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Abstract: An industrial process is defined through its quality of parts and their production costs.
Labour-intensive operations must be applied to produce high-quality components with inexpensive
resources. Recent development in dedicated software allows the industrial sector to rely on more and
more autonomous solutions to obtain an optimum ratio between part quality and cost. The stretch
forming process is an operation that has a high degree of difficulty, due to the process parameters
and the spring-back effect of materials. Our approach to solving several of the shortcomings of this
process was to develop a self-adaptive algorithm with computer vision capabilities that adapts to the
process in real-time. This experimental study highlights the results obtained using this method, as
well as a comparison to a classical method for the stretch-forming process (SFP). The results have
noted that the stretch-forming algorithm improves the process, while adapting its decisions with
each step.

Keywords: computer vision; statistical analysis; adaptive stretch-forming; 3D measurement system

1. Introduction

In its simplest form, stretch-forming involves applying biaxial tension on a metal
sheet [1], as indicated in Figure 1. The material must be stretched in the axial direction
as a die pushes, in a perpendicular direction, drawing the metal sheet into the desired
shape [2–4]. This process gradually produces severe plastic deformation (SPD) due to
the increased stress; therefore, strain distribution must be considered [5]. As a result, the
strain increases by a specific amount, depending on the mechanical properties of each
material [6–12]. Another aspect is the deformation, since materials behave differently
when elastic or plastic deformation occurs [2,13]. In the elastic domain, materials follow
Hooke’s law with their predictable behavior, with a constant slope between stress and
strain (Young’s modulus). In the plastic domain, the Theory of Elasticity indicates that
more complex phenomena occur [14,15].

This complex process is used in industrial sectors, such as aviation, automation, rail
transport, or architecture. Due to the increasing demands of vehicles, aircraft, or high-
speed trains with low fuel consumption and electric capabilities, stretch-forming is used to
manufacture large parts that require fewer assembly components, aiming to reduce the
overall weight [16–20]. The architectural sector uses the SFP for complex shape panels that
offer an organic shape to buildings’ interior or exterior [21].

Numerous studies in this field have been conducted [22]. The implementation of
this metal sheet forming process is often highlighted in scientific studies as finite element
analysis [2,19,23]. Successful implementations of new concepts are assigned to processes
such as multi-point die stretch-forming (MPD-SF) [24], in combination with single point
incremental forming (SF-SPIF) [22] or electromagnetic incremental forming (EIF) [25].
This extensive research is directed on the uniform-contact state [20], the effects of friction
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on the stretch-forming limit curves [1], industrial equipment improvements [7,26,27],
or process design and effects [26,28] on the deformability. Experimental or numerical
studies are mainly based on the analysis of metallic materials that are related to the
automotive and aviation sectors; as a result, aluminum (AA6061-T4 [2], AA6082 [18],
AA2024, AA1050, [29,30]), magnesium (LZ91, AZ31, ZE10, ME21 [31,32]), titanium (OT04,
Ti-6Al-4V [31–33]) or steel (CR1 grade [34])-based alloys are intensively researched.

Furthermore, the complexity of the stretch-forming process implies computer-aided
techniques for in-process control, predictions of deformability, spring-back effect, final
shape, and dimensions of parts by analyzing the relationship of the process parameters.
These complex analyses are assigned to custom software that implies using neural network
(NN) k (NN) [35], deep neural networks (DNNs) [36], deep learning (DL) [37], support
vector regression (SVR) [38], and computer vision-based algorithms (CV) [39].

Figure 1. (a) Schematic representation of the transversal stretch-forming process indicating the main components of the
process; (b) Stretch-forming process working principle highlighting the deformed shape of the metal sheet, die movement
(die force) in the vertical direction, stretching force, and the linear and angular jaw movement.

