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Abstract: The lack of gas turbine field data, especially faulty engine data, and the complexity of fault
embedding into gas turbines on test benches cause difficulties in representing healthy and faulty
engines in diagnostic algorithms. Instead, different gas turbine models are often used. The available
models fall into two main categories: physics-based and data-driven. Given the models’ importance
and necessity, a variety of simulation tools were developed with different levels of complexity,
fidelity, accuracy, and computer performance requirements. Physics-based models constitute a
diagnostic approach known as Gas Path Analysis (GPA). To compute fault parameters within GPA,
this paper proposes to employ a nonlinear data-driven model and the theory of inverse problems.
This will drastically simplify gas turbine diagnosis. To choose the best approximation technique
of such a novel model, the paper employs polynomials and neural networks. The necessary data
were generated in the GasTurb software for turboshaft and turbofan engines. These input data for
creating a nonlinear data-driven model of fault parameters cover a total range of operating conditions
and of possible performance losses of engine components. Multiple configurations of a multilayer
perceptron network and polynomials are evaluated to find the best data-driven model configurations.
The best perceptron-based and polynomial models are then compared. The accuracy achieved by the
most adequate model variation confirms the viability of simple and accurate models for estimating
gas turbine health conditions.

Keywords: inverse models; data-driven models; multilayer perceptron; polynomials; GasTurb

1. Introduction

Reliable gas turbine health information is essential for successful the implementation
of condition-based maintenance [1] Gas-path diagnostic techniques provide such infor-
mation by analyzing engine performance and early identifying potential faults before
they develop into serious accidents [2]. Many maintenance actions are based on these
diagnostic judgments resulting in maximal asset profitability, reliability, and availability
and minimal life cycle costs [3]. To get information about engine operation and possible
faults, the diagnostic algorithms employ recorded data and different models. According to
the utilization of the data and the models, the gas-path diagnostics can be split into two
main approaches.

The first approach, called a Gas Path Analysis (GPA), relies on a nonlinear physics-
based engine model. Such a model, also known as a thermodynamic model, involves
thermodynamic and other physical relationships to compute gas path variables for given
engine operating conditions and health parameters. Engine components (compressor,
turbine, burner, etc.) are presented in the model by experimental component performance
maps initially corresponding to a new engine. As with real faults that change component
performances, the health parameters can slightly shift component performance maps to
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simulate different degradation mechanisms. Typically, the flow capacity and efficiency
performances of each component are corrected [4]. GPA can also employ a linear model,
however, to compute the necessary fault influence coefficient matrix, the thermodynamic
model is still used.

Known thermodynamic model programs include but are not limited to Gas turbine
Simulation Program (GSP), Numerical Propulsion System Simulation (NPSS), Propulsion
Object-Oriented Simulation Software (PROOSIS), and GasTurb [3,5]. The latter software
was developed by Kurzke [6] and offers nonlinear simulation for many configurations of
different gas turbine engines [3]. A nonlinear thermodynamic model enables the creation
of different simplified models. The most known of them is a linear model that relates
small changes of health parameters to the corresponding changes of monitoring variables
through a so-called influence coefficient matrix.

The described nonlinear and linear models present a direct mathematical problem,
in which operating conditions and health parameters are independent quantities and
monitored variables present dependent quantities. The considered diagnostic approach
aims to solve an inverse problem [7] that allows estimating unmeasured parameters
through the measured variables and knowledge of the physical processes of the system,
making inferences from data [8]. A difficulty of inverse problems on multidimensional
space is the instability of their solutions, in other words, small errors in measurements
can cause large errors in the estimated parameters. There exist many methods to solve
inverse problems, among them, regularization, Truncated Singular Value Decomposition
(TSVD), interactive methods, discretization, the maximum entropy method, Algebraic
Reconstruction Technique (ART), and the Backus Gilbert method [7].

In the case of GPA, an inverse problem consists in evaluating the conditions of engine
components through estimating health parameters using measured operating conditions
and monitored variables [9]. In this way, a general fleet-average model is adapted to a
particular real engine, and this adaption problem belongs to the area of system identi-
fication. When diagnostic algorithms employ the linear model, diagnostic matrixes [9]
are computed, for example, by the least squares method [9,10]. Study [11] reveals that
linearization significantly increases the errors of estimated parameters. If engine diag-
nosis relies on a nonlinear thermodynamic model, different iterative procedures of the
model identification are applied to estimate health parameters. For example, the authors
of paper [12] propose and employ the approach called adaptive modeling, paper [13]
performs the nonlinear model identification using a genetic algorithm, paper [14] proposes
multicriteria identification, and paper [15] presents a strategy for automatic adaption of an
identification scheme in the case of sensor malfunctions.

