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Abstract: This paper systematically summarized the technical state of art and research results on
the motion error of a linear guideway, corrected some misconceptions, and further clarified the
relationship between the straightness error of the guide rail itself and the motion error of the linear
stage. Moreover, a new method based on parallel mechanism is provided to study the motion errors
of the linear guide pair. The basic idea is to abstract the structural relationship between the stage and
the guide rail into a 4-bar parallel mechanism. Thus, the stage can be considered as a moving platform
in the parallel mechanism. Its motion error analysis is also transferred to moving platform position
analysis in the parallel mechanism. The straightness motion error and angular motion error of the
stage can be analyzed simultaneously by using the theory of parallel mechanism. Some experiments
were conducted on the linear guideway of a self-developed parallel coordinate measuring machine.
The experimental data and analysis verify the feasibility and correctness of this method.

Keywords: motion straightness error; angular motion error; parallel mechanism

1. Introduction

The linear guide pair is widely used in machine tools, precision instruments, and
other precision equipment. A normal serial type three-axis NC machine tool is constructed
in three linear stages to provide motions in the X, Y, and Z directions. The traditional
coordinate measuring machine is built with similar structures. However, each axis contains
several geometric errors caused by manufacturing errors of the parts and assembly errors
of the stages. Combining this with the problem of motion errors of guideways encountered
in our development of a parallel coordinate measuring machine, we intend to elaborate and
share knowledge and understanding about this issue with our predecessors and colleagues.

1.1. Cognition about Motion Errors of Linear Guide Pair

The linear motion stage suffers from various errors, such as manufacturing error,
assembly error, and errors induced by force. Therefore, 5-DOF additional and unexpected
error motion will appear on the stage, as shown in Figure 1. According to ISO 230-1:2012 [1],
such geometric errors include three angular motion errors (ECX, EBX, and EAX) and two
straightness motion errors, EYX and EZX. However, in many Chinese studies, these errors
are translated into “guide motion error”. The expression is not accurate; although it is
related to the straightness manufacturing error of the rail itself, the guide rail itself is static,
and this error is generated on the stage during its movement. Therefore, this error should
be referred to as the motion error of the guide pair in Chinese studies [2,3].

The straightness motion error of the stage is closely related to the straightness error
of the guide rail itself. Therefore, some confusion arises between these two concepts. The
straightness error of the guide rail itself is a form error, which needs to be calculated
and evaluated after measurement. It has a definite shape of tolerance zone, whereas the
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straightness motion error reflects the deviation of the stage from the ideal axis in its motion,
which is not a form error and does not need to be evaluated. To obtain this deviation,
we study many measurement methods and error separation techniques to improve the
accuracy of machine tools or instruments by error compensation.

Figure 1. 6-DOF geometric errors of a linear moving stage.

The straightness motion error of the linear stage is closely related to the straightness
error of the guide rail itself, but these errors are different in that the guide rail straightness
error is a cause, whereas the straightness motion error is an effect. Furthermore, the
assembly errors, the stiffness of the base, the deformation, and the load on the stage also
influenced the effect. This issue has attracted the attention of many scholars around the
world, who have conducted extensive research and achieved many valuable results [4–7].

1.2. Summary of the Relationship between Slider Motion Error and Angular Motion Error

We study angular motion error because this type of error will produce an Abbe error
and transmit it to the instrument or machine tool. Angular motion error is the root of the
Abbe error. The Abbe principle was published in 1890. It gives us the design idea and
principle needed to superficially improve the accuracy of the instrument. In essence, the
influence of the angular motion error of the stage on the measurement results is eliminated
through structural design [8]. In 1979, Bryan updated the Abbe principle conception. He
qualitatively expanded the relationship between the slider motion error, the angular motion
error, and the straightness error of the guide rail itself. A more important contribution is
that the Abbe principle was extended to the straightness motion error of the linear stage [9].
In other words, when we deal with or analyze the error of an instrument or machine tool,
the straightness motion error corresponds to Bryan’s proposal, while the angular motion
error corresponds to the traditional Abbe principle [10].