2. ASFP Algorithm and Industrial Setup

The Adaptive Stretch-Forming Process (ASFP) is a self-adaptive video and statistical
analysis algorithm. It is, at its core, a software tool that calculates the strain, deciding
and evaluating its choice so that it can control a hydraulic pump in real-time, ensuring
axial tension, as well as a hydraulic press, ensuring the die movement, thus obtaining
control of the biaxial nature of the process, as described in Figure 2. It does this by
constantly reading the position of two round markers with known dimensions, placed on
specific areas on the material blank. The software, written in Python, uses libraries such as
OpenComputerVision (OpenCV) [40] for computer vision, numerical Python (NumPy) [41]
for numerical operations, statsmodels (statsmodels.api and statsmodels.formula.api) [42]
for statistical analysis, SerialPy [43] for serial communication with the microcontrollers, and
MathPlotlib [44] for graph rendering. The ASFP algorithm can run in both programmed
and software-controlled (autonomous) modes. The first case only measures the strain, while
the autonomous version decides on how to control the industrial equipment according
to the limit values indicated by the user. This can be a strain limit or specific stress, if
the correlation of the stress on strain curve values is taken into consideration or both
stress and strain values; the goal is to avoid material failure while reaching a high degree
of deformation.
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Figure 2. Schematic representation of the Adaptive Stretch Forming Process (ASFP) algorithm logic, indicating the input
data sources, output controlled process parameters, decision-making methodology, processed and side view video feed
along with graphs for the R2 process, decision p-value for die speed, and stretching pressure.

The algorithm makes a pre-analysis of the central section of the video feed, expecting
to find the two round markers; if this step is successful, two distinct decisions take place:
the industrial equipment is turned on, usually assigning an initial die speed between 0.09
and 1.08 mm/s, gradually increasing the stretching pressure from 0 bar, and processing
the video feed frame by frame, as described below in Table 1. Once the process starts,
some decisions (die speed and stretching pressure) are given to the industrial equipment
and stored in csv files along with strain values; these data are then statistically analyzed
by using the ANOVA method so that the algorithm adapts and adopts the best decisions
constantly comparing the actual coefficient of determination (R-squared/R2) value to the
previous one. The p-values offer another method of comparison for speed and pressure. If
the actual decision has the same or higher significance with the previous one, the program
makes no changes. Otherwise, if the results are lower than expected, compared to the
previous ones, the die speed and the stretching pressure are being constantly adjusted and
the decisions compared. The goal is to improve as much as possible the p-value for the
speed and pressure decisions and, subsequently, the R-squared process value, if this can
be done.
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Table 1. The ASFP algorithm for the video-feed processing steps.

Video Processing Description

video colour spelling image colour spelling [45] from red-blue-green to black and white for edge
boundary detection;

marker detection and lock

the material blanks are sprayed with an anti-reflex coating; if any residual points (light
reflections, marks on the part, round corners of the die) still appear, they are cancelled by
the software; at this step, by using the Hough circle transformation method [46], the two
markers are locked into position and only they are analyzed;

auto-calibration
calibrated marks with a fixed diameter (white on black round markers with a radius of 1.5
and 3.5 mm) are used; the auto-calibration algorithm sets the necessary numerical value of
the calibration factor;

marker movement detection the Lucas-Kanade track and trace optical flow method [47] is used to analyze the position of
each marker with each frame;

marker relative position
the position is read as the distance between pixels by using the lower-left corner of the
video feed as the origin; the strain is calculated as percentage displacement from the initial
to the actual position %.

The experimental setup, highlighted in Figure 3a, consists of three components: in-
dustrial equipment, input data systems, and control systems. The industrial equipment
consists of a Hydramold hydraulic press (Hydramold, Ias, i, Romania) and an Ecoroll HGP
3.0 hydraulic pump (Ecoroll AG, Celle, Germany). For supporting the high-pressure hy-
draulic pistons, a custom steel frame is mounted on each side of the press, as noted in
Figure 3b. The input data system is composed of a hydraulic pressure sensor and a video
feed provided by a USB camera that is mounted on a FOBA ASLAI tripod, shown in
Figure 4a; the camera and the hydraulic press are not in direct contact, avoiding trans-
mitting vibrations from the machine to the video feed, as the image must be still. This
industrial equipment controls the displacement and speed in the vertical direction of a
150 mm radius steel die, as indicated in Figure 4b. The hydraulic pistons are equipped
with knurled gripping jaws that mechanically fix the metal sheet into place (Figure 4c).
Arduino Mega microcontrollers assure the interface between the ASPF algorithm and the
industrial equipment.

Figure 3. (a) Overview of the experimental setup including hydraulic press, hydraulic pump, data acquisition equipment;
(b) 3D representation of the hydraulic stretch-forming press.



Machines 2021, 9, 357 5 of 20

Figure 4. (a) Close-up of the experimental setup, highlighting the camera-tripod system, (b) steel die, stretched formed
AA1050 metal sheet and (c) gripping mechanism assembly with knurled jaws.

