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Abstract: To date, several alterations in the gait pattern can be treated through rehabilitative ap-
proaches and robot assisted therapy (RAT). Gait data and gait trajectories are essential in specific
exoskeleton control strategies. Nevertheless, the scarcity of human gait data due to the high cost of
data collection or privacy concerns can hinder the performance of controllers or models. This paper
thus first creates a GANs-based (Generative Adversarial Networks) data augmentation method to
generate synthetic human gait data while still retaining the dynamics of the real gait data. Then, both
the real collected and the synthesized gait data are fed to our constructed two-stage attention model
for gait trajectories prediction. The real human gait data are collected with the five healthy subjects
recruited from an optical motion capture platform. Experimental results indicate that the created
GANs-based data augmentation model can synthesize realistic-looking multi-dimensional human
gait data. Also, the two-stage attention model performs better compared with the LSTM model; the
attention mechanism shows a higher capacity of learning dependencies between the historical gait
data to accurately predict the current values of the hip joint angles and knee joint angles in the gait
trajectory. The predicted gait trajectories depending on the historical gait data can be further used for
gait trajectory tracking strategies.

Keywords: gait prediction; attention; lower-limb rehabilitation robot; LSTM

1. Introduction

Gait disturbances affect autonomy but above all peoples’ quality of life. Walking
recovery after gait disorders can be a long, labor-intensive process, but robotic assisted
therapy (RAT) can help [1–3]. Robotic devices are designed for lower-limb rehabilitation,
powered orthoses with computer-controlled motors, and to support the joint movement by
improving patients’ locomotor ability, balance impairments, or muscle control ability [4,5].
In this way, the RAT can increase rehabilitation intensity and frequency, enhancing func-
tional recovery even with minimal guidance from therapists and without the association
with another rehabilitative approach [6].

There are already a range of robotic devices commercially available [7]. The robotic devices
for gait rehabilitation can be grouped into three categories: body weight-supported treadmill
(BWST) exoskeleton devices, end-effector devices and wearable lower-limb exoskeletons
(WLLEs) [8]. BWST exoskeletons involve a harness that supports an adjusted percentage of
a patient’s body weight, while robotic orthoses control hip, knee, and/or ankle movement
patterns during gait. The most popular BWSTT exoskeleton can be Lokomat, which has
been used for over 280 gait rehabilitation studies with different patient populations [9]. End-
effector devices instead provide bodyweight support with the use of a harness by strapping
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the patient’s feet and ankles onto foot-plates that mimic the trajectory of gait [10]. A typical
end-effector device is the Gait-trainer GT II that provides functional electrical stimulation to up
to eight muscle groups. A GT II could offer practical gait training for early-stage rehabilitation
of orthopedic and impaired neurological patients [11].

Wearable lower-limb exoskeletons used in gait training aiding recoveries can be over
ground, which provide support, protection and therapy to reduce the burden on the
limbs and assisting patients to complete daily living activities, like walking, squatting,
sitting-to-standing, going up and down stairs [12]. Wearable exoskeleton Phoenix is
designed for clinic and community ambulation. It has motors that control hip and knee
movements, allowing for a couple of hours’ continuous walking [13]. Whilst, WLLEs for
gait rehabilitation are still in their early stages of development, partially due to the following
underlying reasons. First, bulky wearable devices hinder mobility and independence in
the use of walking aids; second, there is a need for standardised measures for therapy
protocol and assessment. Consequently, precise and timely control trials are required to
demonstrate WLLEs’ clinical evidence for patient improvement.

The main objective of lower-limb rehabilitation training is to restore the ambulatory
functions of patients to normal levels [14]. To assist gait in WLLEs, researchers explore
multiple control strategies for rehabilitation. One of the main identified trends in WLLEs’
control strategies is trajectory tracking control [15]. The related investigations in gait
rehabilitation suggest the patients with similar gait disorders have homogeneous gait
patterns [1]. Patients often follow a predetermined trajectory in their rehabilitation. Thus,
in the process of rehabilitation training, a normal gait pattern is required as a reference input
to the control system, whilst the normal gait pattern of patients cannot be directly measured
due to their impaired motor functions. The predetermined trajectories can be obtained
from normal gait data collection. The relevant characteristics of normal human gait are
used for human walking gait rehabilitation. However, the high cost of data collection and
privacy concerns make human gait data scarce. Due to the limited amount of human gait
data, matching the obtained gait data with different rehabilitation trajectories tracking
is difficult. It can explain why data augmentation methods, like Generative Adversarial
Networks (GANs), are developed to generate additional synthetic data based on original
data [16].