In many articles, the straightness motion error of the stage is expressed as the in-
tegration of angular motion error, or the rotational errors can be obtained reversely by
differentiating straightness errors [11–13]. A high correlation seems to be emphasized
between the straightness motion error and the angular motion error. Conversely, some
researchers treat them as mutually independent [14,15]. Ekinci depicted the relationship
among straightness motion error, angular motion error, and geometric error of the guider
itself, as shown in Figure 2. In this concept, only one guider rail exists, and the carriage
is supported by two linear blocks, which are abstracted as two small wheels separated
by distance L. The carriage moves on a guide rail with a geometric ∆z(x). Therefore, the
straightness motion error δz(x) in the Z direction and the angular pitch error α(x) can be
described as  α(x) =

∆(x+ L
2 )−∆(x− L

2 )
L

δz(x) =
∆(x+ L

2 )+∆(x− L
2 )

2

(1)
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Figure 2. Stage-rails configuration.

Ekinci also provided a detailed analysis of this viewpoint. The accuracy of the calcu-
lation of the straightness deviation integrals from the rotation deviation depends on the
ratio between the length of the guide and the wavelength deviation in the rail [13]. Majda
presented a new approach to modeling geometric errors of linear guideways for machine
tools. This approach was applied by interpreting the results of experimental examinations
of angular kinematic errors obtained for a real machine tool. The paper originally aimed
to verify the usefulness of the concept of calculating kinematic straightness errors from
angular errors, but the conclusion is that no close relationship was found between the two
types of error. Moreover, straightness and angular errors on machine tools or instruments
should be treated as independent of each other [16].

In general, a great straightness error of the rail corresponds to a great straightness
motion error and angular motion error of the stage. However, no direct functional rela-
tionship exists between them. When we measure and evaluate the straightness error of
the guide rail by using an autocollimator or spirit level, we measure the angle error first
and then convert it into displacement to construct the straightness error curve. The data
processing involves accumulation and integration. This approach is the measurement
method and mathematical means for evaluating the straightness error of the guide rail
itself. This idea does not mean that a similar mathematical causality relationship exists
between the straightness motion error and the angular motion error of the stage.

2. New Idea about Analysis of Linear Motion Error

Generally, the motion error analysis of stage is based on rigid body motion and pure
geometry without considering the elasticity, stress, and deformation of involved parts in
their motion. Thus, the analysis is not conducted according to the actual assembly and
working conditions of the stage. If the straightness error of the guide rail itself or the
manufacturing error of the related parts is large, then the intuitive phenomenon is that
the stage will not move smoothly, or is even stuck, because of the increase in friction and
motion resistance. When increasing the magnitude of interference between the components
or generating additional elastic deformations in the relevant parts to tolerate this error,
all these behaviors maintain the stage action. However, they increase friction and bring
about inevitable slider motion errors. On the basis of force and moment equilibrium, and
considering the deformation of the involved parts, many scholars have conducted research
on the straightness error motion of the linear stage. Representative achievements are as
follows.

Majda presented a new approach to modeling the geometric errors of linear guide-
ways for machine tools, taking into consideration the strains of the table due to guideway
geometric errors. This approach was used to interpret the results of experimental ex-
aminations of angular kinematic errors obtained for a real machine tool [17]. Ohta et al.
presented a flexible model that considers the flexibility of the table and rail. The calculated
vertical stiffness of linear bearing using this model more closely matches the measured
stiffness [18].

The easiest way to analyze the 5-DOF motion errors is to apply finite element analysis
to the entire stage under equilibrium conditions for the forces and moments. However, the
model becomes cumbersome and complex for 5-DOF and is difficult to apply to various
types of stages. Korean scholars also made contributions to this issue. They proposed
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a transfer function method to describe the characteristics of the linear motion bearing,
which represents the bearing force variation of a bearing block with respect to the spatial
frequency components of the rail form error. The transfer function can be used positively to
predict the motion error of a table with multiple bearing blocks, in which the bearing forces
are derived from the rail form error by using the transfer function [19,20]. The algorithm
can also be used reversely to estimate the rail form error after assembly on the reference
surface from the measured linear and angular motion errors [21]. Fan et al. proposed a
kinematic errors prediction method for the machine tool’s guideways based on tolerance by
formulating the relationship between tolerance and geometric profile errors of guideways
on the machine tools. This method is convenient for engineers to derive the distribution of
kinematic errors in their design [22]