The control of the hydraulic pistons in the horizontal direction is made through
pressure adjustment; in this experimental study the angular displacement is not restrained,
as this setup allows angular control, as noticed in Figure 5a,b. The user interface, presented
in Figure 5c,d, displays the live video-feed, with the indicated additional information,
regardless of the operating mode.

Figure 5. (a) Initial position of the stretch-forming setup; (b) intermediate stage of the stretch-forming process indicating the
die and jaws displacement; (c) real-time processed video-feed at the start of the process; (d) real-time processed video-feed
at an intermediate position.

In order to ensure an easy and efficient setup, with in-process control, a separate
touch screen display was connected on which a custom Python script runs, as presented in
Figure 6a; this controls the on-off status of the hydraulic pumps, piston pressure, and die
speed in the vertical direction, while displaying the video-feed from the top or side camera
(mounted only for setup purposes). The process repeatability represented an essential
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aspect of this research study; in Figure 6b a dedicated script module interface is presented;
it ensures that every part of the process (jaws, die, metal sheet, and markers) maintains
its position with each run. When the ASFP algorithm starts the video-feed, it shows
information about the position of each marker, the slope between markers, elongation, last
decision execution time, actual time, video frame resolution, graphs for the coefficient of
determination (R2), and p-value for each decision, as indicated in Figure 6c.

Figure 6. (a) Setup and in-process touch screen user interface module, displaying the control panel and side view of the
process; (b) optimum die, gripping jaws, and marker position video-feed interface; (c) the ASFP algorithm user interface,
showing the main live video feed along with graphs for the statistical analysis data (R2 and p-value for each decision).

AA1050-O aluminum alloy (ALRO Vimetco, Slatina, Romania) was used for this
experimental study. Considering the experimental setup arrangement of the hydraulic
equipment, 100 × 320 × 0.5 mm blank sheets were used, as indicated in Figure 7a. In
Figure 7b, there are indicated the areas of interest that were measured and analyzed
for the stretched-formed parts (material strain, part radius, and part height). The shape
of the stretched parts is relative to the die shape, shown in Figure 7c,d. The analysis
was conducted to evaluate our algorithm results, comparing them to those of a classical,
programmed method.

Figure 7. (a) Blank material dimensions, highlighting the gripping areas and initial marker position; (b) stretch-forming
measured parameters (marker relative position, part radius, part height); (c) isometric view of the metallic die; (d) metallic
die overall dimensions.

The chemical alloy composition, as indicated in the ASM [48], is highlighted in Table 2.
The mechanical properties for this alloy were obtained on a Lloyd EZ50 material tensile ma-
chine (Lloyd Instruments Ltd, Bognor Regis, United Kingdom), using an Epsilon-3542 axial
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extensometer (Epsilon Technology Corp, Wyoming, United States of America). Despite the
low values for the yield strength (Rp0.2 = 28 MPa) and UTS (Rm = 76 Mpa), this alloy was
used for the specific state “O”, having improved elongation at break capability; compared
to other states (H14, H16, or H18) that offer superior yield and ultimate tensile strength,
but only 8 to 12% elongation, this alloy was capable of up to 39% elongation at break. It
was the subject of numerous studies, including the analysis of corrosion resistance, me-
chanical properties, and microstructure by continuous closed die forging [49] or carbonized
eggshell [48], hybrid surface nanocomposite by multi-pass friction stir processing [50],
thermal stability after equal channel angular pressing [51], layered sandwich composite
materials [37,38], and explosive welded laminate [52].

Table 2. Chemical composition of the AA1050-O aluminum alloy [53].

Chemical Composition wt.%

Al Cu Fe Mg Mn Si Ti V Zn

>99.5 <0.05 <0.4 <0.05 <0.05 <0.25 <0.03 <0.05 <0.05

A GOM Atos II 400 3D scanner image measurement system, highlighted in Figure 8a,
was used to obtain precise measurements. Before spraying with the MR Chemie 2000 L anti-
reflexive coating, 3/7 mm GOM markers were attached to each part. The measurements
were carried out in pairs of two, side by side, with a narrow gap between parts; this was
necessary for boundary identification and comparison purposes. The parts were placed on a
rotating device in order for measurements from multiple angles to be made; between 7 and
12 measurements were taken for each set of parts so a continuous mesh could be generated,
as show in Figure 8b. The height of each part is relative to the same measurement plane
and represented the maximum distance indicated by the measuring software (Figure 8d).
However, in order to measure the radius for each part, two perpendicular planes were
created, intersecting at the maximum height point. A median intersection plane was created
in the direction of the length of each mesh, and two other parallel planes were offset on
each side at 25 mm each. In the transversal direction from the main plane, the other two
planes were offset at 50 mm each. A total number of nine intersection points were created,
three on each of the longitudinal planes; in this direction, three-point circles were created,
as highlighted in Figure 8c, and for each part the value of the radius was obtained as a mean
of the radius of these circles. Further reference will be made to these values as the average
part radius for both the programmed (APR-P) and the ASFP (APR-ASFP) obtained parts.