The predefined gait trajectories, that is, joint angles, angular velocities, angular accel-
erations, joint torques and so on [17] are often used as the reference input of the controller
in trajectory tracking control. Predicting the evolution of the gait trajectory can be critical
to contribute to intended movements, which can make the control more timely in online
use. Meanwhile, a larger amount of human gait training data benefits from improving the
prediction performance and reducing overfitting. Based on the above two issues, this paper
explores creating a Generative Adversarial Network (GAN)-based augmentation model
to generate more gait data while retaining the dynamics of the real collected data. Based
on the augmented gait data, we also create an attention-based model for gait trajectory
prediction to provide timely data for the controller of a trajectory tracking strategy in
WLLEs.

2. Related Work

The conventional data augmentation methods are usually based on transformations,
such as flipping, rotating, adding random noise, cropping, scaling, random warping,
etc. [18]. Authors in [19] proposed an approach using Dynamic Time Warp Distance (DTW)
to alleviate the overfitting problem of small time-series data sets. Researchers in [20]
applied multiple methods augmenting wearable sensor data to automatically classify the
motion state of patients. The results suggested the combination of rotation and arrangement
augmentation improved the classification accuracy to 86.88% from 77.52%. Most of the
above transformation-based methods are designed according to intuitive experiences, thus
only slightly generating new data. There also exists a diverse amount of time series with
different properties, and each transformation is not applicable to all datasets.
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The generative adversarial networks (GANs) approach, in turn, is promising especially
in dealing with scarce image data by generating realistic-looking images [16]. In order to
generate new data, based on the real data and sampled random vectors, GANs utilise an
adversarial training mechanism to jointly optimize two neural networks, that is, a generator
and a discriminator. There is already a range of time series GANs proposed for data
augmentation. A certain author has proposed a GAN structure for wearable sensor data
augmentation in [21], which was established based on Gaussian mixture density networks
and recurrent neural networks. The generator failed to learn from the discriminator well
since the generator and the discriminator were trained separately. Also, unlabeled data
limited the supervised learning task. The authors of [22] designed a recurrent generative
adversarial network for generating medical time series data, whilst no supervision during
training made the training unstable.

The authors of [23] proposed a novel method generating realistic time-series data.
They combined the unsupervised GAN with the supervised autoregressive models to
encourage their designed network to preserve temporal dynamics of the real time series
data. They empirically evaluated the superiority of their method in terms of measures
of predictive ability and similarity. Researchers in [24] introduced a novel method to
reduce high data collection costs in fingerprint-based localization tasks. They employed
GANs to learn the distribution of the limited collected data and to generate synthetic data.
Experimental results showed they obtained essentially similar positioning accuracy from
10% of collected data and 90% of synthetic data as that from the whole collected samples.
It implied that, with GAN-generated synthetic data, the acceptable accuracy was achieved
only using 10% of the real data, thereby reducing data-collection costs. The above GANs-
based methods demonstrate that data augmentation on the one hand is beneficial for data
collection cost reduction. Additionally, the augmented data help to obtain the competitive
performance in classification or prediction tasks with much fewer observations.

To appropriately guide patients following their gait trajectory in WLLEs, understand-
ing their normal gait is needed to analyze the characteristics of gait patterns [25]. Human
gait analysis is commonly performed using foot contacting force/pressure sensors [26],
electromyography (EMG) sensors [27], inertial measurement units (IMU) [28] or optical
motion capture devices [29]. Gait analyses are carried out using machine learning methods.
The authors of [30] employed a decision tree estimating the gait phrase based on the feet
loads and segmented IMU data. The authors of [31] presented a novel method for gait
phase classification. They modified a Random Forest algorithm to foresee an initial phase
of gait data, classifying the gait phase (stance or swing). The gait data used were acquired
from a power gait orthosis: the cameras embedded in the crutches used by a user. The
above two applications for gait analysis using machine learning methods focused on the
uni-variate gait phrase data without considering multi-dimensional gait data.

