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Abstract: Drill ships and offshore rigs use azimuth thrusters for propulsion, maneuvering and
steering, attitude control and dynamic positioning activities. The versatile operating modes and
the challenging marine environment create demand for flexible and practical condition monitoring
solutions onboard. This study introduces a condition monitoring algorithm using acceleration and
shaft speed data to detect anomalies that give information on the defects in the driveline components
of the thrusters. Statistical features of vibration are predicted with linear regression models and the
residuals are then monitored relative to multivariate normal distributions. The method includes an
automated shaft speed selection approach that identifies the normal distributed operational areas
from the training data based on the residuals. During monitoring, the squared Mahalanobis distance
to the identified distributions is calculated in the defined shaft speed ranges, providing information
on the thruster condition. The performance of the method was validated based on data from two
operating thrusters and compared with reference classifiers. The results suggest that the method
could detect changes in the condition of the thrusters during online monitoring. Moreover, it had
high accuracy in the bearing condition related binary classification tests. In conclusion, the algorithm
has practical properties that exhibit suitability for online application.

Keywords: anomaly detection; azimuth thruster; classification; feature extraction; linear regression;
multivariate normal distribution; noisy data; vibration

1. Introduction

Azimuth thrusters are used for propulsion systems and dynamic positioning (DP)
of offshore platforms and vessels. In a drill ship, the thrusters are used to maintain the
ship position by counteracting environmental forces, such as wind, waves and current, but
also for propulsion in transit from site to site. The environmental forces, the impacts with
external objects like ice blocks, propeller operation, the pulsation from prime movers and
accessory systems together inflict complex vibrations and stress to the system [1]. Over the
long haul, the stress caused by the harsh environment may lead to fatigue, fracture and
tribological issues in the system [2,3]. This inflicts damage to gears and bearings, but also
other types of issues, such as propeller failures emerge [4].

The measurement technology for the condition monitoring (CM) of the azimuth
thrusters must be economically viable, maintenance-free and reliable due to the closed and
inaccessible construction. Therefore, the driveline components, such as the rolling element
bearings and gears, are commonly monitored with the well-established indirect methods,
such as piezoelectric accelerometers or oil condition and wear debris sensors [5].

Although the vibration responses of propulsion shafts are studied regularly based
on laboratory experiments and simulations [1,6], the literature on the practical condition
monitoring of azimuth thrusters is rare [2,3]. At the same time, the CM methods for
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wind turbines, which also experience excessive loads and system oscillations, are studied
extensively [7], and the technology could provide useful benchmarks for the thruster
monitoring as well.

It is still an industry standard to have a human in the loop when analyzing acceleration
sensor data from the noisy marine environment. The common cloud-based approach is
limited by the slow data transfer over an offshore satellite network, whereas the fully
algorithmic approach enables the analysis on the edge, i.e., locally onboard the offshore
vessel. On the edge, the size of the data set can be much larger, enabling the use of
data-hungry methods. However, it is possible that the future generations of wireless
technologies provide more efficient solutions to data transfer.

Currently, a large part of CM approaches that strive for some level of automation
utilize the machine learning methodology, such as the classification approach [8,9]. The
research in this field is commonly realized with idealized laboratory experiments, where
high accuracies can be reached, as was inferred in [9]. There, the models are typically
trained with data from a limited number of operational states, and then tested with samples
from the same states. On the contrary, industrial machines may operate in a multitude of
operational states rather than a few exclusively. The entire operating area may be so wide
that the data used for model training include only a part of the operational states that are
possible in practice. New data collected from an operating azimuth thruster, for example,
may represent a new operational state influenced by various factors, such as the varying
shaft speed and steering angle in the thruster, changing vessel speed and other external
factors. This variation is a challenge to the models trained with incomplete information
on the actual operation of the system. A model fitted accurately based on few scattered
operational states may not correctly recognize new samples which are different from the
training samples [10]. Furthermore, the relatively low incidence of faults in industrial
machines hinders the proper training of classifiers for the practical applications [11,12].