The second main diagnostic approach called data-driven relies on available real data
and pattern recognition techniques. This approach consists of three stages: data acquisition,
preliminary data processing or feature extraction, and a diagnostic process itself. Data can
be acquired in three ways: field data recording, experimental test bed data acquisition,
and data generation by an engine model. The field recordings suffer the data with engine
fault manifestations, and physical fault embedding in real engines in test beds is too
expensive [16]. Therefore, the simulation of faults-affected engine data is an effective and
widely used option.

The stage of feature extraction determines the features that are sensitive to engine
faults. Typically, deviations of measured values of monitored variables from baseline
values corresponding to a healthy engine are computed. Given that the engine variables
depend on an operating point, a baseline model is determined through the approximation
of available healthy engine data at different operating points. Such a model can be called
data-driven or “black box”. It does not need detailed knowledge of engine functioning and
can be easily created by gas turbine operators using, for example, polynomial regression [1]
or multilayer perceptron [17] as approximation functions.

Deviations of monitored variables form a feature vector, which is a pattern to be
recognized. From such patterns a classification is created, in which each class is presented
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by numerous patterns corresponding to a specific fault. The classification data allow
learning a recognition technique, mostly one of artificial neural networks.

The present paper proposes and proves a new simulation methodology for the GPA
that originally presents a physics-based approach. The nonlinear thermodynamic model
is accurate but complex and critical to computer resources. On the other hand, the linear
model is fast but inaccurate because of linearization errors, which significantly intensify
in the inverse procedure of estimating health parameters. It is proposed to consolidate
the advantages of these models by creating a new nonlinear data-driven model that
computes health parameters using measured operating conditions and monitored variables
as inputs. Because of its nonlinear nature, such an inverse diagnostic model can conserve
the accuracy of the underlying thermodynamic model. On the other hand, it will be fast due
to simple data-driven functions involved and no need in inverse procedures to diagnose
an engine. Furthermore, the new model will be by far more stable and reliable because
during iterative computing of the thermodynamic model an engine operating point can
go beyond components performance maps resulting in the loss of convergence and even
abnormal program termination. The proposed inverse nonlinear data-driven model and
the corresponding mode to diagnose gas turbines present a hybrid approach because the
original GPA is now based on a data-driven model. Such an approach to engine modeling
and diagnosis is not mentioned in extensive reviews on gas turbine diagnostics [2,3], and
to our knowledge, it is novel.

To realize and prove the proposed approach, this paper employs two aircraft engines of
different types, namely, turbo shaft and turbo fan. For each engine, polynomial-based and
multilayer perceptron-based variations of the inverse model were created. The necessary
data to build and test the models were generated by the software GasTurb that offers
a nonlinear thermodynamic simulation of main gas turbine types. The use of this well-
known and commercially available software in the present study allows every researcher
to repeat the investigation and verify its results. For such a verification the paper provides
all necessary details of the calculations performed.

2. Gas Turbine Simulation Techniques
2.1. Thermodynamic Model

As it follows from the previous section, the data required to create the inverse non-
linear models are generated in GasTurb by gas turbine thermodynamic models of the
corresponding test-case engines. Each gas turbine component is presented in a thermody-
namic model by a component performance map. Using known thermodynamic relations
and mechanical laws, this model relates gas path variables to component performances
and engine steady-state operating points. The process of computing gas path variables is
organized as the solution of a system of nonlinear algebraic equations reflecting a balance
of mass, heat, and energy in those components at steady states. The system is usually
solved by the Newton–Raphson method, aka Newton’s method. The computation is com-
plex and includes some iterative cycles. The model software is considerably complex and
comprises dozens of subprograms. As a result of the computation, the model determines

gas path quantities including an [m × 1]-vector
→
Y of monitored variables as a function

of an [n × 1]-vector
→
U of operating conditions (power set and ambient variables) and an

[r × 1]-vector
→
Θ of special health parameters. Thus, the thermodynamic model can be

presented by the following mathematical expression [18]:

→
Y = f (

→
Θ,
→
U) (1)

The health parameters can be presented by an expression
→
Θ =

→
Θ0 + δ

→
Θ. A vector

→
Θ0

corresponds to a healthy engine and nominal component performances, while a vector δ
→
Θ

of fault parameters allows shifting performance maps to simulate different scenarios of
engine deterioration with varying severity.
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2.2. Multilayer Perceptron

The multilayer perceptron (MLP) is known as an artificial neural network capable to
solve both classification and approximation problems. As an approximation technique, it
is employed in gas turbine diagnostics for building a gas turbine baseline model [17] that
computes monitored variables as a function of operating conditions. Figure 1 illustrates
the structure and operation of the MLP [19,20] proposed to develop the diagnostic models
for the present study. MLP includes three types of layers. The input layer is represented by
operating conditions and monitored variables and is followed by two hidden layers and
an output layer of the health parameters.