Differently, data trajectories required in WLLEs, such as joint angles and joint torques,
are usually deduced from multi-variate gait data [17]. The prediction of multivariate gait
trajectories can be difficult, since it adds the complexity of order or temporal dependencies
between observations. A statistical continuous variables model in [32] was developed.
The model estimated and predicted the evolution of the joint trajectories by taking both
the variations on the trajectories and the nominal joint trajectories into account. Yet,
the model highly relied on the observations, unable to comply with joints. In [33], an
anthropometric features-based prediction method was presented for patient-specific gait
trajectories. The method applied Fourier coefficients to represent gait patterns and then
deployed a Random Forest algorithm to learn the dependencies between human gaits
and the anthropometric features for gait prediction. The above machine learning methods
considered the dependencies between multi-dimensional time series gait data, whilst they
shared a common problem of requiring manually extracted and carefully selected features
to fit prediction models.

Deep neural networks (NNs) can instead learn complex mappings automatically from
input to output, providing the potential for multidimentional time series prediction tasks
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without manually extracted features. Particularly, the modified version of recurrent neural
network (RNN), that is, Long Short-Term Memory (LSTM), is designed to learn mapping
functions from input over time to output [34,35]. LSTM has been widely employed for gait
analysis especially with time-series data. For predicting the falls of older people, study
in [36] applied the LSTM models for gait sequence prediction. The gait sequences were
from nine-axis accelerator gyroscope angle sensors. Experimental results indicated the
LSTM model performed well for predicting of both multi-variate and uni-variate gait
data since it considered the dependencies between the gait data over time. Gait event
detection can help identify and assess gait abnormalities. Authors in [37] used a modified
LSTM network to detect toe offs and heel strikes during the user’s gait cycle based on
accelerometer-based data.

Meanwhile, encoder–decoder architectures have become one popular way of orga-
nizing RNN or LSTM networks for sequence-to-sequence prediction problems [38,39]. An
encoder–decoder architecture can be developed where a source sequence is read in entirety
and encoded to a fixed-length vector. A decoder network then uses the compressed repre-
sentation that is expected to be a good summary of the entire input sequence to generate
the transformed output (the target sentence). RNN or LSTM networks can be used for
both the encoder and the decoder. One problem with the architecture above is that the
performance will deteriorate in long input or output sequences. The reason is because
the fixed-length vector design causes the system to be incapable of remembering longer
sequences. The attention mechanism is an extension that addresses this limitation of the
encoder-decoder architecture on long sequences [40,41]. It was originally developed for
machine translation problems and it has been proven successful at related sequence-to-
sequence prediction problems. Attention-based encoder-decoder networks provide a richer
context from the encoder to the decoder and a learning mechanism. The decoder can learn
where to pay attention in the richer encoding when predicting each time step in the output
sequence. A novel multivariate time series prediction model, composed of an influence
attention mechanism-based encoder and a temporal attention mechanism-based decoder,
was proposed [42]. It was proved that the model could outperform some baseline models.
The study in [43] combined a temporal attention mechanism with a graph convolution
network. The model was used to capture the dynamic temporal feature and the inner
relationship for bike-sharing prediction.

Back to the exoskeleton robot tracking control systems, the dynamics of a two-link
rigid robot can be written as Equation (1), where D(q) represents the inertial matrix, C(q, q̇)
is the centrifugal and Coriolis torque vector matrix, and the gravity matrix is demoted as
G(q) [44,45]. Normally, the collected human gait data are used to compute the gait trajectory
values, for example, the joint angle q, the angular velocity q̇, the angular acceleration q̈
and the corresponding joint torque value τ. These trajectory values can be further used
as the reference input of the designed controller to drive the actuator of the rehabilitation
robot. To maintain the continuous action of the robot, the joints target torques are needed
to compute at each time step of the main control loop. This mechanism cannot drive the
robot until the values in Equation (1) are obtained after acquiring humans’ gait trajectories,
which can lead to a lack of timely control for online control.

