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Abstract: In the current study, an optimization process of powder-mixed electrical discharge ma-
chining (PMEDM) process when machining cylindrically shaped parts made of hardened 90CrSi
steel is reported. In this study, SiC powder was mixed into the Diel MS 7000 dielectric solution.
Additionally, graphite was chosen as the electrode material. The multi-objective functions were
minimizing the surface roughness (SR) and electrode wear rate (EWR) and maximizing the material
removal rate (MRR). The used input parameters of the optimization process included the powder
concentration, the pulse-on time, the pulse-off time, the pulse current, and the servo voltage. A
combination between the Taguchi method and the grey relation analysis (GRA) method with the
support of Minitab R19 software was used to design the experiment and analyze the results. It
was found that the optimal set of process parameters that can satisfy the above responses are Cp of
0.5 g/L, Ton of 8 µs, Toff of 8 µs, IP of 5 A, and SV of 4 V.

Keywords: EDM; PMEDM; surface roughness; Taguchi method; ANOVA; SiC powder

1. Introduction

In order to remove the materials on the surfaces of mechanical parts made of difficult-
to-cut materials, research communities and industry have successfully applied electrical
discharge machining (EDM), an advanced machining process. Additionally, EDM is also
able to generate complicated geometrical shapes. This operation has shown its advantages
compared to those of traditional machining processes such as grinding [1–14]. In recent
decades, EDM has been widely utilized in the automotive industry, aerospace, mold,
and die made of conductive materials irrespective of the physical properties of machined
materials. Nevertheless, it is noticed that the machinability of the EDM process is crucially
limited by the low removing speed of materials or by the low material removal rate (MRR),
bad surface quality, and the quick acceleration of tool wear. To solve the weakness of EDM,
powder-mixed electrical discharge machining (PMEDM) has been proposed [15–21]. In
this context, fine powder is mixed with the dielectric to satisfy the properties of EDM, e.g.,
high precision, better surface quality, and improving material removal rate.

It has been proven that the added powder has a strong effect on the dielectric fluid
increase in the MRR [1,6,22]. W.S. Zhao et al. [6] conducted the experimental evaluation to
test the influences of PMEDM on machining efficiency compared with traditional EDM
operation. The surface roughness and machining efficiency resulting from both PMEDM
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and traditional EDM were measured and compared. It was revealed that the machining
efficiency of PMEDM was smaller than that of traditional EDM. Inversely, in terms of
the surface roughness, PMEDM exhibited a much smaller value than that generated by
traditional EDM. This can be explained by the fact that in the case of PMEDM, the discharge
gaps and passage are normally bigger than those of EDM machining, hence pulse discharge
energy is much lost in discharge gaps. Moreover, ejecting force of discharge on the melted
materials is reduced by extended discharge gaps. Finally, these reasons significantly impact
the lower efficiency of PMEDM machining when compared to that of traditional EDM.
On the other hand, the similar discharge parameters, and evenly distributed and “large
and shadow” shaped etched cavities make better machining quality of PMEDM. With a
similar purpose, Jeswani et al. [1] quantitatively investigated the effectiveness of mixing
the powder into the traditional EDM process to increase MRR and reduce EWR. It has been
found that adding 4 g of fine graphite powder per little of kerosene causes to augment
MRR by 60%. This might be due to the reduction in the breakdown voltage of the kerosene
dielectric generated by adding the powder. The advantages of PMEDM compared to
traditional EDM machining have also been documented in other studies [10,17,23].