The perceptron presents a feed-forward network in which all signals go from the input
to the output. In this network, all nodes of adjacent layers are connected. Each connection
has a weight coefficient. The coefficient of one layer constitute the corresponding matrix
W1, W2, or W3. All the signals of one layer multiplied by its weight coefficients and
summed to form an input to each node of the subsequent layer. A transfer function f 1,
f 2, or f 3 transforms this input into a node output. The outputs of all the layer nodes
constitute a vector

→
a 1,

→
a 2, or

→
a 3. Then these operations are repeated for the next layer,

and so on. Finally, output signals are computed. The described procedure can be written

by the following expressions
→
a 1 = f1(W1

→
p ),
→
a 2 = f2(W2

→
a 1), and δ

→
Θ =

→
a 3 = f3(W3

→
a 2),

where
→
p is a network input vector constituted by operating conditions U and monitored

variables Y.
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To find unknown weight coefficients, the perceptron undergoes multiple iterations
(epochs) of a back-propagation learning algorithm that minimizes the total error of the
network output. In every epoch, the coefficients are corrected in the direction that reduces
the output error. The epochs are repeated unless the algorithm finds the error minimum.
Before estimating waiting coefficients, network hyperparameters should be determined,
namely, the number of hidden layers, numbers of neurons on each hidden layer, type of
activation functions, and number of epochs. This is an optimization process [21] usually
conducted through manual trial-and-error methods [22].

2.3. Polynomials

The research conducted by Loboda et al. [23] successfully applies second-order poly-
nomials to create a gas turbine baseline model. Hence, this type of polynomials was chosen
as a candidate technique in the present study.

As described in Section 1, the proposed inverse diagnostic model has structure
→
Θ(
→
Y,
→
U).

The model was created on the data corresponding to standard ambient conditions. There-

fore, within the vector
→
U the model uses only one element, a power set variable. To use the
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model for other ambient conditions, the input variables
→
Y and U should be corrected to the

standard conditions using known correction relations [24]. Given the above explanation,
the second-order polynomial model for one fault parameter δΘ takes a form:

δΘ
(→

Y,U
)
= a1 + a2Y1 + a3Y2 + a4Y3 + a5Y4 + a6Y5 + a7Y6 + a8U + a9Y1Y2 + a10Y1Y3

+ a11Y1Y4 + a12Y1Y5 . . . + ak−1Y6
2 + akU2

(2)

This equation can be rewritten in a vector form as δΘ =
→

VT
→
A. Where

→
A is a k × 1

vector of the coefficients, and
→
V presents a k × 1 vector of products of Y and U multiplied

by the corresponding coefficients in Equation (2).

The polynomials for all fault parameters δ
→
Θ are presented in a generalized form by

the following expression:
→

δΘT =
→

VT A (3)

where a k × r matrix A includes unknown coefficients ai for all r health parameters. Given
that a single operating point is not sufficient to compute all the coefficients, the data used to
estimate the coefficients incorporate t operating points with different operating and health
conditions. Let the totality of the health parameters values be a t × r matrix δΘ and the set
of all the values of Y and U products be a t × k matrix V. A linear system of equations for
parameters δΘ will take a form δΘ = VA then.

For the sake of high accuracy of estimates δΘ, a great volume of the input data is
engaged, and a widespread solution

Â =
(

VTV
)−1

VTδΘ (4)

is drawn by the least-squares method.
The input data were generated by the software GasTurb for turbo shaft and turbo

fan engines. The turbo shaft is set as a primary test case engine and has great volume
of generated data, on which, many influencing factors are studied. The turbo fan is a
secondary test case engine with smaller volume of data to verify a general viability of
diagnostic models proposed.

3. Turbo Shaft Diagnostic Models
3.1. Input Data

For the turbo shaft, GasTurb simulates the following variables that are usually mea-
sured in real engines and can be used for engine monitoring: temperatures and pressures at
the outlet of each compressor and turbine and fuel flow. Among the operating conditions,
a compressor spool speed, ambient temperature, and ambient pressure are simulated. The
present study uses the spool speed as a model input variable while the ambient temperature
and pressure have constant standard values. The available and chosen fault parameters
are those that correct capacity and efficiency performances of the compressor and turbines.
Table 1 specifies all these quantities.

The multidimensional space of the chosen fault parameters causes the need for a
large amount of simulated data to fully cover this space. Therefore, each of the six fault
parameters ∆CC, ∆CE, ∆HPTC, ∆HPTE, ∆PTC, and ∆PTE had the same 6 levels of values:
0%, 1%, 2%, 3%, 4%, and 5%. These fixed levels were introduced to better see the influence
of degradation severity on simulation errors. Five operating regimes were set by different
spool speed values. For each regime, the simulated data include the necessary Y and U
variables at 1458 operating points with different combinations of the fault parameters and
their levels. In total for all operating regimes, the data embrace 7290 operating points. They
are divided into a learning set embracing 85% of data from each regime and a validation
set with the rest of the data.
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For additional model verification, a testing set was also generated. At each operating
regime it has 150 points with a random distribution of the fault parameters in the interval
(0%, −5%), resulting in a total of 750 points for the 5 regimes. This uniform random
parameter distribution allows fully covering a simulation area and therefore is favorable
to accurate data approximation. The chosen parameter interval corresponds to the recom-
mendations of the extensive study carried out by Fentaye et al. [2] on different degradation
mechanisms and engine performance losses that they cause.