The issue now is if we can consider the actual situation and use new ideas or theories
to analyze and discuss the motion errors of the stage. During the research and development
of parallel coordinate measuring machines, we found that many parallel mechanisms only
have numerical solutions and cannot obtain analytical solutions. The essence of numerical
solutions is to keep approaching, iterating, and then achieving convergence. In real parallel
mechanism motion, the position of the moving platform is determined by the plurality
of bars in common. In this process, mechanical tensile, compression, torsion, and elastic
deformation of involved parts occur. When a certain position can achieve a balance among
these factors, then this position is the actual position that the moving platform reaches.
This process is mathematically reflected by iteration and convergence. A similar process
exists in the actual motion of rail pairs [23,24].

In addition, due to 5-DOF additional and unexpected error motions of the stage on
the linear guide pair, the corresponding angular motion errors and straightness motion
errors are generated, as shown in Figure 1. In the motion of the parallel mechanism, the
moving platform also moves, with multi-DOF. The multi-DOF of real motions between
them is similar. According to the linear guide pairs, the stage rides on two rails by four
linear blocks. Its error motion is influenced and determined by the four linear blocks. In
parallel mechanism, the position of the moving platform is also determined by the multiple
branch chains, which is similar to the stage with four linear blocks.

Therefore, we attempt to abstract the structure relation of the stage and rail as a
four-bar parallel mechanism. Then, the stage can be considered as a moving platform in
the parallel mechanism. Its motion error analysis is also transferred to moving platform
position analysis in the parallel mechanism.

3. Modeling of Stage Motion Error

For convenience of analysis, only the straightness error of the rail itself in the Z
direction will be discussed without consideration of its straightness error in the Y direction,
as Figure 3a shows. The stage rides on two rails by four linear blocks. Here, the matched
pairs of blocks and rail can be simplified as a 2-RPS-2-SPS parallel mechanism, as shown in
Figure 3b. The RPS branched chain consists of a revolute pair, prismatic pair and spherical
joint. The SPS branched chain consists of a spherical joint, prismatic pair and spherical
joint. The linear deviation of the rail in the Z direction is considered as the variation in rod
length in the parallel mechanism.

According to the modified Kutzhach–Grubler formula of degree of freedom, the
degree of freedom of the 2-RPS-2-SPS parallel mechanism can be obtained

M = 6(n− g− 1) +
g

∑
i = 1

fi − ε = 6(10− 12− 1) + 24− 2 = 4 (2)

where M is the degree of freedom of the mechanism, n is the total number of components,
g is the number of motion pairs, fi is the degree of freedom of the i-th motion pair. There is
a local degree of freedom of rotating around its axis between the two ball hinges at the SPS
branch chain, and local degree of freedom ε = 2. The 2-RPS branch chains and 2-SPS branch
chains are set along the X-axis, respectively, presenting a partial symmetrical structure that
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means parallel mechanism has four degrees of freedom including α(x) rotation around the
Y-axis, β(x) around the X-axis (we usually refer to them as pitch and roll), and the δz(x) and
δx(x) movements along the Z and X-axes shown in Figure 3b.

Figure 3. (a) Moving error model of guideway, (b) simplified parallel mechanism model.

From the perspective of parallel mechanism, the base plane where the two rails sit is
the static platform. The stage can be taken as a moving platform. They are connected by
two RPS branch chains and two SPS branch chains. The linear deviation of the rail in the Z
direction is considered as the variation in the length of branch chains in the 2-RPS-2-SPS
parallel mechanism, L1–L4 are the length of the branch chain shown in Figure 3b [25].

Taking the joint center point B1 on the moving platform as the coordinate origin,
the moving coordinate system O-XYZ is established and the XOY plane is parallel to the
installation plane of the two guide rails. The static coordinate system o-xoy is established
by taking the joint center point b1 in each pose as the coordinate origin. The xoy plane is
also parallel to the installation plane of the two guide rails.

bi = (bxi, byi, bzi)T is the coordinate vector of the joint center point in the static coordinate
system o-xyz; Bi = (BXi, BYi, BZi)T represents the coordinate vector of each joint center point
at the moving platform in the moving coordinate system O-XYZ, and X = (xp, yp, zp)T is
the coordinate vector of the origin point of the moving coordinate system in the static
coordinate system. The coordinates of every joint center points are shown in Table 1, i = 1, 2,
3, 4. a = 140 mm, b = 100 mm in the self-developed parallel coordinate measuring machine.