It should be noticed that PMEDM and traditional EDM processes have different
machining characteristics, some parameters may be suitable to the former, but unreasonable
to the latter. Hence, in order to get the proper set of parameters that can much better
improve the advantages of PMEDM, there have been research works dealing with the
optimization process [18,20,23–25]. Kanssal et al. [21] applied the response surface method
to plan and analyze the experiments for optimizing the process parameters such as pulse-
on time, duty cycle, peak current, and concentration of the silicon powder. The responses
in this study are minimizing surface roughness and maximizing the material removal rate.
It shows that peak current factor and concentration are the most influential parameters
on MRR and SR. The reliability of the proposed method is confirmed by a small error
percentage between predictions and experiments. In another study [20], the authors
have similar conclusions about the most influential factors of the peak current and the
concentration of the silicon powder. However, in this study, the responses selected were
machining rate (MR), SR, and tool wear rate (TWR). The important impact of powder-
mixed concentration was documented in some studies [5,17,23]. Regarding the materials
of mixed powder, some kinds have been adopted in the research community such as SiC,
silicon carbide, titanium, and aluminum [17,20,23,25]. When comparing the effectiveness
of each mixed powder material, Narumiya et al. [2] reported that under suitably mastered
machining conditions, surface quality resulting from aluminum and graphite powders is
better than that generated by silicon powder in the dielectric. However, there have been few
studies dealing with comparing the capability of each mixed powder material. The Taguchi
method, analysis of variance (ANOVA), and response surface method have been widely
adopted to optimize the process parameters in PMEDM machining [17,20,21,24] when
single responses are required. However, in several studies, it is reported that the Taguchi
method is combined with GRA [15] to solve the multi-objective responses. Recently, there
have been a few studies on PMEDM when processing cylindrically shaped parts [15,26,27].
They have contributed to improving productivity and accuracy when machining tablet-
shaped punches (Figure 1).

From the above analysis, it can be seen that there have been many studies on PMEDM
so far. However, there has been no research on the optimization of the PMEDM process
when machining cylindrically shaped parts with the use of graphite electrodes. Moreover,
solving PMEDM with the multi-objective function is a crucial requirement in practice,
but there have been few studies dealing with this issue type until now. In this work, an
optimization process will be conducted to find the set of optimal main process parameters
which can minimize SR and EWR, and maximize MRR. The input parameters are the
powder concentration, the pulse-on time, the pulse-off time, the pulse current, and the servo
voltage. The PMEDM cylindrical-shaped workpiece and the gray relation analysis (GRA)
method combined with the Taguchi method for simultaneously solving multi-objective
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functions with the support of Minitab R19 software are used to design the experiment and
analyze the results. The materials of mixed powder to the dielectric are SiC. The optimal
set of main process parameters will be confirmed by experiments.

Figure 1. Tablet-shaped punches made by the EDM process [15].

2. Experimental Setup and Optimization Methodology
2.1. Experimental Setup

The specimens in this study are prepared in a cylindrical shape and made of 90CrSi
tool steel. The graphite electrodes, SiC powder with 100 nm size, and Diel MS7000 dielectric
solution are adopted. The PMEDM process is conducted by a Sodick A30 EDM machine.
The setup of the experiment is presented in Figure 2. The chosen input parameters and
their investigated levels are listed in Table 1. Except for servo voltage with two levels, other
parameters are investigated by three levels.

Figure 2. Experimental setup of PMEDM machining.



Machines 2021, 9, 375 4 of 13

Table 1. Input factors and their levels.

No. Input Parameters Code Unit
Level

1 2 3

1 Powder
concentration Cp g/L 0 0.5 1

2 Pulse-on time Ton µs 8 12 16

3 Pulse-off time Toff µs 8 12 16

4 Servo current IP A 5 10 15

5 Servo voltage SV V 4 5 -

The Taguchi method and Minitab R19 software are utilized to design the experiment
plans and analyze the results in which the design of L18 (2ˆ1 + 3ˆ4) is selected. For this
reason, it has a total of 18 tests. The experimental results for each run are measured three
times and presented in Table 2.

Table 2. Input parameters and experimental results.

No.
Input Factors Ra (µm) MRS (g/h) EWR (g/h)

Cp Sp Ton Toff SV Trail 1 Trail 2 Trail 3 Trail 1 Trail 2 Trail 3 Trail 1 Trail 2 Trail 3