Figure 8. (a) GOM Atos II 400 3D scanner image measurement system; (b) side by side 3D mesh of the scanned parts
obtained by the programmed and the ASFP processes; (c) average radius measurement points at the intersection planes;
(d) measurement distribution layout across the 3D mesh.

A comparison of the ASFP process to a standard, programmed process was used to
validate the algorithm. Furthermore, the programmed process was conducted by applying
a design of experiments (DOE) by analyzing, conducting, evaluating, and interpreting the
obtained data [54], with the Design-Expert software, which was necessary to be a validated
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experimental plan for evaluating the ASFP algorithm. Therefore, the data obtained from the
programmed process was assessed by using an analysis of variance (ANOVA), considering
the effects that the process factors (stretching pressure, die speed, and die stroke) have
on the responses (strain, part radius, and part height). The purpose was to determine if
the process was significant to validate our statistical analysis algorithm considering the
statistically validated data.

3. Results

A general direction emerged from the statistical analysis of the programmed process,
as this highlighted what path our algorithm should follow. Therefore, after conducting the
programmed process and having the maximum achieved strain for each part, the most
logical decision was to declare this as a goal in our algorithm; this allowed us to compare
the results to our method. Once the program was running, it decided what was best for
each step to achieve the indicated strain limit.

3.1. Statistical Analysis Programming Process

As mentioned previously, in order to determine if this self-decision method was
reliable, a comparative study was performed between the programmed and the ASFP
processes. For the programmed process, an experimental plan was generated as part of a
statistical study by using the response surface methodology and by applying an ANOVA
analysis; a total number of 20 samples were suggested to be tested with variations of the
stretching pressure, die speed, and stroke, as indicated below in Table 3. The hydraulic
press speed in the vertical direction was controlled by changing the motor frequency in Hz;
the main panel also displayed the speed in mm/s. As the die speed can only be controlled
by changing the motor frequency, the ANOVA analysis was conducted accordingly; this
was also available when the ASFP algorithm controlled the hydraulic press. The correlation
between the die control frequency in Hz and the die speed in mm/s is presented in Table 3
for a complete insight into the process.

Table 3. The plan of the design of the experiments indicating the programmed stretch-formed process
factor values, the response results, and the correlation between the die control frequency in Hz and
the die speed in mm/s, sorted in ascending order by strain.

Part.
Number

Stretching
Pressure Bar

Die Control
Frequency

Hz

Die Speed
mm/s

Die Stroke,
Programmed

mm

Strain
%

13 0 30 2 30 6.75

10 0 1 0.03 37.4 7.43

9 11.8 2 0.06 38.3 8.26

16 0 19 1.68 50 8.42

7 0 1 0.03 50 8.82

17 9 14 1.08 30.4 8.85

12 9 14 1.08 30.4 9.05

11 9 29 1.84 41 9.10

4 9 29 1.84 41 9.20

6 10 28 1.84 30.9 9.75

15 9 29 1.84 41 9.80
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Table 3. Cont.

Part.
Number

Stretching
Pressure Bar

Die Control
Frequency

Hz

Die Speed
mm/s

Die Stroke,
Programmed

mm

Strain
%

19 3.2 18 1.56 38.3 9.98

18 19.6 14 1.08 41 10.09

8 19.6 14 1.08 41 10.45

1 19.6 14 1.08 41 10.53

5 20 1 0.03 30 11.2

3 11.7 18 1.56 50 11.92

2 20 30 2 30 12.5

14 20 30 2 50 12.58

20 12.5 1 0.03 50 12.75

The ANOVA results, presented in Table 4, indicated that the study was significant
with values for each response for the R2 exceeding 0.9, while the difference between the
adjusted and predicted R2 was less than 0.2; the Adequate Precision, as signal to noise
ratio, was above the significant value of 4. Taking this into account, the programmed
experimental study was a solid base for a suggestive comparison with the ASFP.