The condition monitoring of azimuth thrusters could be done based on anomaly detec-
tion algorithms [3,12,13] that require training data from the typical operation of the system
in a condition without failures. The anomaly detection based on squared Mahalanobis
distance [14] particularly has gained a broad interest in condition monitoring [13,15] in-
cluding wind turbine monitoring applications [16,17]. The major motivation for its use
originates from the simplicity and computational efficiency, but on the other hand, it has
been reported that the lack of normal distribution in training data, correlated input features,
inappropriate threshold limits and environmental variability are some major challenging
issues and limitations for the practical application of this method [18,19]. Evidently, this
generates specific challenges to the selection of input data for the method which is the
major issue highlighted in this research study.

The main contribution of this study is the introduction of the probabilistic condition
monitoring algorithm for azimuth thrusters with a semi-automated identification pro-
cedure. The data selection challenges discussed above are managed by proposing new
solutions to the data processing sequence. Firstly, the disturbed samples are rejected in a
data quality control based on monitoring specific characteristics of the acquired acceleration
signals. Secondly, the normal distributed data for the squared Mahalanobis distance are
ensured by a sample selection procedure that includes a check for normal distribution
during model identification. There, the shaft speed values in varying ranges are used in
linear regression models to predict the values of vibration features and the residuals are
then checked in the hypothesis tests. Thirdly, the multicollinearity in the training data is
checked, which makes the identification procedure semi-automated, because the user must
replace the correlated features.

The online monitoring process in the algorithm is demonstrated based on real data
from two azimuth thrusters in an operating drill ship. Both data sets included a period with
an undamaged condition followed by evolving defects. The squared Mahalanobis distance
is monitored based on single values and their moving median providing information on
the thruster condition. Moreover, the selection of threshold limits is studied based on
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classification tests and the monitoring performance is compared with several classifiers in
a binary classification task.

The remainder of the paper is organized as follows. The first part of Section 2 intro-
duces the azimuth thrusters, measurements, monitored components and the data. The
second part introduces the condition monitoring algorithm and the third part describes
the procedure used for the performance analysis in the classification tests. Section 3
demonstrates the application of the method, compares its diagnostic performance with the
classifiers, and discusses the findings and future directions. Finally, Section 4 concludes the
study.

2. Materials and Methods
2.1. Azimuth Thruster

Figure 1 shows an illustration of the azimuth thruster and its main parts. The thruster
rotates itself 360 degrees around its vertical axis, which provides flexibility and thrust in
every direction for the system. The thruster model type in this study is UUC 455 manufac-
tured by Kongsberg Maritime Finland Oy. These heavy-duty L-drive azimuth thrusters
are specifically designed for the dynamic positioning operation on offshore rigs and drill
ships. They have Maximum Continuous Rating (MCR) 5.2–5.5 MW, input speed up to
720–750 rpm and propeller diameter 4.1 m. An ensemble of several thrusters (six typically)
is usually mounted underneath a vessel, such as a drill ship.
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Figure 1. Illustration of azimuth thruster and its main components with approximate placement of
accelerometer utilized in this study.

2.1.1. Measurements

Piezoelectric accelerometers (stud-mounted, 0.5–8000 Hz frequency response with
±3 dB deviation) were used to measure vibration on different positions in the thrusters,
but only the data from the “pinion shaft gear end” position are considered here. The data
were collected into separate samples, where the length of times series was fixed to 4096
points. The sampling rate in data acquisition varied based on the rotational speed of the
shaft, and here it was typically 1.5 or 3 kHz, resulting in a varying running time in the
separate samples. The rotational speed was taken from the beginning of the time series
recording by using an inductive sensor, and in this study, it is assumed that the speed
was then constant during the rest of the recording. The data were transferred to a data
store typically once a day or more frequently during the alarm situations detected by the
monitoring system onboard.