1 0.0 8 8 5 4 2.009 2.135 1.979 0.751 0.715 0.726 0.0541 0.0553 0.0533

2 0.0 12 12 10 4 2.947 3.005 2.832 1.238 1.531 1.263 0.0577 0.0527 0.0559

3 0.0 16 16 15 4 7.635 7.776 7.701 3.916 3.973 3.779 0.0465 0.0440 0.0474

4 0.5 8 8 10 4 1.998 2.100 2.109 0.779 0.813 0.806 0.0888 0.0895 0.0991

5 0.5 12 12 15 4 4.863 4.887 5.011 7.064 7.171 6.974 0.0146 0.0149 0.0141

6 0.5 16 16 5 4 6.954 6.837 6.998 0.826 0.802 0.812 0.3197 0.3257 0.3153

7 1.0 8 12 5 4 1.889 2.022 1.985 1.403 1.400 1.390 0.0312 0.0295 0.0292

8 1.0 12 16 10 4 2.798 2.649 2.867 3.932 3.813 3.716 0.1434 0.1451 0.1440

9 1.0 16 8 15 4 4.554 4.537 4.598 4.385 4.188 4.661 0.0387 0.0398 0.0390

10 0.0 8 16 15 5 3.602 3.519 3.582 7.043 6.976 6.890 0.0059 0.0063 0.0061

11 0.0 12 8 5 5 4.789 4.952 4.782 1.987 1.879 1.965 0.2015 0.1946 0.1895

12 0.0 16 12 10 5 3.689 3.758 3.721 1.428 1.411 1.445 0.0713 0.0632 0.0675

13 0.5 8 12 15 5 2.951 2.856 2.801 6.990 7.053 7.258 0.0050 0.0045 0.0052

14 0.5 12 16 5 5 4.001 4.177 4.199 2.087 2.563 2.335 0.1995 0.1965 0.1969

15 0.5 16 8 10 5 2.864 2.898 2.965 1.158 1.360 1.226 0.1935 0.1909 0.1922

16 1.0 8 16 10 5 1.687 1.635 1.701 1.976 2.230 2.058 0.0389 0.0418 0.0409

17 1.0 12 8 15 5 3.467 3.597 3.632 7.212 7.016 7.086 0.0298 0.0278 0.0290

18 1.0 16 12 5 5 3.002 2.960 2.895 2.420 2.655 2.618 0.1157 0.1179 0.1161

2.2. Optimization Methodology

The Taguchi method is a useful tool of experimental design and analysis. The ex-
perimental design introduced by Taguchi involved orthogonal arrays to organize the
parameters that affect the process and the levels that need to be changed. The Taguchi
method does not test for all possible combinations, but only a few. This testing will generate
a key set of data that can determine which factors have the most impact on product quality
with minimal testing to save time and money. However, the original Taguchi method has
been designed to optimize a single performance characteristic. The treatment of many
performance characteristics by the Taguchi method needs further investigation. In this
study, MRR is a “higher-the-better” performance characteristic. Nevertheless, SR and EWR
are “lower-the-better” performance characteristics. Consequently, an improvement of one
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performance characteristic may lead to a deterioration of another. Therefore, optimiz-
ing multiple performance characteristics is much more complex than optimizing a single
performance characteristic. In this research, GRA is purposely applied to investigate the
multiple performance characteristics in the PMEDM process.

GRA has been widely applied to evaluate the degree of relationship between sequences
based on the gray relational grade. This method has also been applied to optimize the
control parameters with multi-responses through the gray relational grade. Gray relational
analysis is widely used to combine all the considered performance characteristics into a
single value that can be used as the single characteristic in optimization problems. This
advantage is impossible to obtain in other methods. The process of combination between
Taguchi method and GRA will be detailed in the next part.

3. Multi-Objective Optimization

The responses in this study are minimizing SR and EWR, and maximizing MRR. As
previously mentioned, with the single utilization of the Taguchi method it is impossible
to get the multi-objective optimization with three requirements, hence, the GRA method
and Taguchi method will be applied to simultaneously optimize the three above-stated
targets. According to this combination, firstly the S/N ratio of SR, EWR, and MRR should
be determined:

For the maximum MRR : S/N = −10 log10(
1
n

n

∑
i=1

1
y2

i
) (1)

For the minimum SR and EWR : S/N = −10 log10(
1
n

n

∑
i=1

y2
i ) (2)

The average values of S/N ratios of three responses are exhibited in Table 3.

Table 3. Average values and S/N of SR, EWR, and MRR.

