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Abstract: Experiments with a cam-type clamp tool were carried out to overcome the difficulty
of transporting and installing large-diameter mono-piles for offshore wind turbines. Using the
experiments method to design a small wedge-type clamping mechanism and using cam teeth made
of 40Cr material resulted in the maximum friction for the mechanism. A single clamping design was
created for the cam-type clamp tool to hoist mono-piles for offshore wind turbines. Through force
analysis and Automatic Dynamics Analysis of Mechanical System (ADAMS) dynamic simulation
of the lifting tool, it was calculated that the clamping force of the lifting tool meets application
requirements. A prototype was built in order to carry out an experiment in which the lifting tool
hoisted a mono-pile. It was concluded from the experiment that the proposed design of the lifting
tool is feasible in practical applications.

Keywords: offshore wind turbine; cam-type clamp; structure design; force analysis; ADAMS simulation;
prototype testing

1. Introduction

In recent years, wind power has become the fastest developing new energy technology;
however, it cannot be applied widely on land due to the fact that there is little space for wind
farms and to the great noise produced when generating electricity [1]. Wind turbines consist
of a frame to orientate the blades, a pile gripper, a subsea structure for installing a pile,
and a monopole [2]. The structure of the rotor blades and that of the engine depend on the
installed capacity of the wind turbine. At present, turbine structures can be categorized
as mono-pile, gravity foundation, suction foundation, multi-pile foundation, floating
foundation, etc. [3]. The simple structure of the mono-pile enables it to be applied widely
in engineering, but in consideration of the fact that the pile installation will have lateral
force vibration and the seabed requires high stability [4], mono-piles are not available in sea
areas with a water depth of more than 25 m [5]. Further, the surface disk and deep anchor
problems cause degenerate conditions under appropriate limit conditions [6]. By pouring
concrete caissons into the seabed, the gravity foundation method makes the whole turbine
remain vertical using the gravity of the turbine, but subsea operations indicate that the
overall cost is high, and this method is limited to applications in shallow water [7]. In the
theory of the suction method, the negative pressure produced by pumping water out of the
underwater steel caisson is employed to make components such as the engine adsorb to
the seabed [8]. There is also a single-pile installation technology which can transfer energy
with a higher frequency of striking, which reduces energy consumption and noise [9].
The vertical compliance of the pile foundation shows great dependence on the embedded
depth, excitation frequency, permeability, and soil stratification [10].

Multi-pile foundations utilize three to four steel piles to build a supporting structure
combined with concrete. The technology is still at the experimental stage and not yet
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used in engineering projects [11]. All the methods mentioned above are only applicable
to coastal waters. Nowadays, turbines can be built on floating platforms [12]. Similar to
those of an offshore oil drilling platform, the structures of the floating platform include the
pressure sensor type, tension leg type and floating box type [13].

Compared with other types of supporting foundation for turbines, the turbine founda-
tion with a mono-pile has been widely used because of its simple structure and low cost [14].
Under the same cyclic load, the cyclic resistance capacity of a large-diameter single pile
with greater stiffness is better than that of a conventional long pile [15]. The asymmetric
problem of rocking rotation of a circular rigid disk embedded in a finite depth of a trans-
versely isotropic half-space was analytically addressed. The jump behavior in the results
at the edge of the rigid disk for the case of an infinitesimal embedment was highlighted
analytically [16]. At present, the maximum diameter of a mono-pile is 5 m, and the pile
foundation diameter of 6~8 m has great development prospects [17]. Due to the fact that
the mono-pile will have a huge impact during the installation, the pile foundation is often
designed as a smooth hollow cylinder in order to avoid the phenomenon of stress concen-
tration [18]. Due to the specific structure of the pile, a general lifting tool cannot be directly
utilized, so it is necessary to design a special lifting tool to hoist the mono-pile. At present,
up-ending unilateral or bilateral clamping tools and lifting tools for piles produced by
the Dutch company IHC-MERWEDE can reliably complete hoisting operations of 250 and
500 tons for mono-pile foundations [19].