Table 4. Fit statistics of the ANOVA analysis for the programmed stretch-forming process, for each
response.

Fit Statistics Strain Part Radius Part Height

R2 0.9888 0.9219 0.9504
Adjusted R2 0.9735 0.8352 0.9215
Predicted R2 0.8432 0.7426 0.7933

Adequate Precision 28.1992 9.7440 17.5590

Furthermore, in order to understand the behavior of the deformed material regarding
the responses, a complete analysis was conducted. It was essential to predict how each
factor influenced the responses and to what extent.

The analysis of the strain model returned a p-value below 0.0001, which indicated
that it was highly significant. Moreover, the die stroke was the most relevant factor in
obtaining higher values, as expected; this relation was shown in Figure 9a, where the
analysis predicted a maximum strain of 16.25% if the pressure was 20 bar, the die speed
was at 0.03 mm/s with a stroke of 50 mm. This was relevant in our case as it gave insight
into how our algorithm should behave. Furthermore, the statistical data inferred that the
stretching pressure, in combination with the die speed, had the same effect on the strain.
As a result, it can be noted from Figure 9b,c that the strain limit values were obtained not
only for the maximum value of the factors, but also for the middle ranges.

In the case of the part radius, the model was significant with a p-value of 0.008. The
interaction between the stretching pressure and the die stroke significantly impacted on
obtaining the desired radius, as shown in Figure 10a. In this case, a large die stroke led to
lower values of the radius. Conversely, the analysis indicated high stroke values resulted
in parts with a radius in the range of 150 mm. With a p-value lower than 0.05, the analysis
revealed that the interaction of all factors could lead to attaining the desired values of the
radius. It can be noted from Figure 10a–c that the most suggestive interaction occurred
using a 50 mm stroke, combined with a speed below 0.24 mm/s and a stretching pressure
above 15 bar.
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Figure 9. Results of the ANOVA analysis highlight the influence of the process parameters on the material strain, indicating
lower and upper limits for (a) die stroke, (b) die speed and (c) stretching pressure.

Figure 10. Results of the ANOVA analysis highlight the influence of the process parameters on the part radius, indicating
lower and upper limits for (a) die stroke, (b) die speed and (c) stretching pressure.

In the case of the part height, the model was considered significant, with a calculated
p-value less than 0.0001. The interaction between stretching pressure and die stroke, along
with the die speed were relevant in this case. Figure 11a,b indicated that a higher value of
the part height was related to higher die strokes; the stretching pressure had a significant
impact when using lower die strokes, acting as a compensation factor. The variation in the
die speed did not lead to significant adjustments to the part height.

The industrial nature of the SFP implied obtaining parts with a radius as close as
possible to that of the die. As indicated by the ANOVA analysis, this could be achieved
when using higher die strokes and stretching pressures. This combination of factors can be
unsafe, due to excessive strain and stress, leading to material failure. It was necessary to
specify that lower speeds were suggested for optimal results; this significantly interfered
with any industrial process, as the production time increased. An automated approach
may be a viable solution, so that the maximum strain and optimal radius may be obtained
without compromising the process speed.
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Figure 11. Results of the ANOVA analysis highlighting the influence of the process parameters on
the part height, indicating lower and upper limits for (a) die stroke and (b) die speed.

3.2. Overall Results for the Adaptive Stretch-Forming Process Algorithm

The complete overview of the stretch-formed parts is presented in Figure 12a,b. An
insight on the deformability improvement emerged from the early stages, from the first
self-stretched parts. Furthermore, the side-by-side GOM measurement indicated this
improvement. At this stage, the data regarding strain for each part were recorded and
used as limits for the ASFP algorithm. The purpose was to compare the obtained parts
for the degree of deformation as deviation from the die radius, part height, maximum
die stroke, and process time. A simple method was used to compare the parts: the die
radius was divided by the average part radius (APR), obtaining a deformation coefficient;
if the coefficient was 1, the part radius was equal to the die radius. The complete data
are presented in Table 5. The APR measured values and the determined deformation
coefficients were presented along with the part height for both the programmed and the
ASFP parts. The ASFP algorithm recorded the data regarding each process in .csv files;
there was a process time among the readings. The programmed process time values were
recorded for the constant die speed and the predetermined stroke, while those for the ASFP
were dependent on a programmed goal (maximum strain), therefore it varied with each
decision (variable die speed, stretching pressure).