No.
Input Factors Ra (µm) EWR (g/h) MRR (g/h)

Cp Ton Toff Ip SV Mean S/N Mean S/N Mean S/N

1 0.0 8 8 5 4 2.0410 −6.2016 0.05425 25.3114 0.73061 −2.7320

2 0.0 12 12 10 4 2.9280 −9.3340 0.05546 25.1148 1.34409 2.4522

3 0.0 16 16 15 4 7.7040 −17.7346 0.04594 26.7522 3.88944 11.7920

4 0.5 8 8 10 4 2.0690 −6.3178 0.09246 20.6692 0.79922 −1.9511

5 0.5 12 12 15 4 4.9203 −13.8406 0.01452 36.7577 7.06941 16.9860

6 0.5 16 16 5 4 6.9297 −16.8147 0.32022 9.8902 0.81356 −1.7941

7 1.0 8 12 5 4 1.9653 −5.8723 0.02996 30.4660 1.39784 2.9090

8 1.0 12 16 10 4 2.7713 −8.8585 0.14417 16.8225 3.82036 11.6351

9 1.0 16 8 15 4 4.5630 −13.1851 0.03918 28.1370 4.41144 12.8666

10 0.0 8 16 15 5 3.5677 −11.0481 0.00609 44.3001 6.96939 16.8628

11 0.0 12 8 5 5 4.8410 −13.6998 0.19523 14.1865 1.94347 5.7639

12 0.0 16 12 10 5 3.7227 −11.4173 0.06734 23.4239 1.42822 3.0947

13 0.5 8 12 15 5 2.8693 −9.1576 0.00493 46.1269 7.10034 17.0222

14 0.5 12 16 5 5 4.1257 −12.3119 0.19765 14.0820 2.32829 7.2484

15 0.5 16 8 10 5 2.9090 −9.2758 0.19222 14.3239 1.24793 1.8666

16 1.0 8 16 10 5 1.6743 −4.4781 0.04050 27.8478 2.08814 6.3624

17 1.0 12 8 15 5 3.5653 −11.0437 0.02885 30.7931 7.10457 17.0291

18 1.0 16 12 5 5 2.9523 −9.4043 0.11656 18.6689 2.56452 8.1581

In order to analyze gray relation based on the S/N ratio, the value of this ratio should
be converted into a series compared to unitless quantities. Hence, the data have to be
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normalized. The determined values of S/N ratios are normalized by using Zi where 0 ≤ Zi
≤ 1 and:

Zi =
S/Ni − min(S/Ni, i = 1, 2, . . . , n)

max(S/Ni, i = 1, 2, . . . , n)− min(S/Ni, i = 1, 2, . . . , n)
(3)

where n is the number of experimental runs (n = 18). The calculated values of normalized
Zi are shown in Table 4.

Table 4. The calculated values of normalized Zi.

TT

S/N Zi

Ra EWR MRS

Ra EWR MRS

Reference Values

1.000 1.000 1.000

1 −6.2016 25.3114 −2.7320 0.8700 0.5744 1.0000

2 −9.3340 25.1148 2.4522 0.6337 0.5799 0.7377

3 −17.7346 26.7522 11.7920 0.0000 0.5347 0.2650

4 −6.3178 20.6692 −1.9511 0.8612 0.7025 0.9605

5 −13.8406 36.7577 16.9860 0.2937 0.2586 0.0022

6 −16.8147 9.8902 −1.7941 0.0694 1.0000 0.9525

7 −5.8723 30.4660 2.9090 0.8948 0.4322 0.7145

8 −8.8585 16.8225 11.6351 0.6696 0.8087 0.2730

9 −13.1851 28.1370 12.8666 0.3432 0.4965 0.2106

10 −11.0481 44.3001 16.8628 0.5044 0.0504 0.0084

11 −13.6998 14.1865 5.7639 0.3044 0.8814 0.5701

12 −11.4173 23.4239 3.0947 0.4765 0.6265 0.7051

13 −9.1576 46.1269 17.0222 0.6470 0.0000 0.0003

14 −12.3119 14.0820 7.2484 0.4091 0.8843 0.4949

15 −9.2758 14.3239 1.8666 0.6381 0.8776 0.7673

16 −4.4781 27.8478 6.3624 1.0000 0.5044 0.5398

17 −11.0437 30.7931 17.0291 0.5047 0.4232 0.0000

18 −9.4043 18.6689 8.1581 0.6284 0.7577 0.4489

The gray relation coefficient yj(k) is identified by the following equation:

yi(k) =
∆min(k) + ζ.∆max(k)