At present, lifting tools for piles which are suitable for engineering applications are
relatively rare. In view of this situation, in this paper, we studied the lifting tools for
mono-pile turbines and developed a novel lifting tool, which functions by clamping via
cam, to solve this engineering problem.

2. Experimental Methods for the Clamping Mechanism

The research method in this paper was based on carrying out a basic experiment to
determine the teeth of the cam, then carrying out three-dimensional design and motion
simulation analysis, and finally processing the prototype to simulate a lifting experiment.
The coefficient of friction between the contact surfaces of the two materials varies with the
type of material. For the lifting tool, the coefficient of friction between the clamping device
and the pile foundation should be as large as possible. The material of the pile foundation
is generally stainless steel. The clamping force of the tool can be increased by utilizing
a tool of the appropriate material to increase the coefficient of friction on the clamping
surface [20]. The structure of the small wedge clamping mechanism is shown in Figure 1.
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The mechanism consists of lugs (1), fixed diagonal slides (2), left swivel pins (3), side
nail bolts (4), side moving wedge blocks (5), side compression inserts (6), a right inner
moving wedge (7), a right pressing fast (8), a right swivel pin (9), a right nail bolt (10), and
other components. The end of the pile is installed in the gap between the side moving
wedge blocks (5), the right inner moving wedge (7), block 6, and block 8. The method of
installation of the clamping mechanism is shown in Figure 2. The structural details of the
wedge clamping mechanism are shown in Figure 3.
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The main parts of the clamping mechanism are clamping block 6 and clamping block
8. These blocks are in contact with the piles and clamp them. The blocks were designed to
be replaceable, so the clamping effect produced by blocks of different materials could be
studied by changing the materials of the blocks. In addition, the impact of the tooth shape
of the cam used to hoist the pile could also be studied by testing different shapes in the
clamping experiment.

Clamping blocks made of 40Cr, T8, and 9SiCr were each utilized in pile hoisting
tests. The tooth angle of the upper teeth of the wedge block was 60◦, and five teeth were
evenly distributed on each wedge block. A picture of the experiment in progress is shown
in Figure 4.

The experiment demonstrated that when combined with the clamping mechanism, all
the blocks made of those three materials mentioned above could be utilized to clamp and
hoist the steel piles. Through the indentation of the clamping tool on the outer surface of
the pile, it was observed that the three kinds of clamping block led to local deformation of
the pile. The tooth tip was embedded in the base material of the foundation pile, but the
whole pile was not deformed, which indicates that the embedding of the tooth increases
the friction, so that the loading force of the mechanism was improved [21].
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In order to further explore the effect of the cam tooth material on the clamping force,
both an experiment on the loading force for the clamping mechanism and an experiment
on the ultimate bearing capacity of the three kinds of materials were carried out. The
maximum tension was recorded when the wedge was unfastened by the clamping force. The
relationship between the clamping force and the maximum tension is expressed in Table 1.

Table 1. Results obtained for wedge mechanisms with different parameters.

Number The Shape and
Material of the Teeth

Clamping Force
(KN)

The Max Value
of Tension (KN)

Equivalent
Coefficient of

Friction

1 9SiCr
(Serrated shape) 78.4 76.9 0.98

2 40Cr
(Blade shape) 156.8 184.2 1.18

3 T8
(Blade shape) 156.8 139.2 0.89

The results of the bearing experiment are also expressed in Figure 5.

Machines 2021, 9, x FOR PEER REVIEW 4 of 13 
 

 

The experiment demonstrated that when combined with the clamping mechanism, 
all the blocks made of those three materials mentioned above could be utilized to clamp 
and hoist the steel piles. Through the indentation of the clamping tool on the outer surface 
of the pile, it was observed that the three kinds of clamping block led to local deformation 
of the pile. The tooth tip was embedded in the base material of the foundation pile, but 
the whole pile was not deformed, which indicates that the embedding of the tooth in-
creases the friction, so that the loading force of the mechanism was improved [21]. 

