain images, branch II handles the time-frequency domain images
of the vibration signals. Each branch consists of several CBP modules. Two branches
simultaneously extract features from the input MDIR data, generate two types of feature
maps. After that, the feature fusing layer will fuse these feature maps to generate a single
one and forward it to the next part of the network. The operation of the feature fusing layer
is described as follows:

x = C
(

xt, x f

)
(8)

where C denotes the fusing operation of the layer; xt, x f are the feature maps extracted
by branch I and II, respectively. Assume that xt and x f has sizes a1 × (b1 × b1) and
a2 × (b2 × b2), respectively. First, two feature maps will be flattened to have size
1×

(
a1 × b1

2) and 1×
(
a2 × b2

2), respectively. The output of this layer x will have size
1×

(
a1 × b1

2 + a2 × b2
2).

The dense layer is a traditional perception neural network. The purpose of using a
dense layer is to collect all features from the previous feature map. The generated feature
map of this layer will be used for the classification task, which will be performed by the
SoftMax layer. With an input feature map x, the SoftMax layer computes the probabilities:

pr =
exp(ωk × x)

∑N
r=1 exp(ωk × x)

(9)

where N is the number of classes in the classification task. The SoftMax function calculates
the probabilities of each target class over all target classes.

The loss function of MB-DNN is calculated by cross-entropy loss as follows:

L(q, p) = −
N

∑
r

qr log(pr) (10)

where q is the true label of the input data, p is the output of the SoftMax function.
Using the MDIR data and MB-DNN, the proposed fault diagnosis method is illustrated

in Figure 5. As shown in the diagram, the original fault signals are transformed into MDIR
data. Then the obtained dataset is split into a training set and a testing set. The MB-DNN
is trained with the training set by the back-propagation algorithm. Using the stochastic
gradient descent with momentum, the weights of MB-DNN are updated by the equations

υt = βυt−1 + (1− β)∇ω L (11)

ω = ω− αυt (12)

where α denotes the learning rate, α is the momentum parameter.
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4. Experiments and Results
4.1. Data Preparation

The actual bearing fault data are supplied by the Bearing Data Center of Case Western
Reserve University (CWRU) [40]. The bearing fault testbed is shown in Figure 6. The
testbed consisted of a 2-hp motor (left), a torque transducer (center), and a dynamo-meter
(right). The test bearings support the motor shaft. The test bearings were seeded with
faults using electro-discharge machining (EMD).
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Figure 6. Bearing fault testbed used by CWRU.

The vibration signals in this paper are measured by an accelerometer and digitized
with a sampling frequency of 12 kHz. The accelerometer is installed at the driver end
with magnetic bases. There are four types of bearing conditions are considered, including
no-fault condition, bearing with inner race fault, bearing with outer race fault, and bearing
with fault at rolling elements (ball fault). Each type of bearing fault is introduced to the
test bearings with different defect sizes, including 7 mils (mili-inches), 14 mils, and 21 mils.
The types of bearing conditions with different fault diameters are shown in Table 1 and
Figure 7. There are 10 types of bearing conditions labeled from 0 to 9, respectively. The
bearing testbed can be operated under different load conditions. In this paper, four load
conditions were considered, including 0 hp, 1 hp, 2 hp, and 3 hp.

Table 1. Vibration labels.

Bearing Fault Fault Size (mils) Label

No fault 0
Inner race fault 7 1
Inner race fault 14 2
Inner race fault 21 3

Ball fault 7 4
Ball fault 14 5
Ball fault 21 6

Outer race 7 7
Outer race 14 8
Outer race 21 9
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4.2. Signal Pre-Processing