Table 1. Turbo shaft simulated quantities.

# Name Abbreviation

OPERATING CONDITION (U)
1 Compressor Spool Speed ZXN

FAULT PARAMETERS (Θ)
1 Compressor Capacity Delta [%] ∆CC
2 Compressor Efficiency Delta [%] ∆CE
3 HPT Capacity Delta [%] ∆HPTC
4 HPT Efficiency Delta [%] ∆HPTE
5 PT Capacity Delta [%] ∆PTC
6 PT Efficiency Delta [%] ∆PTE

MONITORED VARIABLES (Y)
1 Shaft Power Delivered SPD
2 Fuel Flow FF
3 Compressor Exit Pressure P3
4 HP Turbine Exit Pressure P44
5 PT Turbine Exit Pressure P5
6 Compressor Exit Temperature T3
7 HP Turbine Exit Temperature T44
8 PT Turbine Exit Temperature T5

3.2. Perceptron Configuration

Perceptron with one hidden layer architecture is sufficient for any classification prob-
lem, and several studies confirm it [25]. However, for a continuous function approximation
problem, one hidden layer did not prove to be better than a second-degree polynomial [23].
Based on this reasoning and studies on noise filtering [26,27] which recommend a two
hidden layers perceptron, configurations with one and two layers were chosen for the

proposed diagnostic models. In these models, the monitored variables
→
Y and the oper-

ating condition U are inputs, and the fault parameters
→
δΘ are outputs. Kolmogorov’s

theorem is a notable reference for an initial perceptron configuration, proposing that the
number of neurons in the hidden layer of an ANN should not be greater than 2n + 1 [28],
where n denotes the number of inputs. The perceptron is learned using the variations of a
back-propagation algorithm [29] available in Matlab.

3.3. One Regime Diagnostic Model

To gain better understanding of the influence of the arguments on model accuracy,

a simplified model δ
→
Θ(
→
Y) for diagnosing on one fixed regimen is first created. The MLP

network employed for this model has the monitored variables
→
Y as inputs and the fault

parameters
→
δΘ as outputs. Different configurations of one and two hidden layers were

tested, using all the 18 training methods available in Matlab. For each method, the learning
was performed with different numbers of training epochs to choose the optimal number for
the method. The comparison criterion for the analyzed methods was the root mean square
error (RMSE) between the true values used in GasTurb and the values simulated by the
network. Table 2 shows the results of the best final configurations of the network with one
hidden layer (ANN 1) and the network with two hidden layers (ANN 2). The operating
regime is set here by a relative spool speed of 1.0 that corresponds to the maximum power
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of 100%. One can see that, according to the average accuracy shown in the last row, ANN 2
trained by the trainbr Matlab function (Bayesian Regulation) is the best configuration.

Table 2. RMSE for MLP configurations of one regime diagnostic model (turbo shaft, relative spool speed 1.0).

Fault
Parameters

ANN 1
Training Method: Trainrp

Epochs: 8000

ANN 2
Training Method: Trainrp

Epochs: 15,000

ANN 1
Training Method: Trainbr

Epochs: 500

ANN 2
Training Method: Trainbr

Epochs: 500

Learning Validation Learning Validation Learning Validation Learning Validation

∆CC 0.1910 0.1992 0.0380 0.0400 0.0109 0.0116 0.0073 0.0081
∆CE 0.1037 0.1092 0.0163 0.0184 0.0076 0.0082 0.0073 0.0079

∆HPTC 0.2043 0.2062 0.1797 0.1811 0.0205 0.0228 0.0089 0.0091
∆HPTE 0.1974 0.2019 0.0387 0.0415 0.0151 0.0159 0.0085 0.0087
∆PTC 0.2051 0.2125 0.1783 0.1843 0.0246 0.0274 0.0076 0.0078
∆PTE 0.1971 0.2016 0.0592 0.0614 0.0286 0.0304 0.0078 0.0088

Average 0.1831 0.1884 0.0850 0.0878 0.0179 0.0194 0.0079 0.0084

After the demonstration of the high accuracy of the two hidden layers MLP, tests
were performed to determine the number of neurons in the second hidden layer. Different
numbers were tested keeping constant the regime (100%), eight neurons in the first hidden
layer, the method (Bayesian Regulation), and the training epochs (500). Table 3 shows the
results, which allow pointing out that increasing the neurons number generally enhances
the accuracy, and the best network configuration has 28 hidden neurons.

Table 3. Selection of optimal neurons number (turbo shaft, relative spool speed 1.0).