Table 5. Results of the programmed and ASFP for average part radius, height, process time, and deformation coefficient,
sorted in ascending order by strain.

Part.
Number

APR-P
mm

APR-ASFP
mm

Die Radius
/APR-P

Coefficient

Die
Radius/APRA-SFP

Coefficient

Part Height,
Programmed

mm

Part
Height, ASFP

mm

Process Time,
Programmed

s

Process Time,
ASFP

s

13 321.43 163.25 0.4667 0.9188 11.5 27 15 132

10 391.26 184.44 0.3834 0.8133 9.98 26.2 1246.7 257

9 210.35 154.37 0.7131 0.9717 20.2 29.8 638.4 223

16 187.71 154.53 0.7991 0.9707 26.9 24.7 29.8 189

7 183.48 160.96 0.8175 0.9319 27.2 26.5 1666.7 334

17 321.02 184.39 0.4673 0.8135 13 26.1 28.2 215

12 323.7 177.34 0.4634 0.8458 12 27.1 28.2 169

11 173.95 150.04 0.8623 0.9997 24.7 24.3 22.3 232

4 178.18 190.21 0.8418 0.7886 24.6 26.4 22.3 205

6 337.43 174.39 0.4445 0.8601 11.9 29 16.8 334

15 202.46 159.47 0.7409 0.9406 25.8 30.2 22.3 358

19 314.85 189.96 0.4764 0.7896 16.6 23.1 24.6 223

18 160.03 152.77 0.9373 0.9819 22.2 34.2 38 351
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Table 5. Cont.

Part.
Number

APR-P
mm

APR-ASFP
mm

Die Radius
/APR-P

Coefficient

Die
Radius/APRA-SFP

Coefficient

Part Height,
Programmed

mm

Part
Height, ASFP

mm

Process Time,
Programmed

s

Process Time,
ASFP

s

8 194.7 158.15 0.7704 0.9485 22.3 34.2 38 302

1 255.02 179.84 0.5882 0.8341 21.2 24.6 38 217

5 186.43 176.66 0.8046 0.8491 23.1 36.2 1000 289

3 190.64 169.52 0.7868 0.8849 29.7 34.7 32.1 307

2 333.6 152.56 0.4496 0.9832 14.3 31.7 15 307

14 178.71 151.1 0.8393 0.9927 26.8 32.2 25 195

20 185.47 173.41 0.8088 0.8650 28.3 32 1666.7 266

Figure 12. (a) Stretch-formed part shape comparison top and (b) side-view (ASFP parts on top), sorted by part number.

4. Discussion

On average, the deformation coefficient for the programmed process is 0.673; when
using the ASFP, this value increases to 0.899, representing an improvement of 34% in
deformability. The parts can now be analyzed comparatively. For this experimental study
to validate our algorithm, the following cases are presented:

• best-case match for part-to-die by radius (Table 6);
• worst-case match for part-to-die by radius (Table 7);
• best and worst case matches for part-to-part by radius for both the programmed and

self-decision algorithm (Table 8).



Machines 2021, 9, 357 13 of 20

Table 6 highlights the results in the range of the die radius as a comparison between the
programmed and the ASFP parts. Furthermore, the results are presented as a comparison of
each part obtained by each method. The best match for part-to-die by radius was obtained
for the programmed process at part number 18 and the ASFP at part number 11. When the
stretch-forming uses the programmed method for part number 18, the radius has a value
of 160.03 mm, resulting in a deformation coefficient of 0.9373. In contrast, part number 11
has a radius of 150.04 mm, with a deformation coefficient of 0.9997. This difference was
obtained by a reduction in strain from 10.09% to 9.1% and an increase in part height of
2.1 mm. The differences are noticeable when comparing the result obtained for the same
part. For the same strain value of 10.09%, the ASFP offers a deformation coefficient of
0.9819 at a radius of 152.77 mm, with a part height of 34.2 mm. Improvements are observed
in the case of part number 11, with an increase in the deformation coefficient from 0.8623
to 0.9997.

Table 6. Best-case match for die-to-part by radius with measurements for the programmed and the
ASFP parts.