In the data source supplied by CWRU, each bearing condition fault signal is measured
and stored in a single file Matlab file; thus, there are 10 different signal files corresponding
to 10 bearing conditions as in Table 1. In the intelligent fault diagnosis approach, classifiers
require data samples to be trained; therefore, the original signal files are split into equal
signal samples. Each signal sample must contain enough sampling points to convey the
information of the bearing status; that is, if the length is too short, the signal sample
cannot reflect the bearing health status. Normally, the sample length is selected to be
equal to one revolution of the rotary shaft. In this work, the rotary speed of the shaft is
S = 1796 rpm. Accordingly, the rotary frequency is S f = 1796/60 ≈ 30 Hz. In the CWRU
testbed, the sampling frequency F = 12, 000 Hz. The minimum value of the sample length
is F/S f = 400 (sampling point). As mentioned in Section 3, in the proposed method, there
is a step where signal samples are transformed into gray images and apply CNN-like
neural network to classify. So, we aim to make an MNIST-like data set where each image
has a size of 1× 28× 28; therefore, the length of signal samples is selected at the value of
28× 28 = 784. The time-domain image has the size of 1× 28× 28.

The time-frequency domain image conversion exploits CWT using the Morse wavelet
function. To deal with the time-frequency domain image, the obtained time-frequency
images are scaled to a size of 3× 224× 224. The MDIR data of the vibration signals with
ten labels were obtained as shown in Figure 8.
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From each original signal file, 300 data samples were obtained. Accordingly, the
10-class classification task is balanced since each class has 300 data samples. For each label,
the image data were split randomly with the ratio 7:3 for the training set and the test set.

4.3. Design and Train the Proposed DNN

The structure of the proposed MB-DNN is designed as follows. First of all, the number
of branches is two, corresponding to two types of input images. The input sizes of branches
must be suitable for the input images; therefore, the first branch has the input size of
1× 28× 28 and the second branch has the input size of 3× 224× 224. The kernel size of
convolutional layers and pooling layers are 3× 3 and 2× 2, respectively. The number of
kernels in the convolutional layer is selected by a simple rule. Start with a small number of
kernels in the first layer and double that number in the next layer. The first convolutional
layer has 8 kernels, the second layer has 16 kernels, the third layer has 32 kernels, and so
on. Each module CBP consists of one convolutional layer, one batch normalization layer,
and one pooling layer. Since we use the zero-padding method in convolutional layers
and the kernel size of 2× 2 in pooling layers, after each module CBP, the size of data will
decrease by a factor of 2. The number of CBP modules is increased by one until the size of
the output data is an odd number. In the first branch, two CBP modules are used; in the
second branch, five CBP modules are used. The proposed MB-DNN has the configuration
as shown in Figure 9. Branch I consists of two CPB modules that handle the time domain
images. Branch II uses five CBP modules to handle the time-frequency domain images. The
output of branch I has a size of 16× 7× 7. The output of branch II has a size of 128× 7× 7.
These two outputs are fed into the feature fusing layer to generate the output data with
size of 1× 7056. Then three successive dense layers are used to learn from the fused feature
map. Finally, a SoftMax layer with ten outputs is used to classify the feature map generated
by the third dense layer.
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The MB-DNN is trained by mini-batch stochastic gradient descent with momentum
algorithm, the learning rate α = 0.001, the momentum β = 0.9, and the batch size B = 10.

4.4. Fault Diagnosis Result

Four other bearing fault diagnosis methods are adopted to make comparisons with the
proposed method as follows. The first method is published in [25]. In this method, the deep
transfer learning technique is utilized to transfer the very deep neural network (Alexnet)
pre-trained in the image classification domain into the domain of bearing fault diagnosis.
The vibration signals are transformed into image form by using CWT. The second method
is published in [24]. This method uses Lenet-5, which is a classical type of CNN in [41]. In
this method, each sample of vibration signal is rearranged into a square matrix. The third
method is published in [26]. This method utilized the 1-D form of CNN, which can process
the vibration signal samples directly in the 1-D form without any transformation. The
fourth method is published in [42]. The same as the method in [26], the vibration signals
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in [42] are used directly in 1-D form without any transformation. However, the number of
convolution kernels of CNN is decreased with the reduction in the convolution kernel size.