In order to further explore the effect of the cam tooth material on the clamping force, 
both an experiment on the loading force for the clamping mechanism and an experiment 
on the ultimate bearing capacity of the three kinds of materials were carried out. The max-
imum tension was recorded when the wedge was unfastened by the clamping force. The 
relationship between the clamping force and the maximum tension is expressed in Table 1. 

Table 1. Results obtained for wedge mechanisms with different parameters. 

Number 
The Shape and 
Material of the 

Teeth 

Clamping 
Force (KN) 

The Max Value of 
Tension (KN) 

Equivalent 
Coefficient of 

Friction 

1 
9SiCr 

(Serrated shape) 78.4 76.9 0.98 

2 40Cr 
(Blade shape) 

156.8 184.2 1.18 

3 T8 
(Blade shape) 

156.8 139.2 0.89 

The results of the bearing experiment are also expressed in Figure 5. 

 
Figure 5. Line chart of the relationship between the clamping force, tensile force, and the material 
of the clamping tooth. 

In Figure 5, the blue curve shows the relationship between the tensile force and the 
material of the clamping tooth (series 1), while the purple curve shows the relationship 
between the clamping force and the material of the clamping tooth (series 2). Due to the 
difference in shapes and materials of the teeth, different clamping forces were applied 
during the experiment. The maximum tension was observed when the clamping tool was 

7.85 

18.8 

14.2 

8 

16 16 

0

2

4

6

8

10 
12 
14 
16 
18 
20 

1 2 3

Materials (1, 9SiCr; 2, 40Cr)

Fo
rc

e(
K

N
) 

Series 1 
Series 2 

Figure 5. Line chart of the relationship between the clamping force, tensile force, and the material of
the clamping tooth.



Machines 2021, 9, 29 5 of 13

In Figure 5, the blue curve shows the relationship between the tensile force and the
material of the clamping tooth (series 1), while the purple curve shows the relationship
between the clamping force and the material of the clamping tooth (series 2). Due to the
difference in shapes and materials of the teeth, different clamping forces were applied
during the experiment. The maximum tension was observed when the clamping tool was
disengaged. After that, the coefficient of friction was calculated and the dimensionless
coefficient was obtained, which was independent of the force.

It can be seen from Table 1 and Figure 5 that the maximum tensile force is related to the
material and shape of the clamping tooth when the clamping force is equal. The clamping
tooth made of 40Cr provided the largest coefficient of friction, which means that the 40Cr
material has a greater clamping capacity than 9SiCr and T8. The coefficient of friction
provided by 40Cr was 1.18, which indicates that the relationship between the pressure and
the friction is not static friction. The teeth of the cam were embedded in the inner part of
the pile, which produced local plastic deformation, increasing the coefficient of friction.

Based on the experiment and analysis mentioned above, under the same load, 40Cr
material can provide greater friction and clamping force. For the following cam clamp
design, we thus used 40Cr as the material.

3. Design and Simulation of the Cam-Type Clamp Tool

The designed lifting tool is intended to be used to hoist the mono-piles of offshore
wind turbines. The lifting tool is suitable for piles with weight of 100~300 t, diameter of
4000~5000 mm, and thickness within the range of 20~70 mm. The clamping part of the
lifting tool was designed as a cam. The clamping method is a combination of hydraulic
drive and the use of the weight of the pile.

The three-dimensional structure of the mechanism is shown in Figure 6.
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The internal structure of the lifting tool is shown in Figure 7. It consists of the main
lifting lug (part No.1), hydraulic cylinder base-connecting shaft (part No.2), hydraulic
cylinder (part No.3), main frame (part No.4), frame-connecting shaft (part No.5), auxiliary
lifting lug (part No.6), hydraulic cylinder clamping cam (part No.7), self-weight clamping
cam (part No.8), front-end outer clamping plate (part No.10), rear-middle outer clamping
plate (part No.11), rear-middle outer clamping plate connecting bolt (part No.12), main
lifting lug limit shaft (part No.13), main lifting lug and main lifting lug and self-weight cam
connecting rod-connecting bolt (part No.14), main frame-connecting shaft (part No.15),
the initial positioning spring (part No.16) and the dead weight cam-connecting rod (part
No.17). Part No.9 is the steel pipe.
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The working process of the lifting tool is to use the hydraulic cylinder to drive cam
part No.9 to complete the pre-clamping of the pile wall in order to fix the lifting tool.
Then, tension is applied at the main lug to lift up the pile gradually. In this process, the
self-weight driving cam, part No.10, gradually puts force on the inner wall of the pile.
When the pile is vertical to the ground, the lifting tool can provide enough clamping force
to lift up the whole pile. After the completion of the lifting operation, the lifting tool is
removed by unloading the hydraulic cylinder.