Machines 2021, 9, 39 4 of 27

2.1.2. Monitored Components

As was mentioned in Section 1, the commonly damaged components include bearings
and gears. In this study, the monitoring is focused on the pinion shaft support bearing and
the gear system consisting of pinion and wheel gears, which are located near the selected
sensor, as presented in Figure 1. In order to identify the response from different components
in the multicomponent system, it is important to identify the frequency components in
the signals. The mathematical relationships between the kinematic properties of rotating
components and frequency content are well documented, in bearings, for example in [20].
The frequencies of interest in this study are therefore summarized in Table 1 and they
include:

• Ball Pass Frequency, Inner race (BPFI),
• Ball Pass Frequency, Outer race (BPFO),
• Ball (roller) Spin Frequency (BSF),
• Fundamental Train Frequency–cage speed (FTF), and
• Gear Mesh Frequency (GMF).

Table 1. Kinematic frequencies (Hz) related to 60 rpm shaft speed.

BPFI BPFO BSF FTF GMF

10.8435 8.1565 3.3667 0.4293 13

2.1.3. Data Selection

The data sets in this study come from two thrusters that are named as thruster 1 and
thruster 2. The data set of thruster 1 is collected from a 515-day period, whereas the data
set of thruster 2 covers 466 days. ISO certified vibration analysts from the manufacturer
analyzed the data sets and labeled the condition of the thrusters in monitoring reports
covering different periods of operation. In addition, both thrusters were videoscope
inspected, verifying damage in the components. The thrusters had inner race defect in the
monitored bearing and the pinion and wheel gears had visible wear on contact surfaces.
The data from the operation labeled as fault-free were used to train the algorithm. The
identification data of thruster 1 consisted of a 150-day period with 207 samples. For thruster
2, a 101-day period with 162 samples was selected.

2.2. Condition Monitoring Algorithm

The algorithm consists of separate identification and monitoring procedures, which
are illustrated in the flowcharts in Figure 2. The algorithm uses acceleration signals from
selected measurement positions with the associated sampling rate and rotational speed
of the shaft. The parameters used by the algorithm include user-defined and system-
specific parameters and parameters identified from the training data. The parameters are
summarized in Table 2 and explored more in the following sections.

Sections 2.2.1–2.2.7 clarify the different processing stages of the algorithm. Section 2.2.1
introduces the quality control of acceleration signals. The challenges of feature selection
and the choices made in this study are discussed in Section 2.2.2. Section 2.2.3 focuses on
the residual calculation based on the linear regression models. Section 2.2.4 introduces
the method for the selection of shaft speed based on the checks of normal distribution
by using the automated procedure. Section 2.2.5 introduces the multicollinearity check,
which is shown in Figure 2 as the only decision block in the system identification part. The
probabilistic model whose parameters are identified in the model identification process is
discussed in Section 2.2.6. Finally, the probabilistic monitoring with squared Mahalanobis
distance in the inference process is presented in Section 2.2.7. The inference process
estimates if the system is operating in the expected condition or in a changed condition,
based on the model defined in the identification stage.
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Table 2. Parameters used in different processes in the condition monitoring algorithm.

Process Parameter(s) Example Value

Quality control
(QC parameters)

range limit (g), (1 g ≈ 9.81 m/s2) 0.5
absolute mean limit (g) 2

Feature extraction
(System parameters)

kinematic frequencies -
sampling rate -

Inference
(Model parameters)

α: probabilistic threshold 0.001
n: moving window size 5

β0, β1, µ, σ, Σ: regression models, normal distributions -

Speed range selection minimum sample size 60

Filter sample speed range -

2.2.1. Data Quality Control

In data quality control, the acceleration signals are discarded if their quality is inappro-
priate for automated condition monitoring. The signals may become adversely affected by
the movements of the vessel, by the maneuvering of the thruster or by other disturbances in
the measurement system. The disturbed signals are not accepted in condition monitoring
and must be identified based on automated procedures. On the other hand, the rejection of
useful signals should be avoided.

Therefore, a sample is rejected due to the following reasons:

1. The range of moving average of the acceleration signal is greater than a predefined
limit.

2. The acceleration values are constant.
3. The absolute mean of the acceleration signal is greater than a predefined limit.