The accuracy of all methods is shown in Figure 10. It can be observed that in all cases
of load conditions, the proposed method and the Alexnet-based method in [25] achieve
the best performance. The two methods have high mean accuracy and small standard
deviation. The Lenet5-based method in [24] has a little lower accuracy. The CNN1D-based
method in [26] has a lower performance with low accuracy. The CNN1D-based method
in [42] has the poorest performance with low accuracy.
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4.5. Evaluation under Noisy Conditions

The bearing data set supplied by CWRU has been extensively employed as a bench-
mark for evaluating bearing fault diagnosis methods. Recently, proposed fault diagnosis
methods with advantage signal processing and feature learning techniques can achieve
very high accuracy. It is not easy to highlight the performance of newly proposed fault di-
agnosis methods; therefore, noise signals are often added to the original signals to evaluate
methods. This way can help to evaluate the robustness of fault diagnosis methods under
more challenging conditions. In this scenario of evaluating diagnosis methods, Gaussian
white noise (AGWN) is added into the original vibration signals as in Figure 11.

The signal-to-noise ratio (SNR) is defined to measure the level of the obtained noisy
signal to the level of the additional Gaussian noise. The SNR of a noisy signal is computed
as follows:

SNM = 10 log
(Psignal

Pnoise

)
(13)

where Psignal and Pnoise are the power of signal and noise, respectively. Nineteen noise
levels (dB) in the range of [−8, −7, . . . , 10] are taken into account. The comparison is
illustrated in Figure 12.
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In the previous section, all compared methods achieved very high diagnostic accuracy
when the inputs were the original signals. When the input signals were transformed by
adding low-level noisy signals with the SNR in the range of [0, . . . , 10], the performance
of the method in [26,42] was significantly reduced, but the performance of the proposed
algorithm and the methods in [24,25] were reduced insignificantly; however, when the
input signals are transformed by adding high-level noisy signals with the SNR in the range
of [−8, . . . , −1], their performance decreases dramatically. Obviously, the noise makes
it harder to extract fault signatures from the signals. It can be observed that in the worst
case (−8 dB), the methods in [24,26,42] totally fail since their accuracy is under 50%. The
trend of all methods’ performance is, the higher the noise level, the lower the accuracy of



Machines 2021, 9, 345 13 of 15

the diagnosis result. Among all methods, the proposed one achieves the best performance
with good robustness against noise. Even under the worst noise case (−8 dB), it achieves
an accuracy of 57%. Comparing the structures of all methods, we can see that the method
in [25] only takes care of the time-frequency domain features; the methods in [24,26,42] only
consider the time domain features. The difference of the proposed methods is that they
can receive multiple feature domains. As a result, the proposed method can extract more
robust features from signals in noise conditions. So, it can be concluded that the proposed
network with a multi-branch deep structure can extract fault features more effectively even
under severe noise conditions. That leads to better diagnostic performance compared to
other DNNs.

5. Conclusions

This paper proposed a novel method of bearing fault diagnosis based on vibration
signals. By using simple transformation methods, time-series vibration signals are trans-
formed into high dimensional data form (MDIR). By using this transformation, the task
of fault diagnosis becomes the task of image classification. A novel DNN with a multi-
branch structure is proposed to handle the MDIR data of vibration signal, named MB-DNN.
The proposed MB-DNN inherits the advantages of CNN in processing high-dimensional
data. In addition, MB-DNN has a multi-branch structure with two branches that can
simultaneously extract features from the time domain and time-frequency domain. The
proposed method obtains high classification accuracy; especially, it shows the efficiency
even under noise effects. The proposed algorithm can be applied as an automatic fault
detection process for the early detection of bearing faults; therefore, it helps to reduce the
failure rate of machinery and save repair costs. Besides the ability to process vibration
signals, the proposed method can be applied to process the current signals and acoustic
emission signals.