∆i(k) + ζ.∆max(k)
i = 1, 2, . . . , n (4)

where n is the number of tests (n = 18); k is the number of output responses (k = 3); ∆i(k)
is the absolute value of reference value determined by: ∆i(k) = ||Z0(k) – Zi(k)||; it is
the absolute value of the difference between Z0(k) (reference value Z0(k) = 1) and Zi(k))
(Z-value of the ith experiment of the kth target). ∆min(k) is the minimum value of i(k); max(k)
is the maximum value of i(k); ζ is the discriminant coefficient, determined in the range
0 ≤ ζ ≤ 1, in experimental research ζ = 0.5.

The degree of gray relation can be calculated through the average gray relation value
of the output objectives:

yi =
1
k

k

∑
j=0

yij(k) (5)
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where yij is the gray relation value of the jth output aims in the ith experiment. The
determined results of gray relation value yi and the average gray relation value yi of the
experiments are shown in Table 5.

Table 5. Values of ∆i (k) and GRA of responses yi.

TT
∆i (k) Grey Relation Values y

yiRa EWR MRS Ra EWR MRS

1 0.1300 0.4256 0.0000 0.794 0.540 1.000 0.778
2 0.3663 0.4201 0.2623 0.577 0.543 0.656 0.592
3 1.0000 0.4653 0.7350 0.333 0.518 0.405 0.419
4 0.1388 0.2975 0.0395 0.783 0.627 0.927 0.779
5 0.7063 0.7414 0.9978 0.415 0.403 0.334 0.384
6 0.9306 0.0000 0.0475 0.350 1.000 0.913 0.754
7 0.1052 0.5678 0.2855 0.826 0.468 0.637 0.644
8 0.3304 0.1913 0.7270 0.602 0.723 0.407 0.578
9 0.6568 0.5035 0.7894 0.432 0.498 0.388 0.439

10 0.4956 0.9496 0.9916 0.502 0.345 0.335 0.394
11 0.6956 0.1186 0.4299 0.418 0.808 0.538 0.588
12 0.5235 0.3735 0.2949 0.489 0.572 0.629 0.563
13 0.3530 1.0000 0.9997 0.586 0.333 0.333 0.418
14 0.5909 0.1157 0.5051 0.458 0.812 0.497 0.589
15 0.3619 0.1224 0.2327 0.580 0.803 0.682 0.689
16 0.0000 0.4956 0.4602 1.000 0.502 0.521 0.674
17 0.4953 0.5768 1.0000 0.502 0.464 0.333 0.433
18 0.3716 0.2423 0.5511 0.574 0.674 0.476 0.574

4. Result and Discussions

In order to ensure consistency among the output parameters, the average gray relation
values should be higher-the-better. Therefore, the multi-objective function can be consid-
ered as a single objective function with the output being the average gray relation values.
Taguchi method is applied to estimate the effects of the PMEDM process parameters on
the average gray relation values. For that reason, the S/N ratio of yi can be calculated by
Equations (1) and (2), and this series is analyzed by the ANOVA shown in Table 6.

Table 6. Effects of process parameters on average gray relation values.

Analysis of Variance for Means

Source DF Seq SS Adj SS Adj MS F P C (%)

SV 1 0.010914 0.010914 0.010914 7.41 0.026 3.64

Cp 2 0.008339 0.008339 0.004170 2.83 0.118 2.78

Ton 2 0.022758 0.022758 0.011379 7.73 0.014 7.59

Toff 2 0.023649 0.023649 0.011825 8.03 0.012 7.88

IP 2 0.222483 0.222483 0.111241 75.53 0.000 74.18

Residual
Error 8 0.011783 0.011783 0.001473 3.93

Total 17 0.299927

Model Summary

S R-Sq R-Sq(adj)