D(q)q̈ + C(q, q̇)q + G(q) = τ (1)

Our previous work [46] employed LSTM models for the prediction of univariate gait
data one dimension be one. The prediction results can be used to timely compute the
gait trajectory values in Equation (1). This paper aims to extend the previous work by
first augmenting the collected real gait data and then predicting the current gait trajectory
values needed in Equation (1) from the historical multivariate human gait data. The
human gait data collected from our data capture platform are multivariate time sequences
with complex correlations and dynamic changes. To augment the gait data, we create a
GAN-based model to generate more gait data while retain the dynamics. To improve the
performance of gait trajectory prediction, we also construct a two-stage attention model
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and a baseline LSTM model. The predicted gait trajectory values can also be used for other
control schemes, such as reinforcement learning or optimal controls.

3. Materials and Methods
3.1. Framework

Figure 1 illustrates the framework of human gait data augmentation and gait trajectory
prediction in the paper. The core of the design is the GAN-based gait data augmentation
model and the attention-based gait trajectory prediction. Specifically, the collected limited
real gait data from healthy subjects are first augmented by the created GAN-based model to
generate more synthetic gait data for the gait trajectory prediction task. Then both the real
and the synthesized gait data are preprocessed and fed to the constructed attention-based
and baseline LSTM prediction models respectively. The best prediction results are presented
accordingly after optimizing the parameters of the prediction models. The predicted gait
trajectory values required in Equation (1) can be transformed to the corresponding joint
torque τ values in further work for rehabilitation robot controls.

3.2. Data Acquisition

The human gait data in the work are acquired from a NOKOV passive infrared optical
motion capture platform [47], referring to the data collection setting in Figure 1. There are
six cameras uniformly spaced in two lines along the walls in the lab environment. The data
collection associated procedures were approved by Zhongyuan University of Technology
Research Ethics Committee (Project identification code ZUTSEI202008-001). All subjects gave
their informed consent for inclusion before they participated in the data collection. During
the data collection, each participant is instructed to walk at his/her own normal way under
the setting of NOKOV. The captured gait data are recorded in the format of three-axis position
values from each of the six mark points placed on human body (see Figure 1).

Mark point 

Data collection 

setting 

 

LSTM 

Prediction 

Controller 

Lower-limb exoskeleton robot 

Attention-based 

Prediction 

Data preprocessing 

Data augmentation 

Figure 1. Gait trajectory prediction for lower-limb exoskeleton rehabilitation.
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Walking is achieved by coordination between the pelvis, hip, knee, and ankle [15].
Also, this paper only explores the prediction of certain trajectory values in Equation (1),
which are from the recorded gait data on the hip, knee and ankle. Therefore, we only
attached six marks to the hip, the knee and the ankle of each body side of a subject in the
study for gait data collection. As long as two lenses capture a mark point, the corresponding
axis-based position values are measured referring to the calibration point on the ground.
Figure 2 shows the ground truth for a certain duration from each of five participants’ three
mark points on the right body side. Thus, in each subfigure, the nine ordinate-axis values
denote the position coordinate values in terms of X,Y,Z axis at each of the three mark points
(the hip, knee, angle) on the right lower extremity.The horizontal-axis value is the time
sequence orders for all the nine channels. The five healthy subjects in Figure 2 are aged
22 to 26, with an average height of 1.722 cm. Four of them are male except subject one.
However, they show the homogeneous gait patterns with similar stride cycles in terms of
the axis position values at the corresponding marks.

Subject 2 Subject 1 Subject 3 

Subject 4 Subject 5 

Figure 2. Real gait data stream captured by the motion system.

3.3. Models
3.3.1. GAN-Based Gait Data Augmentation Model

The fundamental networks of GANs for time series include GANs with temporal
CNNs, GANs based on fully-connected networks, recurrent GANs, and so forth [18]. The
synthetic data by GANs should preserve temporal dynamics of the real data, thus the
augmentation model should not only be able to capture the feature distributions of the
real data, but to capture the complex dependencies of the features over time. Inspired
by the work in [23,24], we complete a GAN-based multi-dimensional time series model
to learn and generate new synthetic gait data. The pipeline of the data augmentation
model is shown at the lower part in Figure 3. The augmentation model comprises four
sub networks: a generator, a discriminator, with an extra embedding network and an
extra recovery network. Each of the four networks play different roles in modelling the
data. Both the generator and the discriminator are implemented with a multi-layer GRU
network, they generate and distinguish synthesized data respectively. The supervised and
adversarial objectives are jointly optimized through the learning embedding network and
recovery network to remain the dynamics of the training data, which are implemented
with an auto-encoder structure.