Match
by Radius

Part
Number

GOM Measurement Comparison

Programmed ASFP

Best-case match
part-die

18

11

Recording the process parameters for both methods highlighted the dynamics of each
process in terms of the number of decisions and what they represent for the stretching pres-
sure, die speed, stroke, strain, process R2, and process total time, as presented in Figure 13
(for part number 18) and in Figure 14 (for part number 11). While the programmed pro-
cess was constant for both pressure and die speed, the ASFP process indicated that the
algorithm adapted as the metal sheets deformed. In the case of part number 18, 3.427 [deci-
sions/second] were taken; the ASFP algorithm managed to keep the R2 value above the
0.8 thresholds for 250 decisions, until the strain value reached 1.5%. A particular aspect
emerged from the complete data analysis, as in the R2 value; a sudden drop occurred after
a constant slope. This area could be assigned as the transition from the elastic to plastic
deformation. This prediction correlated to the algorithm increasing the stretching pressure
and the die speed as a compensation mechanism. Considering that the elastic area implied
constant stress to the strain slope, the algorithm’s statistical analysis found it relevant, and
the process model was mathematically predictable. Once this boundary was crossed, the
algorithm was confronted with a model that was not as predictable. Depending on each
case, it tried to find the correct speed and pressure to raise the value of the R2. When
analyzing the blue areas of the graph, the zones with the same speeds have a color fill area,
while those with different attempts appear faded.
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Figure 13. Programmed and ASFP parameters, indicating stretching pressure, die speed, die stroke, material strain, process
R2, number of decisions, and total process time for part number 18.

The algorithm decreased the speed or stops of the die displacement, while it analyzed
its decision to find if it was relevant or not. It seemed that the stretching pressure was
considered the most relevant factor, and accordingly, its value was slightly modified.
Nevertheless, the unpredictable behavior of the material, while stretching beyond the
elastic area, did not represent an obstruction for generating and evaluating decisions.

The ASFP lasted for 351 s when stretch-forming part number 18; compared to the pro-
grammed process that lasted for 38 s, an increase of 6% in the deformation coefficient was
obtained. It did not represent the difference between the process times, but if considered,
this part was among the closest to the die shape. It was not a general rule, as presented in
the following cases.

When analyzing the decision distribution for part number 11, it was noted that while
the R2 value dropped much faster, after 70 decisions, the algorithm tried to correct this by
changing the die speed. In this case, the strain was 0.32% when the R2 value was 0.8. In
contrast with the decision made regarding part number 18, the pressure was considered
relevant after 150 decisions, with a sudden and massive increase approximatively starting
with the decision number 400. Within this interval, the growth was slow with variations of
the die speed. Compared to part number 18, this run was faster, with a total time of 232 s; a
decrease of 33.9% was recorded for a reduction in the strain of 9.81% when comparing the
two parts.

Figure 14. Programmed and ASFP parameters, indicating stretching pressure, die speed, die stroke, material strain, process
R2, number of decisions, and total process time for part number 11.

The second set of comparisons highlighted the worst-case match between part and
die by radius. The data was presented as previously described in Table 7. Part number 10,
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stretch-formed using the programmed process, resulted in a radius of 391.26 mm, with a
deformation coefficient of only 0.3834 and a height of 9.98 mm.

Table 7. Worst-case match for die-to-part by radius with measurements for the programmed and the
ASFP parts.

Match by
Radius

Part
Number

GOM Measurement Comparison

Programmed ASFP

Worst-case match
part-die

10

4

Compared to the process obtained by using the ASFP, huge differences were noted
with 112% improvement in the deformation coefficient, to a value of 0.8133 and a part
height of 26.2 mm; this agreed with the data presented in Figure 15, where the process was
mainly conducted at pressures below 12.5 bar. The algorithm maintained the R2 value
above the 0.8 thresholds for 154 decisions until reaching a strain of 0.26%. When analyzing
the speed values after the decision 205, when the R2 dropped significantly, it was noted
that the algorithm considered that frequent stops of the die movement were necessary.
The result further confirmed the conclusions drawn from the statistical analysis of the
programmed process, where middle to high pressure was indicated for optimal values.

Figure 15. The programmed and the ASFP parameters, indicating the stretching pressure, the die speed, the die stroke, the
material strain, the R2 process, the number of decisions, and the total process time for part number 10.

When analyzing the worst-case match obtained by the ASFP (part number 4), it
was noticed that the radius decreased by 3.13%, in comparison with part number 10.
Particularities emerged as the ASFP was at a disadvantage, compared to the programmed
process as the radius increased by 7% from 178.18 to 190.21 mm.