Author Contributions: Conceptualization, V.-C.N., D.-T.H. and X.-T.T.; methodology, V.-C.N., D.-T.H.
and M.V.; software, V.-C.N. and H.-J.K.; validation, X.-T.T. and M.V.; formal analysis, M.V. and X.-T.T.;
investigation, X.-T.T.; resources, H.-J.K.; data curation, D.-T.H.; writing—original draft preparation,
V.-C.N., X.-T.T. and D.-T.H.; writing—review and editing, V.-C.N., M.V. and H.-J.K.; visualization,
X.-T.T.; supervision, H.-J.K.; project administration, H.-J.K.; funding acquisition, H.-J.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1D1A3A03103528).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data sets generated and/or analyzed during the current study are
available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shahriar, M.R.; Borghesani, P.; Tan, A.C.C. Electrical signature analysis-based detection of external bearing faults in electrome-

chanical drivetrains. IEEE Trans. Ind. Electron. 2017, 65, 5941–5950. [CrossRef]
2. Van, M.; Hoang, D.T.; Kang, H.J. Bearing fault diagnosis using a particle swarm optimization-least squares wavelet support

vector machine classifier. Sensors 2020, 20, 3422. [CrossRef] [PubMed]
3. Hoang, D.T.; Tran, X.T.; Van, M.; Kang, H.J. A Deep Neural Network-Based Feature Fusion for Bearing Fault Diagnosis. Sensors

2021, 21, 244. [CrossRef] [PubMed]
4. Xu, G.; Hou, D.; Qi, H.; Bo, L. High-speed train wheel set bearing fault diagnosis and prognostics: A new prognostic model based

on extendable useful life. Mech. Syst. Signal. Proc. 2021, 146, 107050. [CrossRef]
5. Azamfar, M.; Singh, J.; Bravo-Imaz, I.; Lee, J. Multisensor data fusion for gearbox fault diagnosis using 2-D convolutional neural

network and motor current signature analysis. Mech. Syst. Signal. Proc. 2020, 144, 106861. [CrossRef]
6. Hoang, D.T.; Kang, H.J. A motor current signal-based bearing fault diagnosis using deep learning and information fusion. IEEE

Trans. Instrum. Meas. 2019, 69, 3325–3333. [CrossRef]

http://doi.org/10.1109/TIE.2017.2782240
http://doi.org/10.3390/s20123422
http://www.ncbi.nlm.nih.gov/pubmed/32560493
http://doi.org/10.3390/s21010244
http://www.ncbi.nlm.nih.gov/pubmed/33401511
http://doi.org/10.1016/j.ymssp.2020.107050
http://doi.org/10.1016/j.ymssp.2020.106861
http://doi.org/10.1109/TIM.2019.2933119


Machines 2021, 9, 345 14 of 15

7. Kharche, P.P.; Kshirsagar, S.V. Review of fault detection in rolling element bearing. Int. J. Innov. Res. Adv. Eng. 2014, 1, 169–174.
8. Rauber, T.W.; de Assis Boldt, F.; Varejão, F.M. Heterogeneous feature models and feature selection applied to bearing fault

diagnosis. IEEE Trans. Ind. Electron. 2014, 62, 637–646. [CrossRef]
9. Li, C.; Sanchez, V.; Zurita, G.; Lozada, M.C.; Cabrera, D. Rolling element bearing defect detection using the generalized

synchrosqueezing transform guided by time–frequency ridge enhancement. ISA Trans. 2016, 60, 274–284. [CrossRef]
10. Zhou, D.-X. Universality of deep convolutional neural networks. Appl. Comput. Harmon. Anal. 2020, 48, 787–794. [CrossRef]
11. Li, X.; Zhang, W.; Ma, H.; Luo, Z.; Li, X. Degradation Alignment in Remaining Useful Life Prediction Using Deep Cycle-Consistent

Learning. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–12. [CrossRef] [PubMed]
12. Saravanakumar, R.; Krishnaraj, N.; Venkatraman, S.; Sivakumar, B.; Prasanna, S.; Shankar, K. Hierarchical symbolic analysis and

particle swarm optimization based fault diagnosis model for rotating machineries with deep neural networks. Measurement 2021,
171, 108771. [CrossRef]