0.0384 96.07% 91.65%

There is the fact that the influencing degree of each parameter is represented by its
p-value shown in Table 6. This means that one parameter has static significance when its
p-value is minor to a confidence level of 0.05. Based on the results presented in Table 6,
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it is seen that P-values of IP, Toff, Ton, SV, and Cp are 0.000, 0.012, 0.014, 0.02, and 0.118,
respectively. Except for the case of Cp having a p-value higher than 0.05, the remainder
have static significance. The influencing order of process parameters on the average gray
relation values yi is peak current (IP) of 74.18% (with the strongest influence), pulse-off
time (Toff) of 7.88%, pulse-on time (Ton) of 7.59%, servo voltage (SV) of 3.64%, and finally
powder concentration (CP) of 2.78%, which can be considered as non-static significance.
This influencing order can be shown in tabular form as in Table 7.

Table 7. Influencing order of input parameters on the average gray relation values.

Response Table for Means

Level SV Cp Ton Toff IP

1 0.5963 0.5557 0.6144 0.6177 0.6546

2 0.5470 0.6021 0.5274 0.5291 0.6458

3 0.5571 0.5731 0.5681 0.4145

Delta 0.0492 0.0463 0.0871 0.0886 0.2401

Rank 4 5 3 2 1

average gray relation values: 0.572

It is realized that from Table 7 the influence order of input parameters on the average
gray relation values are IP, Toff, Ton, SV, and Cp. Moreover, this influence can be graphically
described by using the main effects plot for means as exhibited in Figure 3.

Figure 3. The effects of input parameters on the average gray relation values.

In order to achieve a clearer understanding of the evolution of input parameters and
the average gray relation values, the next part discusses the results presented in Figure 3.
It is noticed that when SV is increased from 4 V to 5 V, the values of yi are reduced. For
the powder concentration parameter, compared to unmixed powder (traditional EDM)
the powder concentration of 0.5 g/L leads to an increase in yi. Nevertheless, yi is reduced
when the powder concentration reaches 1 g/L. Regarding the two parameters of Ton and
Toff, both have a similar varying tendency, e.g., when they are increased from 8 µs to 12 µs,
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yi lessens. However, yi increases when Ton and Toff come to 16 µs. Finally, for Pear current
parameter, yi slightly decreases when IP is varied from 5 A to 10 A, and yi significantly
declines when IP reaches 15 A. This is the factor with the strongest impact on yi.

It is noted that to determine the optimal set of process parameters, the effects of noise
through the values of the S/N ratio should be considered. As the objective function of this
study, in order to achieve the largest average gray relation value, the largest S/N value for
each input parameter means that at that survey level it is less affected. The influence of the
input parameters on the S/N ratio is described in Table 8.

Table 8. Effect of parameters on the S/N ratio of the mean gray relation values.

Analysis of Variance for SN Ratios

Source DF Seq SS Adj SS Adj MS F P C (%)

SV 1 1.763 1.763 1.7627 6.37 0.036 2.40

Cp 2 1.219 1.219 0.6096 2.20 0.173 1.66

Ton 2 3.919 3.919 1.9596 7.08 0.017 5.34

Toff 2 4.687 4.687 2.3436 8.46 0.011 6.39

IP 2 59.589 59.589 29.7946 107.61 0.000 81.19

Residual Error 8 2.215 2.215 0.2769 3.02

Total 17 73.392

Model Summary

S R-Sq R-Sq(adj)

0.5262 96.98% 93.59%

As in the earlier analysis, the parameters have a statistical significance when their
P-values are bigger than the confidence level of 0.05. Similarly, the influence order of
parameters is identically observed as those presented in Table 6 where except for Cp,
the others have statistical significance on the response. According to the analysis results
in Table 8, IP parameters also have the greatest influence on the S/N ratio with 81.19%,
followed by the influence of the following parameters: Toff (6.39%), Ton (5.34%), SV (2.4%),
and Cp (1.66%), respectively. The influence order of the input parameters and the S/N
ratio at the survey levels are shown in Table 9. Table 9 also shows that the influence order
of input parameters is IP, Toff, Ton, SV, and Cp, respectively. At the same time, the S/N
ratio of the input parameters through the survey levels is also clearly shown in Figure 4.
From this chart in Figure 4, it is possible to determine the S/N value of each survey level of
the input parameters and determine the maximum S/N value.