Table 1. Position of joint.

Branch i
Centers of Joint bi Centers of Joint Bi

bxi byi bzi BXi BYi BZi

1 0 0 0 0 0 0
2 0 −b 0 0 −b 0
3 a −b 0 a −b 0
4 a 0 0 a 0 0

Since this parallel mechanism did not consider the rotation around the Z-axis, the
pose transformation matrix R can be simplified as

R =

 cos β(x) sin α(x) sin β(x) cos α(x) sin β(x)
0 cos α(x) − sin α(x)

− sin β(x) sin α(x) cos β(x) cos α(x) cos β(x)

 (3)
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Therefore, by coordinate transformation, the vector Bi on the moving platform is
transformed into the static coordinate system o-xyz, which can be expressed as Ci

Ci = RBi + X (4)

Length vector Li can be expressed as

Li = RBi + X− bi (5)

where li= (lix, liy, liz)T, and the length of the top and lower joint of branched chain li is

Li = |li| =
√

lix2 + liy2 + liz2 (6)

Since this parallel mechanism did not consider the translational motion in the the Y-
axis, yp = 0, substituting the coordinate values of each joint into Equation (6), the following
formula can be obtained

L2
1 = (xp)

2 + (zp)
2

L2
2 =

[
xp − b sin α(x) sin β(x)

]
)2 + [−b cos α(x) + b]2

+
[
zp − b sin α(x) cos β(x)

]2
L2

3 =
[
xp + a cos β(x)− b sin α(x) sin β(x)− a

]2
+ [−b cos α(x) + b]2

+
[
zp − a sin β(x)− b sin α(x) cos β(x)

]2
L2

4 =
[
xp + a cos β(x)− a

]2
+
[
zp − a sin β(x)

]2
(7)

After the parallel mechanism structure parameters are identified, the length of the
branch chain contains all the information about the pose and position. Thus, on the basis of
the length change in the rod, the original position is selected to obtain the inverse motion
position variables. Then, the length of rod numerical in different pose and position are
integrated into the forward solution model of the parallel mechanism, and the fsolve
function in MATLAB is used to iterate the nonlinear function groups to gradually approach
the real length of the rod. First, the original position of the moving platform is assumed as
(xp0, zp0, α0, β0). Through the analysis of inverse kinematics position, the posture of rod
length Li

1 is obtained. The length of the rod is as Li, and the difference between Li
1 and Li

is ∆Li
1 = Li − Li

1. Li is the position variable function (xp, zp, α, β) of the moving platform.
It can be obtained as

∆L(1)
1

∆L(1)
2

∆L(1)
3

∆L(1)
4

×


∂L1
∂x

∂L1
∂z

∂L1
∂α

∂L1
∂β

∂L2
∂x

∂L2
∂z

∂L2
∂α

∂L2
∂β

∂L3
∂x

∂L3
∂z

∂L3
∂α

∂L3
∂β

∂L4
∂x

∂L4
∂z

∂L4
∂α

∂L4
∂β

 =


∆x(1)p

∆z(1)p
∆α(1)

∆β(1)

 (8)

where ∆Li
(1) is the first-time length-modified increment, and (∆xp

(1), ∆zp
(1), ∆α(1), ∆β(1))T

is the position-fixed increment for the first time. The first fixed position of the moving
platform can be rewritten as(

xp1, zp1, α1, β1
)T

=
(

xp0 + ∆x(1)p , zp0 + ∆z(1)p , α + ∆α(1), β + ∆β(1)
)T (9)

Then, the first-time fixed position of the moving platform is taken as the initial value
to iterate again, with the process repeated n times until the expected accuracy is reached.
The position (xpn, zpn, αn, βn)T, at this point, is the actual position under the length of rod
Li and is also the expected result.
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4. Experiment and Data Analysis

Figure 4 shows the straightness of two long rails (2000 mm) in the Z direction is
measured on a self-developed 3-PUU parallel CMM by using the traditional autocollimator.
The experiment was carried out at a temperature of 20± 1 ◦C. The autocollimator (model: JJ-
99 from Jingda Measurement Technology Co. Ltd. Jiujiang, China) is used. The measuring
range is ±10 s and the resolution is 0.1 s. The straightness error curves of the two rails after
the original data processing are shown in Figure 5 [26].