In this study, the range limit for the moving average was set 0.5 × 9.81 m/s2 (or 0.5 g)
in the moving windows of 100 data points. The window size should be relatively large
to avoid the rejection of signals with large impulses inflicted by defects. The limit for the
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absolute mean was set 2 g but a lower limit could be preferable in the practical application
with a lot of data. In the signal processing stages that follow quality control, the mean must
be subtracted from the accepted signals in order to obtain commensurable values in feature
extraction.

Figure 3 provides a demonstration of the quality control for three signals. The signal
shown on top was accepted based on all checks, whereas the signal in the middle was
rejected based on the range of moving average. The signal on the bottom was rejected
based on the range of moving average and absolute mean checks.
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2.2.2. Feature Extraction

The number of feature extraction methods proposed for the bearing diagnosis [21,22],
gear diagnosis [23] and other condition monitoring applications [24] is immense. The
methods are traditionally based on the time domain, frequency domain or time-frequency
domain processing [25], and more recently the techniques of feature learning [9,26] and
cyclostationary analysis [27,28] have become popular in the scientific community. The
frequency domain methods are useful in the identification of the symptoms that appear
as regular impulses in the signals. On the other hand, the practical applications may
have irregular symptoms [29], which may be revealed only in the time domain analysis.
Furthermore, the time-frequency domain methods could be useful in the acceleration and
deceleration stages of the operation [30].

The features should have the capability to indicate the symptoms of defects individu-
ally or together. The symptoms can sometimes be enhanced with various signal processing
techniques [21,31] and the features that reveal changes together could be selected based on
some search algorithm [32] that optimizes the prediction accuracy. However, the computa-
tionally optimized signal processing parameters [33] and features [34] are prone to become
case-dependent to the data sets analyzed, and then, the selections may not be useful for
other data sets. In practical applications, the new data may reflect new symptoms which
are not known by the models trained [10,35].

The effects of the features on the selected model must be considered as well. For
example, features that correlate strongly with other selected features may bring uncertainty
to parameter estimation [36,37]. Such feature correlations are sometimes reduced based
on dimensionality reduction techniques, such as Principal Component Analysis [13,15],
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but the use of unnecessary features in the original input domain magnifies the uncertainty
of inference. Moreover, many of the features are sensitive not only to damage but also
to environmental and operational variations [19]. The separation of changes caused by
defects from other changes requires consideration.

Therefore, the use of expert information in the selection of input data for a condition
monitoring algorithm is essential. A good practice is to first select the features which
famously have the diagnostic relevance, and secondly, to use additional tests which confirm
their suitability to the selected modeling method (see Sections 2.2.4 and 2.2.5). In this study,
the monitoring was restricted to momentarily fixed rotational speed, i.e., the rotational
speed changes but is constant during the recording of one sample. Therefore, only the time
domain and frequency domain methods were considered. Based on the success in previous
practical applications [24], the generalized norms, their ratios and other statistical features
could provide an efficient solution to the feature extraction in time domain. Therefore, the
generalized norm [38], also named as lp norm

||x(α)||p =

(
1
N

N

∑
i=1

∣∣∣xi
(α)
∣∣∣p) 1

p

, (1)

was applied in this study. The real number α is the order of derivative, x is displacement,
N is the number of data points, and the real number p is the order of norm. Only the
acceleration signals (α = 2) were considered in this study. In addition, the kurtosis, given by

Kurtosis =
1
N

N

∑
i=1

(
xi

(α) − µ

σ

)4

, (2)

was selected. The parameter µ is the mean and σ is the standard deviation. The kurtosis is
a shape indicator for the distribution of the signal and it is sometimes used in the detection
of defect-related impulses in the signal [24]. On the other hand, the generalized norm is
sensitive to both the signal amplitude changes and to shock-like effects [38]. An additional
characteristic of interest is the ratio between the shock-like effects and the general amplitude
level, such as the ratio between a high-order norm and a low-order norm. Therefore, three
features were selected for the time domain model and they are presented in Table 3 as
features no. 1–3.