The whole process of lifting is shown in Figure 8a–d. The operation process is divided
into four steps: placing the lifting tool, lifting the pile foundation, fully hoisting the mono-
pile, and releasing the lifting tool.

The operation of placing the lifting tool is shown in Figure 8a. First, the hydraulic
cylinder is unloaded and the lifting tool placed at the end part of the pile. The detailed steps
are as follows. The piston rod of the hydraulic cylinder (part No.3) is extended, driving
the clamping cam (part No.7) of the hydraulic cylinder and the self-weight driving cam
(part No.8) to rotate counterclockwise to the limit position, where the distance between the
clamping cam part No.7 and part No.8 and the inner wall of the pile is the maximum value,
with the clamping tool loosened. Then, the lifting tool is placed at the end of pile (part
No.9) by the crane applying tensile force at the secondary lug (part No.7). The control valve
of the hydraulic system will convert the direction, and the rod of the hydraulic cylinder
(part No.3) will move back, driving the clamping cam (part No.8) of the hydraulic cylinder
to rotate clockwise to clamp the inner wall of the pile (part No.9). Thus, the first process of
clamping the steel pile by the lifting tool is finished, as shown in Figure 8b. Pin part No.17
and cam part No.7 of the hydraulic cylinder cannot drive the self-weight cam, because it
has slid to the limit position of cam part No.8.

When the pile is completely vertical to the ground, as shown in Figure 8c, the self-
weight driving cam (part No.8) will rotate to the limit position, and the clamping force
reaches the maximum value. The tensile force applied on the axis of the main lug (part
No.1) is also applied on the axis of the pile. At this moment, the pile is lifted up completely,
and the engineer can move the pile to the working position. When the pile is at the expected
position, the lifting tool should be removed, as shown in Figure 8d. The lifting tool can
be unloaded by controlling the hydraulic cylinder to retract the rod. In this process, the
rod will drive the hydraulic cylinder clamping cam to rotate counterclockwise around the
pin. At the same time, the limit position pin of the cam, part No.17, will also drive the
self-weight driving cam, part No.8, to rotate in the same direction. As a result, the inner
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wall of the pile is released by the cams. The main lug (part No.1) will rotate to the initial
position. Then, tensile force is applied at the main lug. The initial position of the main lug
is also the center of gravity of the lifting tool, so the lifting tool can be removed easily.
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The structure of the lifting tool was designed to increase the clamping force. The
length of the link and the position of the pin were calculated to satisfy the law of leverage.
During the process of the lifting operation, the clamping force provided by the lifting tool
to the inner wall of the pile is almost 6 times the gravity of the pile, which ensures that the
lifting tool is reliable in practical engineering applications. The force of the clamping part
of the lifting tool is shown in Figure 9.
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The tensile force provided by the crane is denoted F′g. The direction of the applied force
F′g is vertical upward. The clamping force, denoted as N, is a combination of the clamping
force provided by the hydraulic cylinder, Nh, and that provided by the self-weight driving
cam, Ng.

As shown in Figure 9, the degree of freedom of the clamping mechanism is 1. The
angle between the main lug and the horizontal line is α. The angle between the main lug
and the stretch-out and draw-back pole is β.

The angle between the piston rod of the hydraulic cylinder and the axis of the cam is θ.
The angle between the telescopic pole and the axis of the self-weight driving cam is γ. The
arms of force are L1, L2, L3, and L4. The equilibrium of the mechanism can be expressed
in Equation (1).