13. Alabsi, M.; Liao, Y.; Nabulsi, A.-A. Bearing fault diagnosis using deep learning techniques coupled with handcrafted feature
extraction: A comparative study. J. Vib. Control. 2021, 27, 404–414. [CrossRef]

14. Choudhary, A.; Mian, T.; Fatima, S. Convolutional neural network based bearing fault diagnosis of rotating machine using
thermal images. Measurement 2021, 176, 109196. [CrossRef]

15. Wang, C.; Xu, Z. An intelligent fault diagnosis model based on deep neural network for few-shot fault diagnosis. Neurocomputing
2021, 456, 550–562. [CrossRef]

16. LeCun, Y.; Ranzato, M. Deep learning tutorial. In Proceedings of the Tutorials in International Conference on Machine Learning
(ICML’13), Atlanta, GA, USA, 16–21 June 2013; pp. 1–29.

17. Nguyen, C.D.; Prosvirin, A.E.; Kim, C.H.; Kim, J.-M. Construction of a sensitive and speed invariant gearbox fault diagnosis
model using an incorporated utilizing adaptive noise control and a stacked sparse autoencoder-based deep neural network.
Sensors 2021, 21, 18. [CrossRef] [PubMed]

18. Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved techniques for training gans. Adv. Neural
Inf. Proc. Syst. 2016, 29, 2234–2242.

19. Pham, M.T.; Kim, J.-M.; Kim, C.H. Efficient Fault Diagnosis of Rolling Bearings Using Neural Network Architecture Search and
Sharing Weights. IEEE Access 2021, 9, 98800–98811. [CrossRef]

20. Zan, T.; Wang, H.; Wang, M.; Liu, Z.; Gao, X. Application of multi-dimension input convolutional neural network in fault
diagnosis of rolling bearings. Appl. Sci. 2019, 9, 2690. [CrossRef]

21. Pham, M.-T.; Kim, J.-M.; Kim, C.-H. 2D CNN-Based Multi-Output Diagnosis for Compound Bearing Faults under Variable
Rotational Speeds. Machines 2021, 9, 199. [CrossRef]

22. Wei, Y.; Xia, W.; Lin, M.; Huang, J.; Ni, B.; Dong, J.; Zhao, Y.; Yan, S. HCP: A flexible CNN framework for multi-label image
classification. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 1901–1907. [CrossRef] [PubMed]

23. Cao, X.; Yao, J.; Xu, Z.; Meng, D. Hyperspectral image classification with convolutional neural network and active learning. IEEE
Trans. Geosci. Remote Sens. 2020, 58, 4604–4616. [CrossRef]

24. Wen, L.; Li, X.; Gao, L.; Zhang, Y. A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method. IEEE Trans.
Ind. Electron. 2018, 65, 5990–5998. [CrossRef]

25. Wang, J.; Mo, Z.; Zhang, H.; Miao, Q. A deep learning method for bearing fault diagnosis based on time-frequency image. IEEE
Access 2019, 7, 42373–42383. [CrossRef]

26. Eren, L. Bearing fault detection by one-dimensional convolutional neural networks. Math. Probl. Eng. 2017, 2017, 1–9. [CrossRef]
27. Jia, F.; Lei, Y.; Lin, J.; Zhou, X.; Lu, N. Deep neural networks: A promising tool for fault characteristic mining and intelligent

diagnosis of rotating machinery with massive data. Mech. Syst. Signal. Proc. 2016, 72, 303–315. [CrossRef]
28. Yuan, L.; Lian, D.; Kang, X.; Chen, Y.; Zhai, K. Rolling bearing fault diagnosis based on convolutional neural network and support

vector machine. IEEE Access 2020, 8, 137395–137406. [CrossRef]
29. Smith, W.A.; Randall, R.B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark

study. Mech. Syst. Signal. Proc. 2015, 64, 100–131. [CrossRef]
30. Ding, X.; He, Q. Energy-fluctuated multiscale feature learning with deep convnet for intelligent spindle bearing fault diagnosis.