Fault Parameter
Neurons in the 2nd Hidden Layer

9 10 11 12 13 14 15 16 17 18 19

∆CC 0.1809 0.0290 0.0339 0.0301 0.0319 0.0174 0.0198 0.0124 0.0100 0.0166 0.0099
∆CE 0.0367 0.1811 0.0252 0.0172 0.0221 0.0157 0.0169 0.0153 0.0162 0.0073 0.0156

∆HPTC 0.1767 0.0478 0.1754 0.1500 0.1789 0.0190 0.0177 0.0125 0.0197 0.0117 0.0122
∆HPTE 0.0346 0.0398 0.0391 0.0241 0.0388 0.0165 0.0174 0.0191 0.0129 0.0115 0.0071
∆PTC 0.0445 0.1828 0.0392 0.1519 0.0426 0.0200 0.0186 0.0231 0.0164 0.0187 0.0114
∆PTE 0.0336 0.1836 0.1813 0.0464 0.0288 0.0160 0.0257 0.0149 0.0134 0.0128 0.0203

Average 0.0845 0.1107 0.0824 0.0700 0.0572 0.0174 0.0193 0.0162 0.0148 0.0131 0.0128

Fault Parameters
Neurons in the 2nd Hidden Layer

20 21 22 23 24 25 26 27 28 29 30

∆CC 0.0084 0.0081 0.0090 0.0081 0.0070 0.0082 0.0101 0.0073 0.0055 0.0066 0.0089
∆CE 0.0069 0.0057 0.0067 0.0079 0.0050 0.0052 0.0055 0.0066 0.0044 0.0055 0.0063

∆HPTC 0.0086 0.0083 0.0109 0.0091 0.0082 0.0086 0.0087 0.0084 0.0059 0.0068 0.0090
∆HPTE 0.0084 0.0088 0.0126 0.0087 0.0075 0.0082 0.0083 0.0106 0.0065 0.0073 0.0064
∆PTC 0.0098 0.0099 0.0112 0.0078 0.0085 0.0100 0.0114 0.0087 0.0068 0.0074 0.0091
∆PTE 0.0098 0.0084 0.0135 0.0088 0.0096 0.0093 0.0107 0.0097 0.0064 0.0086 0.0088

Average 0.0087 0.0082 0.0107 0.0084 0.0076 0.0082 0.0091 0.0085 0.0059 0.0071 0.0081

Once the number of neurons in the second hidden layer was defined, the MLP was
also tested at the other 4 operating regimes given by relative spool speed values 0.9 (90%),
0.8, 0.7, and 0.6. The results for all 5 regimes presented in Table 4 show that an accuracy
level remains high for all the regimes.
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Table 4. RMSE for 5 operating regimes.

Fault Parameter/Relative
Compressor Spool Speed 1 0.9 0.8 0.7 0.6

∆CC 0.0055 0.0095 0.0066 0.0105 0.0075
∆CE 0.0044 0.0064 0.0050 0.0083 0.0054

∆HPTC 0.0059 0.0086 0.0084 0.0084 0.0090
∆HPTE 0.0065 0.0114 0.0075 0.0077 0.0044
∆PTC 0.0068 0.0114 0.0084 0.0098 0.0113
∆PTE 0.0064 0.0123 0.0125 0.0160 0.0166

Average 0.0059 0.0099 0.0081 0.0101 0.0090

Figure 2 confirms a high degree of approximation accuracy achieved by the MLP
network. Figure 2a shows three fault parameters used in GasTurb in comparison with the
same parameters simulated by MLP. Both curves practically coincide in the figure for all
parameters in all points. Enlarged scale plot of the second parameter in Figure 2b shows
that maximal difference between original and MLP values is about 0.005%. It is 200 times
smaller than 1% that is usually considered as the minimal value of the changes induced by
engine faults. Thus, one can state that the MLP-based model of fault parameters is accurate
enough and useful for diagnosing engines.
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3.4. Extended Diagnostic Model

The model studied in the previous subsection is intended for diagnosing on a fixed
regime. To make the model more universal and useful, it is extended by adding a spool

speed variable to the model inputs. Such a model will have a structure δ
→
Θ(
→
Y,U). In contrast

to the previous subsection, where each model was determined with an individual data set
generated at one of the 5 regimes, the new model will be learned with all data sets available
from different regimes. Since the model change is small, from 9 to 10 inputs with the same
outputs, the same MLP configurations were verified. The one- and two-hidden-layers MLP
were again tested with a wide variety of neuron numbers, epochs, and training methods.
Table 5 shows the test results for two network configurations and two learning functions.
As before, two hidden layer networks learned by the Bayesian training method expose the
best accuracy.

Table 5. RMSE for best MLP configurations of extended diagnostic model.