Fg · cos α · L1 = F1 · sin β · L2
F1 · sin γ · L3 = Ng · L4
Fh · sin θ · L3 = Nh · L4

(1)

The clamping force can be expressed as Equation (2), based on Equation (1).

Nh = Fh ·sin θ·L3
L4

Ng =
Fg ·cos α·sin γ·L1·L3

sin β·L2·L4

N = Nh + Ng

(2)

The force produced by the piston of the hydraulic cylinder is denoted as Fh. It was
found that the force of the hydraulic cylinder Nh relates to the angle θ and the arms ratio
L3/L4, and the force Ng provided by the self-weight driving cam relates to the angles α, γ,
β and the arms ratios L3/L4, L1/L2. From Equation (2), the relationship between Ng and α
can be expressed as Equation (3)

Ng =
FgL1L3 cos α

√
4L2

3L2
AC + x2 − L2

3 − L2
AC

2L2L4LAC sin(π − arccos( x2+L2
AC−L2

3
2xLAC

) + arccos( x2+L2
2−L2

5
2xL2

))
(3)

where x is equal to L6, and it can be calculated to be
√

L2
2 + L2

5 − 2L2L5 cos(π − α0 − α).
At the beginning of the clamping operation, the geometric parameters of the lifting

tool can be expressed as follows: α = 70◦, β = 75◦, γ = 70◦, θ = 63◦, L1 = 610 mm,
L2 = 115 mm, L3 = 125 mm, L4 = 35 mm. By substituting all these parameters into
Equation (3), Nh and Ng can be calculated. After the calculation, the relationships of Nh
with Fh and Ng with Fg can be expressed: Nh = 3.18Fh, Ng = 6.3Fg. This shows that the
clamping tool meets the requirements concerning frictional force, and the hydraulic cylinder
helps to increase the clamping force. The parameters of the mechanism change when the
whole pile is completely lifted up. These new parameters are as follows: α = 0◦, β = 130◦,
γ = 130◦, θ = 118◦. After the recalculation, the result was Nh = 3.15Fh, Ng = 18.9Fg, with
the clamping force produced by self-weight becoming three times the initial clamping force,
which further ensures the safety of the operation.

In order to further study the reliability of the lifting tool, a dynamic simulation of the
lifting process was carried out in the ADAMS environment. The result of the simulation is
shown in Figure 10a–d.

In Figure 10a, the cam of the hydraulic cylinder clamps but does not lift the pile.
In Figure 10b, with the pile lifted and clamped by the cam of the hydraulic cylinder, the
clamping force provided by the self-weight driving cam increases with increasing lifted
angle of the pile. In Figure 10c, when the pile is vertical to the ground, the clamping force
of the self-weight driving cam reaches the maximum value. In Figure 10d, the pile is
completely lifted up. In the simulation, the lifting tool reached the expectation of hoisting
the pile, which shows that the design of the lifting tool was successful.
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The software used can measure the force between the clamping cam of the hydraulic
cylinder and the inner wall of the pile and that between the self-weight driving cam and
the pile. The result is shown in Figure 11.

In Figure 11, the red curve represents the change, over time, in the force between
the clamping cam of the hydraulic cylinder and the inner wall of the pile. At the seventh
second, the clamping cam of the hydraulic cylinder came into contact with the surface
of the inner wall of the pile; thus, a clamping force appeared. With the movement of the
piston, the clamping force between the cam of hydraulic cylinder and the inner wall of the
pile increased and reached its maximum of 2.89× 105 N at the tenth second. Compared to
the gravity of the pile, the clamping force was 2.89 times bigger than the gravity, which
matches with the analysis introduced before. In the whole lifting process, the clamping
force was in the range of [1.33× 105 N, 2.20× 105 N]. The blue curve shows the trend of the
force between the self-weight driving cam and the pile. In this level, the self-weight driving
cam began to work, and the total clamping force started to increase again. The maximum
value of clamping force provided by the self-weight driving cam was 9.21× 105 N.