In the data augmentation model, there are three losses included: the reconstruction
loss, the supervised loss and the adversarial loss. The reconstruction loss is based on the
auto-encoder network (embedding and recovery), responsible for comparing how well
the reconstruction of the encoded data is compared with real data. The supervised loss
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captures how well the generator approximates the next time step. The adversarial loss
reflects the relation between the generator and discriminator networks. The corresponding
training phases include: (1) training the autoencoder on the provided sequential gait data
for optimal reconstruction; (2) training the supervisor using the real sequence gait data to
capture the temporal behavior of the historical information, and (3) the combined training
of four networks while minimizing all the three loss functions mentioned previously.

Multivariate  time series gait data

Input attention layer

2x1x 3x nx...

2~x1~x 3~x n~x...

encoder

Temporal attention layer

LSTM LSTM LSTM

decoder

2ŷ1ŷ 3ŷ 1-Tŷ...

LSTM LSTM LSTM

LSTM

LSTM

Data 
training

Embedding 
network

Recovery 
network

Feature 
space

 Generator
Augmented 

data
Discriminator Classification

X0 X1

Real data

Random vector

Gait data augmentation

supervised loss

adversarial loss

reconstruction loss

reconstruction loss

adversarial loss

Gait trajectory prediction

Figure 3. Pipeline of GAN-based gait data augmentation with attention-based gait trajectory prediction.

3.3.2. LSTM Prediction Model

For the gait trajectory prediction based on both the real and augmented synthetic gait
data, we construct two prediction models. We first establish a multi-variate temporal LSTM
prediction model as the baseline prediction model. LSTM maintains RNN’s ability to learn
the temporal dynamics of sequential data but also retain the long-term information in the
prediction of time series. The two-layer LSTM prediction network is shown in Table 1 with
its basic details. The parameters of LSTMs are further optimized according to the specific
prediction tasks detailed in the following sections.



Machines 2021, 9, 367 8 of 17

Table 1. The structure information of the LSTM model.

Layer (Type) Output Shape # Parameters

lstm (LSTM) (None, 1, 64) 17,664
lstm_1 (LSTM) (None, 32) 12,416
dense (Dense) (None, 1) 33

3.3.3. Attention-Based Gait Trajectory Prediction Model

Conventional encoder–decoder structures ignore the intermediate states of the encoder.
Only the output of the final state initializes the decoder for decoding and prediction after
the encoder processes the input data into a fixed-length vector. Consequently, inspired
by how human brain processes input information with attention mechanism, we add two
attention layers into the LSTMs-based encoder–decoder architecture, referring to the upper
part in Figure 3. The underlying idea is to introduce a layer of feature attention in the
encoder, this enables the encoder to handle the long-term dependencies of drive sequences
over historical time steps, also learn and select more correlated features in the input data.
At the same time, the introduction of a temporal attention in the decoder is to evaluate all
relevant encoder states and and to learn information for the prediction of the gait trajectory
values by performing learning with different weights.

As shown in Figure 3, given the time-series gait data (the real X0 or the synthetic
gait data X1), X = (x1, x2, . . . , xm)T = (x1, x2, . . . , xT) ∈ Rm×T and the target series
y = (y1, y2, . . . , yT−1), yt ∈ R, the attention-based model aims to find the nonlinear map-
ping by retrieving the long-term temporal information from the encoded inputs to predict
the current value of the target series ŷT . Compared to a conventional encoder-decoder
structure that discards all the intermediate states of the encoder only use its final states to
initialize the decoder, the model in Figure 3 first utilizes a feature attention (multi-layer
MLPs) in the encoder to learn the relevant features from the input time series (xt) and
map them to new representations x̄t, rather than treating all the input series equally. To
predict the target series ŷT , in the decoder a temporal attention operation (multi-layer
MLPs) is designed to select the relevant encoder hidden states required by decoder across
all the states (h1,h2,. . . ,hT) instead of only the final time steps (hT).The output of the second
attention is the weighted summed context vectors (ct), which are concatenated with the
decoder input (yt−1) as the updated decoder input.