Table 9. Order of influence of input parameters S/N ratio of mean gray relation value.

Response Table for Signal to Noise Ratios

Larger is better

Level SV Cp Ton Toff IP

1 −4.775 −5.330 −4.546 −4.435 −3.746

2 −5.400 −4.726 −5.685 −5.681 −3.856

3 −5.207 −5.033 −5.147 −7.660

Delta 0.626 0.603 1.139 1.246 3.913

Rank 4 5 3 2 1
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Figure 4. Effect of parameters on the S/N value of y.

As analyzed above, the parameter set with the highest S/N value y for each input
parameter is the most reasonable set of parameters. From the chart in Figure 4, the trend
of influence of each input parameter on the S/N value is shown and the multi-objective
optimal parameter set is determined, specifically in Table 10.

Table 10. The optimal set of the process parameters for PMEDM machining.

TT Input Factors Code Unit Level Optimal Value

1 Powder concentration Cp g/l 2 0.5

2 Pulse-on time Ton µs 1 8

3 Pulse-off time Toff µs 1 8

4 Peak current IP A 1 5

5 Servo voltage SV V 1 4

4.1. Validating the Optimal Set of Main Process Parameters

In order to confirm the optimal values of input parameters, experiments were con-
ducted. The experimental values of SR, MRS, and EWR are presented in Table 11. It is
observed that the error percents showing variation between predictions and experiments
are small. For example, for SR the predicted and experimental values are 2.456 µm and
2.324 µm, respectively. This difference corresponds to the error percent of 5.38. The highest
error percent belongs to EWR by 6.62%. For these results, it can be concluded that the
suggested model is significantly confirmed and reliable.

Table 11. Comparison of the optimal response values given predictions and experiments.

Input Factors Predict Value Experiment Value Error (%)

SV Cp Ton Toff IP Ra MRS EWR Ra MRS EWR Ra MRS EWR

4 0.5 8 8 5 2.456 1.63 0.099 2.324 1.702 0.092 5.38 4.42 6.62

4.2. Evaluating the Reliability of the Proposed Experimental Method

The experimental model is evaluated through error distribution charts as shown
in Figure 5. It can be seen that in the normal distribution error distribution chart, the
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errors of the experimental points corresponding to the blue points on the distribution chart
around the normal distribution line (red solid color line) indicate that the error is small.
Histogram reveals the frequency of errors shows that the errors appear in the range −0.1
to 0.1, accounting for a large proportion. The remaining two graphs show the random
distribution of experimental errors, which means that the built model is largely influenced
by the selected input parameters and is not affected by the order of the experiment.

Figure 5. Residual plots for y.

4.3. Evaluation of Mode Fit

The appropriateness of the experimental model verified by the Anderson–Darling
method in Figure 6 shows that the data corresponding to the experimental points (blue dots)
are in the region bounded by two upper and lower bounds with the standard deviation
of 95%. The P-value of 0.150 is greater than the value of α = 0.05. This indicates that the
applied experimental model is suitable.

Figure 6. Probability graph of the fit of the experimental model for y.
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5. Conclusions

The optimal set of process parameters that can minimize surface roughness, electrode
wear rate, and maximize material removal rate is found in this study. Powder-mixed
electrical discharge machining (PMEDM) with SiC powder-mixed-dielectric of hardened
90CrSi steel is conducted. The used input parameters of the optimization process are the
powder concentration, the pulse-on time, the pulse-off time, the pulse current, and the
servo voltage. A combination of the Taguchi method and the grey relation analysis (GRA)
method with the support of Minitab R19 software was used to design the experiment and
analyze the results. The following conclusions can be made:

1. The results reveal that peak current has the strongest influence by 74.18% on the
responses, pulse-off time (Toff) by 7.88%, pulse-on time (Ton) by 7.59%, servo voltage
(SV) by 3.64%, and finally, powder concentration (CP) by 2.78% follow.