Figure 4. Measurement of straightness of two rails.

Figure 5. Straightness error in Z direction of two rails.

In accordance with the above straightness error of two rails in Figure 5, the least
square method is used to fit the straightness deviation equation for the two rails in the Z
direction along the X-axis [26]

z1 = −1.349× 10−13x4 + 4.192× 10−10x3

−2.975× 10−7x2 + 0.015× 10−3x + 2.352× 10−3

z2 = −9.965× 10−14x4 + 3.216× 10−10x3

−2.495× 10−7x2 + 0.041× 10−3x− 0.711× 10−3

(10)

Thirteen center positions of the stage are selected for simulation calculation with 150
mm spacing, x = 75, 225, 375, 450, · · · 525, · · · 1875. With the use of Equation (8), values of
straightness on four points b1, b2, b3, b4 can be obtained, taking them as the variation in rod
length into the above model of the parallel mechanism. The iteration results obtained by
using the fsolve function in MATLAB are shown in Table 2 [26].
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Table 2. Stage position and orientation.

No. X0 (mm) ∆X (µm) δz(x) (µm) Pitch β(x) (”) Roll α(x) (”)

1 75 0.24 0 1.83 2.52
2 225 −3.88 −6.00 −4.32 2.84
3 375 −3.02 −11.11 −9.39 2.06
4 450 2.16 −18.66 2.86 0.00
5 600 4.00 −4.01 −17.79 1.54
6 750 −1.93 −17.58 3.51 0.01
7 900 −8.75 0.91 7.15 −1.75
8 1050 −16.56 23.32 11.49 −1.32
9 1200 −26.78 53.65 11.38 −0.58
10 1350 −14.10 83.77 13.27 0.11
11 1575 −19.34 90.87 5.38 3.90
12 1725 −0.98 91.88 −9.61 2.13
13 1875 1.30 81.11 −10.40 2.79

In the third column of Table 2, the value of ∆X is the additional motion error in the X
direction caused by the straightness error of the guide rail. This result is different from EXX
Figure 1, which is generally called the positioning error along the moving axis. Generally,
we always consider that the positioning error is mainly determined by the driving system
and controlling system. Here, we found that the straightness error of rails will also provide
an additional motion error to the X-axis and contribute to the total position error δx(x).

The fourth column in Table 2 shows the calculation result of δz(x); its variation curve
is shown by the red line in Figure 6. The black curve in Figure 6 is the straightness
motion error of the center on the stage in the Z direction, measured directly by the laser
interferometer (model: XL80 from Renishaw Co. Ltd. London, UK); the experiment was
carried out at the temperature of 20 ± 1 ◦C [27]. By comparing the two curves, we can
see that the two curves basically coincide, which means the above analysis is a feasible
method.

Figure 6. Results comparison of δz(x).

We also compare the calculated pitch angle in the fifth column with the actual pitch
error measured by the autocollimator. The comparison results are shown in Figure 7, and
their variation tendency is similar. The data of the roll angle were not compared because
measuring the roll angle by using the autocollimator is inconvenient. We will continue this
work in the near future.
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Figure 7. Results comparison of pitch β(x).

5. Conclusions

This paper analyzes the causal relationship between the straightness error of the
guide rail and the motion error of the stage. It also clarifies the correlation between the
straightness motion error and the angular motion error. On the basis of the theory of parallel
mechanism, a method for simultaneous analysis of straightness and angular motion errors
in stage is presented. The core of this method is to transform the problem of stage motion
error into finding the correct solution of the parallel mechanism with a variable rod length.
The corresponding theoretical calculation model is established. The comparison between
theoretical calculation results and experimental data proves the validity of this method,
thereby providing a new method for analyzing the motion error of guideway pairs.
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