The total clamping force consists of the clamping force from the clamping cam of the
hydraulic cylinder and the force from the self-weight driving cam. The change in the total
force over time is shown in Figure 12.
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In Figure 12, the green curve represents the total clamping force. In the time range of
[0 s, 7 s], the total clamping force was 0 N, which means that neither of the cams worked. In
the time range of [7 s, 10 s], the clamping cam of the hydraulic cylinder began to work, and
the clamping force increased to 2.89× 105 N. In the time range of [10 s, 20 s], the clamping
force was in the range of [1.33× 105 N, 2.20× 105 N], which means that the clamping cam
of the hydraulic cylinder was working, while the self-weight driving cam did not work.
After 20 s, the clamping force continued to increase, which shows that the self-weight
driving cam was clamping the pile. When the clamping force reached the maximum value,
the lifting tool had lifted up the pile completely.
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Based on the analysis and simulation mentioned above, the designed lifting tool can
reliably fulfill the task and meet the engineering requirements.

4. Prototype Experiment of the Clamp Tool

A prototype machine of the lifting tool was manufactured to test the reliability of the
lifting tool. The machine is shown in Figure 13. The prototype machine was manufactured
in a 1:5 reduction ratio to the lifting tool applied in the engineering projection. The diameter
of the pile foundation in the experiment was 1219.2 mm (48 inches), the thickness of the
inner wall of the pile was in the range of 20~25 mm, and the weight of the pile was 5 t. The
material of the pile was Q235b; the process of the experiment is shown in Figure 14a–d.
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Figure 13. The prototype of the lifting tool.

The experiment consisted of placing the lifting tool, lifting the pile, fully hoisting the
pile, and removing the lifting tool. The lifting tool was installed at the end part of the pile
by the crane applying tensile force on the secondary lug. Then, the rod of the clamping
hydraulic cylinder pulled the cam to clamp the inner wall of the pile, as shown in Figure 14a.

The working position of the crane to the main lug was changed and tensile force
was applied to lift up the pile, as shown in Figure 14b. The gravity of the pile pulled
the self-weight driving cam to rotate in order to clamp the pile through the transmission
mechanism. Thus, the force provided by the clamping cam of the hydraulic cylinder and
the self-weight driving cam lifted up the pile.
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Figure 14. The process of the prototype machine. (a) Unload the hydraulic cylinder and place the
lifting tool (b) Lift the pipe. (c) Hang the steel pipe (d) Remove the lifting tool.

When the axis of the pile was vertical to the ground, as shown in Figure 14c, the
clamping force provided by the self-weight driving cam reached the maximum value, and
the clamping teeth of the lifting tool were embedded in the pile to increase the clamping
force. As a result, the pile foundation was completely hoisted above the ground.

When the pile was moved to the expected position, the rod of the clamping hydraulic
cylinder was moved back. At the same time, both the clamping cam of the hydraulic
cylinder and the self-weight driving cam rotated to the initial position. The lifting tool did
not come into contact with the inner wall of the lifting tool. Tensile force was applied at the
main lug, and the lifting tool could be removed easily, as shown in Figure 14d.

During the experiment, the lifting tool reliably finished the hoisting task. Strong,
flexible, and convenient, the lifting tool has great value in engineering applications.

5. Conclusions

In this paper, a cam-type lifting tool was designed to complete the operation of car-
rying the mono-piles of turbines. The lifting tool makes use of a hydraulic cylinder and
the gravity of the mono-pile to hoist the pile foundation. The design was verified to be
feasible through static analysis and dynamic simulation via ADAMS. After an experiment
with a prototype machine, the design was proved to be reliable in practical engineering
applications. With this lifting tool, the pile foundation can be lifted, moved, put in place, and
automatically unlocked without interruption. Compared with cable hoisting, it can shorten
the construction period, thereby reducing the required number of workers. In addition, this
lifting tool can reduce the time taken to install pile foundations, advancing the grouting
operation and reducing the whole construction time, so construction costs can be reduced.
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