Fault
Parameter

ANN 1 Trainrp ANN 2 Trainrp ANN 1
Trainbr

ANN 2
Trainbr

LEARN VALID LEARN VALID LEARN VALID LEARN VALID

∆CC 0.1086 0.103 0.0995 0.101 0.0146 0.0151 0.0499 0.0502
∆CE 0.2582 0.257 0.2515 0.2447 0.1171 0.117 0.0446 0.0465

∆HPTC 0.203 0.2064 0.2171 0.2185 0.0545 0.0602 0.0416 0.0451
∆HPTE 0.2401 0.2394 0.2469 0.2476 0.0857 0.0856 0.0476 0.0478
∆PTC 0.2143 0.2084 0.225 0.2142 0.043 0.0457 0.0663 0.0721
∆PTE 0.2783 0.2846 0.2636 0.2713 0.1779 0.1798 0.18 0.1822

Average 0.2171 0.2165 0.2173 0.2162 0.0821 0.0839 0.0717 0.0740

Having demonstrated the greater precision of the two-hidden-layer MLP, tests were
carried out to determine the number of neurons in the second layer, keeping constant the
training method and epochs number. Based on previous experience with the one-regime
model, 19 to 31 neurons were probed in the second hidden layer. Table 6 shows the test
set results, namely RMSE of health parameters for each node number. As can be seen, the
configuration with 27 neurons in the second hidden layer is the most accurate.

Table 6. Selection of the optimal neurons number (turbo shaft, extended model).

Fault Parameters
Neurons in the 2nd Hidden Layer (RMSE)

19 21 22 23 24 25

∆CC 0.1787 0.1796 0.0549 0.0502 0.0438 0.0595
∆CE 0.0512 0.0577 0.0427 0.0465 0.0496 0.0451

∆HPTC 0.1805 0.1771 0.0548 0.0451 0.0396 0.0529
∆HPTE 0.0453 0.0521 0.0471 0.0478 0.0454 0.0538
∆PTC 0.1822 0.0720 0.1813 0.0721 0.0704 0.0715
∆PTE 0.1799 0.1825 0.1824 0.1822 0.1835 0.0726

Average 0.1363 0.1202 0.0939 0.0740 0.0721 0.0592

Fault Parameters
Neurons in the 2nd Hidden Layer (RMSE)

26 27 28 29 30 31

∆CC 0.0449 0.0523 0.0464 0.0671 0.0431 0.0455
∆CE 0.0373 0.0481 0.0374 0.0445 0.0364 0.0369

∆HPTC 0.0392 0.0488 0.0406 0.0478 0.0382 0.0399
∆HPTE 0.0399 0.0491 0.0473 0.0405 0.0424 0.0424
∆PTC 0.0494 0.0617 0.0863 0.0712 0.0522 0.0591
∆PTE 0.1802 0.0601 0.1827 0.0689 0.1808 0.1824

Average 0.0652 0.0534 0.0734 0.0567 0.0655 0.0677



Machines 2021, 9, 372 10 of 17

In comparison with the one-regime models that have very low approximation errors,
the extended model errors are significantly greater. According to Tables 4 and 6, the errors
have increased 5–10 times. Even with this loss of accuracy, the network proposed appears
capable of diagnosing. Against the background of fault parameter values that vary from
1% to 5%, the average error will be only 0.0534% i.e., 20 times lower than the smallest
parameter value.

3.5. Comparison between Approximation Functions for the Extended Model

Loboda et al. [23] compared the approximation capabilities of the second-degree
polynomials and a typical single hidden layer MLP in the application to a baseline model.
The MLP showed a better data approximation in the training sets, however, in the test sets
it lost accuracy, although the authors expected the superiority of the network. They pointed
out very similar performances of both tools with slight dominance of the polynomials and
abandoned the idea of the superiority of MLP.

The above-cited work inspired us to develop a polynomial-based extended model
→
Θ(
→
Y,U) and compare it with the network-based model to choose the best one. Both turbo

shaft models were trained on the learning set and applied to the validation and testing sets
described in the subsection “Input data”.

Figure 3 presents the fault parameters ∆HPTE, ∆PTC, and ∆PTE employed in GasTurb
and simulated by second-degree polynomials. All the data plotted in the figure are from
the validation set. Figure 4 shows the same parameters, but the simulation was performed
by the two-hidden-layer MLP. Comparing these figures separately for each fault parameter,
the MLP simulation is much closer to the true values than the polynomial simulation for
all the parameters presented.
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Figures 5 and 6 illustrate the behavior of the same parameters as Figures 3 and 4, but
the parameters are now computed for the testing set. The comparison of these figures
confirms the previous conclusion that the MLP-based model has higher accuracy.

In addition to the qualitative analysis of Figures 3–6, Table 7 helps us to make a
quantitative comparison of the polynomials- and the MLP-based models. The table includes
mean fault parameter errors of both techniques on the data of the learning, validation, and
testing sets. Each data set shows that the MLP-based model is by far more accurate for
each parameter and in general.

To validate the results obtained for the turbo shaft, the turbo fan was chosen as the
second motor due to its wide use as a power plant for passenger and cargo aircrafts.
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Table 7. Fault parameter RMSE of polynomials and MLP.