3.3.4. Experimental Setup

The critical values in Equation (1) are needed for rehabilitation control design. This
study only picks the joint angle q for prediction tasks to explore a potential method future
online control use. We use five healthy subjects’ gait data captured by the cameras with the
marks on body. The real data examples are plotted in Figure 2. Due to the space limitation
in the lab setting, each data collection trial only can last a couple of seconds. Thus, in
this work, we establish a GAN-based augmentation method to generate more synthetic
gait data based on the collected real data. According to the inverse kinematics analysis
method [45], the human lower-limb hip joint angle qhip and the knee joint angle qknee can
be obtained from expressions (2) and (3):

qhip = arctan kneex−hipx
kneey−hipy

(2)

qknee = qhip − arctan anklex−kneex
ankley−kneey

(3)

where x represents the x-axis value and y represents the y-axis value on the corresponding
mark point, for example, kneex means the x-axis value based on the mark point placed
on the knee on one body side. Thus, the hip joint angle is based on four time series in
expression (2), and the knee joint angle is derived from the six time series in expression (3).
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Table 2 lists the real gait datasets from the five subjects. For the data augmentation
tasks, we separately augment the five subjects’ gait data according to the prediction tasks
shown in Table 2. Both the synthetic and real multi-dimensional gait data will be used to
for gait trajectories prediction. For the prediction of the hip joint angles and the knee joint
angles, the details about the real datasets are listed in Table 2. For different subjects, the
sample numbers of the real data sequences are different, referring to Figure 1 and Table 2.
The sequence numbers of the augmented data are different accordingly. We will explain
the details of the augmented data in the next section. For all datasets in Table 2, we use
70% of the instances for train and 30% for test in all the prediction tasks. It is noted that all
the above models and the following evaluation measures are coded with Python 3.7.1 and
tested in the environment of Torch 1.8.1

Table 2. Details of the datasets.

Dataset Subject # Real Data # Augmented Data # Features Target Value

Hip joint

Subject 1 448 1776 4 Hip joint angle
Subject 2 429 1700 4 Hip joint angle
Subject 3 394 1558 4 Hip joint angle
Subject 4 606 2408 4 Hip joint angle
Subject 5 288 1136 4 Hip joint angle

Knee joint

Subject 1 448 1776 6 Knee joint angle
Subject 2 429 1700 6 Knee joint angle
Subject 3 394 1558 6 Knee joint angle
Subject 4 606 2408 6 Knee joint angle
Subject 5 288 1136 6 Knee joint angle

3.3.5. Evaluation
t-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a non-linear technique for
dimensionality reduction, which is particularly well suited for the visualization of high-
dimensional datasets. We use t-SNE to project the augmented high-dimensional gait data
into a low-dimensional space for the similarity visualization.

MAE

Root mean square error (RMSE) and mean absolute error (MAE) are two of the most
common metrics to measure accuracy for continuous variables. We use them to score the
prediction performance in our work. MAE measures the average over the verification
sample of the absolute values of the errors between paired predicted and actual values. It
is defined as:

MAE =
1
n ∑n

j=1
∣∣yj − ŷj

∣∣ (4)

RMSE

The RMSE gives a relatively high weight to large errors, which measures the averaged
magnitude of each squared difference between paired actual value and corresponding
prediction. It is calculated as:

RMSE =

√
1
n ∑n

j=1(yj − ŷj) (5)

where n indicates the number of prediction samples, ŷj represents the predicted target
values, and yj represents the actual data.
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4. Results
4.1. Gait Data Augmentation