IEEE Trans. Instrum. Meas. 2017, 66, 1926–1935. [CrossRef]
31. Phung, S.L.; Bouzerdoum, A. Visual and Audio Signal Processing Lab. University of Wollongong. 2009. Available online:

https://documents.uow.edu.au/~{}phung/docs/cnn-matlab/cnn-matlab.pdf (accessed on 9 December 2021).
32. Nguyen, D.; Kang, M.; Kim, C.-H.; Kim, J.-M. Highly reliable state monitoring system for induction motors using dominant

features in a two-dimension vibration signal. New Rev. Hypermedia Multimed. 2013, 19, 248–258. [CrossRef]
33. Bolós, V.J.; Ben’itez, R. The wavelet scalogram in the study of time series. In Advances in Differential Equations and Applications;

Springer: Berlin/Heidelberg, Germany, 2014; pp. 147–154.
34. LeCun, Y.; Haffner, P.; Bottou, L.; Bengio, Y. Object recognition with gradient-based learning. In Shape, Contour and Grouping in

Computer Vision; Springer: Berlin/Heidelberg, Germany, 1999; pp. 319–345.
35. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Proc.

Syst. 2012, 25, 1097–1105. [CrossRef]
36. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.

http://doi.org/10.1109/TIE.2014.2327589
http://doi.org/10.1016/j.isatra.2015.10.014
http://doi.org/10.1016/j.acha.2019.06.004
http://doi.org/10.1109/TNNLS.2021.3070840
http://www.ncbi.nlm.nih.gov/pubmed/33852404
http://doi.org/10.1016/j.measurement.2020.108771
http://doi.org/10.1177/1077546320929141
http://doi.org/10.1016/j.measurement.2021.109196
http://doi.org/10.1016/j.neucom.2020.11.070
http://doi.org/10.3390/s21010018
http://www.ncbi.nlm.nih.gov/pubmed/33375085
http://doi.org/10.1109/ACCESS.2021.3096036
http://doi.org/10.3390/app9132690
http://doi.org/10.3390/machines9090199
http://doi.org/10.1109/TPAMI.2015.2491929
http://www.ncbi.nlm.nih.gov/pubmed/26513778
http://doi.org/10.1109/TGRS.2020.2964627
http://doi.org/10.1109/TIE.2017.2774777
http://doi.org/10.1109/ACCESS.2019.2907131
http://doi.org/10.1155/2017/8617315
http://doi.org/10.1016/j.ymssp.2015.10.025
http://doi.org/10.1109/ACCESS.2020.3012053
http://doi.org/10.1016/j.ymssp.2015.04.021
http://doi.org/10.1109/TIM.2017.2674738
https://documents.uow.edu.au/~{}phung/docs/cnn-matlab/cnn-matlab.pdf
http://doi.org/10.1080/13614568.2013.832407
http://doi.org/10.1145/3065386


Machines 2021, 9, 345 15 of 15

37. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

38. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

39. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456.

40. Loparo, K.A. Case Western Reserve University Bearing Data Center. Available online: http://csegroups.case.edu/
bearingdatacenter/pages/download-data-file (accessed on 9 December 2021).

41. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

42. Chen, C.-C.; Liu, Z.; Yang, G.; Wu, C.-C.; Ye, Q. An Improved Fault Diagnosis Using 1D-Convolutional Neural Network Model.
Electronics 2021, 10, 59. [CrossRef]

http://csegroups.case.edu/bearingdatacenter/pages/download-data-file
http://csegroups.case.edu/bearingdatacenter/pages/download-data-file
http://doi.org/10.1109/5.726791
http://doi.org/10.3390/electronics10010059

	Introduction 
	Multiple-Domain Image-Representation of Vibration Signal 
	Proposed Multi-Branch Deep Neural Network 
	Experiments and Results 
	Data Preparation 
	Signal Pre-Processing 
	Design and Train the Proposed DNN 
	Fault Diagnosis Result 
	Evaluation under Noisy Conditions 

	Conclusions 
	References