Fault Parameter
Two Hidden Layers MLP Polynomials

LEARN VALID TEST LEARN VALID TEST

∆CC 0.0518 0.0523 0.0689 0.1888 0.1849 0.1448
∆CE 0.0462 0.0481 0.0570 0.0940 0.0901 0.0693

∆HPTC 0.0476 0.0488 0.0531 0.0735 0.0715 0.0546
∆HPTE 0.0505 0.0491 0.0582 0.0664 0.0662 0.0558
∆PTC 0.0593 0.0617 0.0616 0.2287 0.2279 0.1633
∆PTE 0.0593 0.0601 0.0583 0.3946 0.3876 0.3226

AVERAGE 0.0525 0.0534 0.0595 0.1743 0.1714 0.1350

4. Diagnostic Models of the Turbo Fan
4.1. Input Data

As with the turbo shaft, to develop turbo fan diagnostic models, data with different
fault and operating conditions were generated by GasTurb. The following variables were
simulated and recorded. An engine operating regime is set in GasTurb by an HPC spool
speed variable. Among simulated gas path quantities, seven variables usually used for
monitoring were chosen. As to fault parameters, their number was increased from six
to eight because the turbo fan has a greater complexity and more components that need
estimating their health condition. Table 8 specifies all these quantities.

Given that the turbo fan presents a secondary test case aimed to confirm the general
viability of the proposed diagnostic model, and that the work with GasTurb is mostly
manual, the total volume of generated data is smaller. For each of the 5 regimes, the data
include 700 operating points with different fault parameters randomly distributed within
the range of 0% to ±5%. In this way, the total data include 3500 operating points. A
learning set, which is used to determine turbo fan diagnostic models, embraces 85% of
data from each regime. The rest of the data form a validation set intended for the model
verification. All the indicators of models’ accuracy illustrated in the below subsections
were obtained on the validation data.

Table 8. Simulated quantities of turbo fan.

# Name Abbreviation Name Abbreviation

FAULT PARAMETERS (Θ) MONITORED VARIABLES (Y)

1 LPC Capacity Delta [%] ∆LPCC Net Thrust NT
2 LPC Efficiency Delta [%] ∆LPCE Fuel Flow FF
3 HPC Capacity Delta [%] ∆HPCC HPC Exit Pressure P3
4 HPC Efficiency Delta [%] ∆HPCE HPT Exit Pressure P44
5 HPT Capacity Delta [%] ∆HPTC LPT Exit Pressure P5
6 HPT Efficiency Delta [%] ∆HPTE HPC Exit Temperature T3
7 LPT Capacity Delta [%] ∆LPTC LPT Exit Temperature T5
8 LPT Efficiency Delta [%] ∆LPTE OPERATING CONDITION (U)

HPC Spool Speed ZXNH

4.2. Extended MLP-Based Turbo Fan Diagnostic Model

Since one regime models of the turbo shaft were intermediate and not intended for
a diagnostic application, these models were not created for the turbo fan. The extended
models were only formed, and the methodology used to build and verify the turbo shaft
models was conserved. As the first step, all available MLP training methods were probed,
resulting in choosing the method of Bayesian regularization as the most accurate. Then,
different network configurations with a varying number of neurons were tested. The
RMSEs for these configurations are placed in Table 9. Comparing it with Table 6, one can
observe a general error increase. It is more significant for the first two health parameters.
This fact will be further analyzed. As to the influence of a neuron number, it is not strong
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now: the average RSME changes from 0.4024 to 0.4122, and the lowest error corresponds to
19 neurons.

Table 9. Selection of optimal neurons number (turbo fan, extended model).

Fault Parameter
Neurons Number in the 2nd Hidden Layer

14 15 16 17 18 19 20 21

∆LPCC 1.2903 1.2797 1.2820 1.2674 1.2270 1.2857 1.2719 1.2752
∆LPCE 0.5195 0.5141 0.5153 0.5161 0.5536 0.5196 0.5286 0.5093
∆HPCC 0.1842 0.1994 0.1884 0.1976 0.2129 0.1798 0.1928 0.1863
∆HPCE 0.2311 0.2453 0.2385 0.2359 0.2469 0.2301 0.2263 0.2356
∆HPTC 0.1431 0.1500 0.1527 0.1623 0.1418 0.1498 0.1571 0.1524
∆HPTE 0.1787 0.1891 0.1810 0.1818 0.1865 0.1715 0.1798 0.1802
∆LPTC 0.3961 0.3930 0.3945 0.3858 0.4114 0.3890 0.3920 0.3872
∆LPTE 0.2981 0.2964 0.2963 0.2953 0.2885 0.2941 0.3149 0.2970