We use the developed GAN-based model in Figure 3 to augment the limited gait data
from five subjects by synthesizing new data based on the real data. Figure 4 shows the
comparisons of the real and synthetic gait data from three of the five subjects. The six
subfigures in each column represent the six-channel values based on Equation (3) used
for the prediction of the knee angles. The curves in green are the real gait data and the
curves in orange are the synthetic data. We can see that the orange curves can basically
follow the dynamics of the green ones. Also, the six values in each column in Figure 4 are
all augmented approximately four times in terms of the number of the data sequences. The
specific number for each augmented dataset can refer to Table 2.
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Figure 4. Augmented gait data from certain subjects.
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The GAN-based data augmentation models aim to synthesize the data that have the
similar distribution with the real data. To illustrate this, in Figure 5 we also present a
visual comparison of the real and synthetic gait data after dimensionality reduction by
the t-SNE algorithm. We can observe in Figure 5 that the synthetic gait data (the orange
samples) and the real data (the green samples) have similar distributions and they show
prominent overlap with each other. Figure 5 and Table 2 together indicate that synthetic
datasets generated and the real datasets are basically in sync and the GAN-based data
augmentation model for multidimensional time series can synthesize realistic-looking
human gait data. The synthetic data plus the real gait data will be used for the prediction
tasks of gait trajectories.

Subject1 Subject2 Subject3 

Subject4 Subject5 

Figure 5. t-SNE visualization on gait data augmentation.

4.2. Gait Trajectory Prediction

In this work, we only perform the gait trajectory prediction for one body side of each
subject. Each subject’s real and augmented gait data from the hip and the knee mark
points are used. According to Equations (2) and (3), four values are needed for hip angle
prediction and six values for knee angle prediction. The details of each dataset can refer to
Table 2. Time series prediction is usually performed through sliding time-window feature
and make prediction depend on the order. We develop the baseline prediction model LSTM
and the attention-based models to predict the current values of the target series in Table 2.

The structure of the LSTM is shown in Table 1, which is optimized by tuning the key
parameters apart from the number of the LSTM layer. The optimizer of Adam (lr = 0.01,
beta_1 = 0.9, beta_2 = 0.999, epsilon = 1 × 10−8, decay = 0.0) works well for all the datasets
in Table 2. As to the attention-based models, the parameters of encoder_hidden_size = 128,
decoder_hidden_size = 128, timestep = 16, learning_rate = 0.01, batch_size = 32 work
best for the three hip angle datasets; and the parameters of encoder_hidden_size = 32,
decoder_hid den_size = 32, timestep = 16, learning_rate = 0.01, batch_size = 32 perform
well for the three knee angle datasets. We firstly compare the gait trajectory prediction per-
formance of the LSTM and attention models on real datasets from subject 1 in Figure 6, in
which we can see that the red curves (test values) based on the attention models seem more
perfectly follow the actual data on both the hip and knee datasets. The LSTM model per-
forms well on the hip dataset whilst it cannot well handle the knee dataset. The prediction
results on the synthetic datasets from subject 1 is shown in Figure 7. Similarly, the attention-
based models perform better than LSTM models on the synthetic data since the red curve
(test results) can follow the actual data better especially on the knee angle prediction.

The specific prediction results in terms of RMSE and MAE for all subjects are listed
in Tables 3 and 4. Table 3 exhibits the two models’ prediction performance on the real
dadasets, and Table 4 presents the performance on the augmented data. The two tables
give the same results that the attention-based prediction model perform better than the
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LSTM models on both the real and synthetic gait data. Figures 8 and 9 further detail the
prediction results of hip joint angles and knee joint angles across all the subjects. The
attention-based models markedly beat all the LSTM models apart from the dataset of the
third subject’s augmented data.

LSTM Attention-based 

Figure 6. Gait trajectory prediction results on real datasets from subject 1.

LSTM Attention-based 

Figure 7. Gait trajectory prediction results on synthetic datasets from subject 1.
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Table 3. Prediction performance of models on real data.

Model Dataset
Hip Joint Angle Knee Joint Angle

RMSE MAE RMSE MAE

LSTM

Subject 1 0.0620 0.0430 0.0190 0.0160
Subject 2 0.1700 0.1530 0.0530 0.0360
Subject 3 0.2700 0.2090 0.0790 0.0570
Subject 4 0.0800 0.0660 0.1230 0.1020
Subject 5 0.1380 0.1100 0.2650 0.2390

Attention-based

Subject 1 0.0129 0.0112 0.0116 0.0101
Subject 2 0.0031 0.0027 0.0074 0.0069
Subject 3 0.0083 0.0066 0.0280 0.0221
Subject 4 0.0056 0.0039 0.0069 0.0051
Subject 5 0.0062 0.0050 0.0270 0.0236

Table 4. Prediction performance of models on augmented data.