2. Thanks to the use of GRA, the three initial objective functions such as minimizing SR
and EWR and maximizing MRR can be optimized through an average gray relation
value of GRA to find an optimal set of input parameters. The optimal parameters of
PMEDM are a powder concentration of 0.5 g/L, a pulse-on time of 8 µs, a pulse-off
time of 8 µs, a peak current of 5 A, and a servo voltage of 4 V.

3. Experiments were carried out to confirm the optimal values of input parameters. It is
revealed that the difference between the predicted values and experimental values
of the responses is small. Hence, the proposed model is significantly confirmed
and reliable.

4. The appropriateness of the experimental model is verified by the Anderson–Darling
method. It shows that the applied experimental model is suitable.
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Nomenclature

PMEDM Powder-mixed electrical discharge machining
EDM Electrical discharge machining
SR Surface roughness
EWR Electrode wear rate
MMR Material removal rate
GRA Gray relation analysis
ANOVA Analysis of variance
Cp Powder concentration
Ton Pulse-on time
Toff Pulse off time
IP Servo current
SV Servo voltage
yj(k) Gray relation coefficient
yi Average gray relation value

References
1. Jeswani, M.L. Effect of the addition of graphite powder to kerosene used as the dielectric fluid in electrical discharge machining24.

Wear 1981, 7, 133–139. [CrossRef]

http://doi.org/10.1016/0043-1648(81)90148-4


Machines 2021, 9, 375 13 of 13

2. Narumiya, H.; Mohri, N.; Saito, N.; Otake, H.; Tsnekawa, Y.; Takawashi, T.; Kobayashi, K. EDM by powder suspended working
fluid. In Proceedings of the 9th ISEM, Nagoya, Japan, 10–14 April 1989; pp. 5–8.

3. Mohri, N.; Saito, N.; Higashi, M.; Kinoshita, N. A New Process of Finish Machining on Free Surface by EDM Methods. CIRP Ann.
1991, 40, 207–210. [CrossRef]

4. Wong, Y.S.; Lim, L.C.; Rahuman, I.; Tee, W.M. Near-mirror-finish phenomenon in EDM using powder-mixed dielectric. J. Mater.
Process. Technol. 1998, 79, 30–40. [CrossRef]

5. Tzeng, Y.F.; Lee, C.Y. Effects of Powder Characteristics on Electrodischarge Machining Efficiency. Int. J. Adv. Manuf. Technol. 2001,
17, 586–592. [CrossRef]

6. Zhao, W.S.; Meng, Q.G.; Wang, Z.L. The application of research on powder mixed EDM in rough machining. J. Mater. Process.
Technol. 2002, 129, 30–33. [CrossRef]

7. Ho, K.H.; Newman, S.T. State of the art electrical discharge machining (EDM). Int. J. Mach. Tools Manuf. 2003, 43, 1287–1300.
[CrossRef]

8. Kumar, A.; Maheshwari, S.; Sharma, C.; Beri, N. Research Developments in Additives Mixed Electrical Discharge Machining
(AEDM): A State of Art Review. Mater. Manuf. Process. 2010, 25, 1166–1180. [CrossRef]

9. Mondal, S.; Paul, C.P.; Kukreja, L.M.; Bandyopadhyay, A.; Pal, P.K. Application of Taguchi-based gray relational analysis for
evaluating the optimal laser cladding parameters for AISI1040 steel plane surface. Int. J. Adv. Manuf. Technol. 2012, 66, 91–96.
[CrossRef]

10. Prayogo, G.S.; Lusi, N. Application of Taguchi technique coupled with grey relational analysis for multiple performance
characteristics optimization of EDM parameters on ST 42 steel. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY,
USA, 2016; p. 020061.

11. Raut, V.; Gandhi, M.; Nagare, N.; Deshmukh, A. Application of Taguchi Grey Relational Analysis to optimize the process
parameters in wire electrical discharge machine. Int. J. Innov. Sci. Eng. Technol. 2016, 3, 108–115.

12. Muthuramalingam, T.; Saravanakumar, D.; Babu, L.G.; Huu Phan, N.; Pi, V.N. Experimental Investigation of White Layer
Thickness on EDM Processed Silicon Steel Using ANFIS Approach. Silicon 2019, 1–7. [CrossRef]
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