Average 0.4051 0.4084 0.4061 0.4053 0.4086 0.4024 0.4079 0.4029

Fault Parameter
Neurons Number in the 2nd Hidden Layer

22 23 24 25 26 27 28 29

∆LPCC 1.2641 1.2656 1.2728 1.2309 1.2807 1.2801 1.2988 1.2191
∆LPCE 0.5364 0.5296 0.5524 0.5251 0.5338 0.5454 0.5469 0.5530
∆HPCC 0.1806 0.1866 0.1862 0.2084 0.2093 0.2033 0.1945 0.2092
∆HPCE 0.2405 0.2464 0.2405 0.2378 0.2531 0.2370 0.2338 0.2434
∆HPTC 0.1494 0.1492 0.1499 0.1562 0.1559 0.1447 0.1488 0.1570
∆HPTE 0.1761 0.1849 0.1841 0.1964 0.1738 0.1886 0.1745 0.1890
∆LPTC 0.3949 0.3958 0.3933 0.3797 0.3870 0.3933 0.3842 0.3816
∆LPTE 0.2984 0.2891 0.2946 0.2970 0.3043 0.2898 0.2981 0.2887

Average 0.4050 0.4059 0.4092 0.4039 0.4122 0.4103 0.4100 0.4051

4.3. Comparison between MLP- and Polynomials-Based Models

To find the best model and clarify whether the described above accuracy loss is related
to the used network or is a common problem, a polynomial-based turbo fan diagnostic
model was also developed. Table 10 shows the RMSEs of both models. The polynomials
have the same accuracy problem. Moreover, their errors are greater for all fault parameters
and almost double on average in comparison with MLP.

Table 10. Fault parameter RMSEs of MLP and polynomials (turbo fan).

Fault Parameter MLP Polynomials

∆LPCC 1.2857 1.3230
∆LPCE 0.5196 1.1355
∆HPCC 0.1798 0.6951
∆HPCE 0.2301 0.6106
∆HPTC 0.1498 0.4753
∆HPTE 0.1715 0.5401
∆LPTC 0.3890 0.6701
∆LPTE 0.2941 0.5859

Average 0.4024 0.7544

To gain a better understanding of fault parameter behavior and errors, the below
analysis uses a graphical mode. Since the first two fault parameters corresponding to a
ventilator expose greater errors, Figure 7 presents them separately and Figure 8 illustrates
the parameters of the other components, namely, HPC, HPT, and LPT. These figures
plot three quantities for each parameter: original values generated by Gas Turb, MLP
simulations, and polynomials simulations.

One can see in Figure 7 that there are visible differences (errors) between true and
simulated values for both parameters and both models. The first parameter of Delta LPC
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Capacity has greater errors for both models, while for the second parameter MLP is more
accurate. Additionally, the plots show that the simulation of the first parameter by both
models becomes worse after point 100 where an operating regime changes.
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Figure 8 helps to analyze the behavior of the rest of the fault parameters. A general
impression of the plots presented here is that the simulated values satisfactorily follow
original ones. All errors are significantly lower than those of the ventilator parameters.
The only exception is the first parameter “Delta HPC Capacity” inaccurately simulated by
polynomials. Moreover, for each of the parameters presented, polynomials yield to MLP.

The comparison of the two engine models shows that the turbo fan model accuracy
is mostly acceptable but has worsened for both the MLP- and polynomials-based models
in comparison with the turbo shaft models. This worsening is primarily related with
great simulation errors of the ventilator fault parameters. Since these errors take place for
both approximation techniques, they are not a particular technique problem and rather
present a common estimation problem. Probable explanations are the low influence of
these parameters on monitored variables and the increase of the total number of estimated
parameters (from 6 for the turbo shaft to 8). Additional negative factors are the decrease of
the number of monitored variables from 8 to 7 and the considerable reduction of learning
data from about 6200 to 3000 operating points.

To solve this error problem, it is natural to exclude LPC fault parameters from the
estimated quantities because LPC is a ventilator that is open to a visual inspection. Another
way is a multipoint diagnostic option. Within this option, a diagnostic model will get
the measurements from different operating points for estimating a single fault parame-
ter vector. Such an increase of input information will yield significant improvement of
estimation accuracy.
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5. Conclusions

Inverse gas turbine models were developed and tested in the present paper. These
diagnostic models compute unknown fault parameters of each engine component and in
this way provide useful information about component health conditions. Since the goal of
the GPA diagnostic approach is reached, the developed models present a complete method
to diagnose gas turbines.

To obtain more general and reliable results, two alternative approximation techniques,
artificial neural networks (namely, MLP) and polynomials, were chosen and applied to
create the models of two different engines, turbo shaft and turbo fan. In general for all cases
considered, it was found that the accuracy of fault parameters was sufficient for successful
engine diagnosis. Although the turbo fan models have greater approximation errors, these
errors remain significantly lower than the true values of the fault parameters. This allows
correct evaluation of the health of engine components. As to the approximation techniques,
a two hidden layers MLP was found to be the best and is recommended for further use.

In contrast to an original nonlinear GPA that employs a physics-based nonlinear model
and an iterative adaption procedure for estimating fault parameters, the new data-driven
models do the same job, but by far faster and more reliably. Since the developed models
present simple, fast, and reliable diagnostic algorithms and have high accuracy, they can
receive a wide application in real online diagnostic systems.
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