Model Dataset
Hip Joint Angle Knee Joint Angle

RMSE MAE RMSE MAE

LSTM

Subject 1 0.0620 0.0430 0.0190 0.0160
Subject 2 0.1700 0.1530 0.0530 0.0360
Subject 3 0.2700 0.2090 0.0790 0.0570
Subject 4 0.0360 0.0260 0.0560 0.0270
Subject 5 0.0780 0.0640 0.0670 0.0460

Attention-based

Subject 1 0.0035 0.0032 0.0092 0.0084
Subject 2 0.0039 0.0033 0.0074 0.0069
Subject 3 0.0067 0.0060 0.0320 0.0284
Subject 4 0.0131 0.0051 0.0218 0.0079
Subject 5 0.0049 0.0037 0.0242 0.0570

Real data

Augmented data

RMSE MAE

Figure 8. Prediction performance of hip joint angles across all subjects.
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Real data

Augmented data

RMSE MAE

Figure 9. Prediction performance of knee joint angles across all subjects.

5. Discussion

The GAN-based model augments the scarce gait data and the attention-based predic-
tion model acquires the current values of gait trajectory values from the historical data.
Based on both the real and synthetic data, we compare the attention-based model with the
LSTM baseline. All the models are evaluated with the same datasets and same measures.
Figures 6–9, Tables 3 and 4 together illustrate that more accurate prediction results are
provided by the attention-based model across all datasets from the five subjects. This
could verify that LSTM is less capable of capturing the dependencies between long-range
sequences; whilst in the attention-based model the feature attention is able to pick the
relevant series for driving the prediction and the attention linking the encoder and decoder
contributes to the acquisition of the long-range dependencies from the encoded representa-
tions. We use both MAE and RMSE to measure the variation in the errors for the prediction
performance. We can conclude that all the RMSE results in Table 3 are larger or close to
the MAE for both models, the greater difference between the models, the greater variance
in the individual errors in the sample. Yet, comparing Table 3 with Table 4, Figure 8 with
Figure 9, we observed that the performance on the augmented data is slightly worse than
that on the real data for both LSTM and attention models. This might be due to that the
amount of the augmented data are four times of the real data thus the prediction errors
may accumulate more on the larger dataset.

It is noted that the X-axis values in Figure 2 decrease gradually instead of giving a
periodic pattern, like the Y or Z values. This can be explained that the space equipped
with the camera array for data collecting was limited and the participants only walked
forward during data collection without turning back to the calibration point, which causes
the decrease of X values only in one direction. In this case, the x values might be less
relevant to the target series, although they are needed according to expressions (2) and (3).

This work still has some limitations. First, we only demonstrated the results based on
five subjects’ gait data in the augmentation and prediction tasks. The future work should
consider using more subjects’ gait data for a general model’s training or more data from
one specific subject for a customized model’s training. Second, we only completed the
prediction of part of the trajectory variables in Equation (1). We thus could not obtain all
the current gait trajectory values needed for gait trajectory tracking control. This leads to
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the missing evaluation on the conjunction with RAT and the usefulness in the rehabilitation
of the gait. The prediction of all the required trajectory variables should be completed in
future work to further verity the role of gait trajectory prediction in RAT.

6. Conclusions

In typical rehabilitation control, values of the joint angle, the angular velocity, the
angular acceleration and the joint torque in Equation (1) are required in the control loop to
be the inputs of the designed controller; the controller then produces outputs based on the
inputs to drive the actuator of the rehabilitation robot. The control mechanism could work
well only if the gait trajectory values are accurately obtained first, otherwise, it may cause
control delays for online use. On the other hand, the scarcity of gait data may hinder the
accurate acquisition of gait trajectory values. This paper thus completes a framework that
can first generate more human gait data and then use them for gait trajectory prediction.
The generated new data maintain a similar distribution and dynamics to that the real
gait data. We construct the LSTM and the attention-based models to capture the dynamic
dependencies among the gait data time series for accurate prediction. The experimental
results show the satisfied performance of the attention-based model on predicting the
target values from the multivariate gait data. Our future work will be further extended by:
(1) generating and training more gait data; (2) predicting all the variables needed for real
control use in Equation (1). In addition, we will also focus on reducing the dimensionality
of the input data to see the contribution of different axis values on different body parts.
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