In this case, the decisions were similar to those made for the other parts, as resulting
from Figure 16, where it was noted that the coefficient of determination dropped below
0.8 after 170 decisions; consequently, the strain value was 0.32%. A decrease in the R2



Machines 2021, 9, 357 16 of 20

value was evaluated as the increase in pressure and in successive die speed adjustments.
The attempts to return to a higher value were spread throughout 250 decisions, until the
decision 426, when the pressure was increased up to 18 bar. From this point until the end
of the process, only the die speed was intensively controlled.

Figure 16. Programmed and ASFP parameters, indicating stretching pressure, die speed, die stroke, material strain, process
R2, number of decisions, and total process time for part number 4.

Furthermore, a precise distinction was evident when comparing part number 10 with
part number 4; even the worst-case match offered by the ASFP was much closer to the die
radius than the programmed part was.

The data that resulted from comparing the parts with the same strain obtained by
each method was presented in Table 8. In the case of part number 5, the measurements
indicated a difference of 6% in the deformation coefficient, with the ASPF offering the best
results; this improvement was noted in the part height and in the processing time; taking
into consideration that the programmed process lasted for 1000 s compared to 289 s for the
ASFP, as indicated in Figure 17.

Table 8. Best and worst-case match by part-part radius with measurements for programmed and
ASFP parts.

Match by
Radius

Part
Number

GOM Measurement Comparison

Programmed ASFP

Best-case match
part-part 5

Worst-case match
part-part 2
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Figure 17. Programmed and ASFP parameters, indicating stretching pressure, die speed, die stroke, material strain, process
R2, number of decisions, and total process time for part number 5.

When comparing the overall process parameters, it was noted that the programmed
process was a resource consumer, running at low speed with a pressure of 20 bar, in contrast
to the ASFP that used higher die speeds with a gradual increase in pressure, while not
exceeding 13 bar. A strain of 0.52% occurred after only 36 decisions; this was assigned to the
fact that the process started with a die speed above 0.3 mm/s, which was a particular case.

The most notable difference in the part-to-part match by radius, highlighted in
Figure 18, was obtained for part number 2. A radius of 333.6 mm was obtained by using the
programmed process, while the ASFP managed to process the part to a radius of 152.56 mm.
The difference in the deformation coefficient was from 0.4496 to 0.9832, with a percentage
difference between parts radius of 119%. Furthermore, the height of the ASFP part was
31.7 mm, 112% higher. Compared to the other parts, in this case, the R2 value dropped
sharply after 85 decisions while the stretching pressure was turned off. This behavior had
not been observed in other cases, since no pressure was used for almost 150 decisions,
provided that the algorithm tried in every case to raise the stretching pressure when the R2

value dropped quickly.

Figure 18. Programmed and ASFP parameters, indicating stretching pressure, die speed and die stroke, material strain,
process R2, number of decisions, and total process time for part number 2.

The data related to the dimensional accuracy (part radius and height) of the ASFP
highlights this method’s improvements. The analysis of the algorithm includes the review
of the processing time and the number of decisions. As indicated in Figure 19, the ASFP is
23% faster, with an average process time of 255.2 s. The processing time ranges from 132 to
358 s, while the programmed method ranges from 15 to 1666.7 s.

The number of decisions ranged from 549 to 1203, meaning an average value of 887.4.
The frequency at which the algorithm made and implemented its decisions was between
2.156 and 4.689 decisions/second, an average of 3.477 decisions/second. The frequency
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proved to be optimum, as some time was needed for the hydraulic equipment to perform
the commands. From the point of view of the statistical analysis calculation time, no
impediment had emerged, as one complete calculation lasted for 4 × 10−7 s.

Figure 19. Comparison of process time between stretch-formed parts by using the programmed and
the ASFP algorithm processes, number of decisions, and average number of decisions.

5. Conclusions

The ASFP algorithm provided a new insight into using computer vision and statistical
analysis in the stretch-forming process. In this experimental study, a comparison between
a classical method and our algorithm was conducted, highlighting the improvements in
deformability and process time. The results indicated that the deformation coefficient was
improved by 34%, and the overall average process time decreased by 23%.

Furthermore, the experimental data obtained from the programmed stretch-forming
process offered a statistical interpretation of the effects of the process parameters (stretching
pressure, die speed, and die stroke) on the material strain, part radius, and part height.

Being in a continuous stage of development, this technique had the benefit of constant
improvement from the data analysis of different alloys and stretch-forming conditions.
The system can import real-time data and establish a connection between the process
parameters and strain, part radius, and part height, thus deciding and evaluating its
next steps.
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