Table 3. Description of features used in this study. Features no. 1–3 are computed from time series, whereas features no.
4–11 are extracted from amplitude spectra based on system-specific definitions.

No. Feature Details

1 Generalized norm (l10) Order of norm, p = 10
2 Ratio of norms (l20/l2) Ratio of high-order norm (p = 20) to low-order norm (p = 2)
3 Kurtosis Indicator for the tails of probability distribution
4 BPFI feature Median amplitude of 1–10 BPFI harmonics
5 BPFO feature Median amplitude of 1–10 BPFO harmonics
6 BSF feature Median amplitude of {1, 2, 4, 6} BSF harmonics

7 BPFI sideband feature Median amplitude of the nearest sidebands on both sides of BPFI harmonics (20 sidebands
altogether, spaced at shaft rotational frequency)

8 BSF sideband feature Median amplitude of the nearest sidebands on both sides of BSF harmonics (8 sidebands
altogether, spaced at FTF)

9 GMF feature 1 Median amplitude of 1–4 GMF harmonics and two nearest sidebands on both sides
(20 frequency components altogether)

10 GMF feature 2 Median amplitude of 1 × GMF and two nearest sidebands on both sides (5 frequency
components altogether)

11 GMF feature 3 Median amplitude of 2 × GMF and two nearest sidebands on both sides (5 frequency
components altogether)
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The frequency domain information in the acceleration signal is influenced by the
operation of various components in the thruster. Therefore, it is useful to focus on the
amplitude changes of specific frequencies in order to identify the responses of specific
rotating components from the overall vibration. However, the selection of the frequencies
for a predictive algorithm is challenging, because it is not known beforehand which
components reveal the changes inflicted by defects.

The defects in rolling element bearings are often diagnosed based on the harmonics
of defect frequencies and their sidebands [31]. Then again, the damage in gears is often
diagnosed based on the gear rotating frequency, the meshing frequency and their harmonics,
and sidebands [23]. Such frequency components could be monitored individually or
together. In this study, several components were monitored together by computing a
quantile value from them. The quantile selection is further reasoned in Section 2.2.3 because
it influences the distribution of data samples, and therefore, the model performance.

The envelope spectrum is commonly used in the bearing diagnosis conducted by
an expert [39]. However, the automated selection of an appropriate frequency band for
demodulation is complicated [33,40], and therefore, the amplitude spectrum was used
in this study instead. The computational bearing frequencies (see Table 1) exhibit some
uncertainty due to the measurement precision, skidding and variations in the rotational
speed. Therefore, each frequency component in this study was selected from the range
[f (1 − ε), f (1 + ε)]. The parameter f is the computational frequency of the monitored
component and ε is the error, which is set ε = 0.01. The component with the maximum
amplitude was chosen to represent the component of interest from this range.

The selected features for bearing monitoring are shown in Table 3 as features no. 4–8
and the features for gear monitoring are shown as features no. 9–11. Figure 4 shows
amplitude spectra from a case with no reported damage and a case with inner race defect
in the bearing in thruster 1. The 1–10 BPFI harmonics and the closest sidebands are marked
there separately. The median (feature no. 4) and upper quartile of the amplitudes of
BPFI harmonics are marked there as well. These graphs illustrate that the feature values
increased in the case of damage. The change is seen the most clearly in the fifth and higher
harmonics of BPFI and sideband components in this case.

Similarly, Figure 5 shows amplitude spectra from the cases with no reported damage
and wear on the gear surfaces in thruster 2. The 1–4 GMF harmonics and sidebands are
marked together with the median (feature no. 9) and upper quartile computed from their
amplitudes. The graphs indicate that the amplitudes of GMF harmonics and sidebands
increased in the case of damage.

In automated condition monitoring, an individual frequency component may have
small significance, because the fault symptoms become manifested differently when the
operational state of the machine changes. Therefore, the features computed based on
several frequency components could contain more diagnostic information than separate
components individually. Finally, the presented features may not be optimal for the studied
data sets and their optimization goes beyond the scope of this study.
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and feature values is removed. This is demonstrated in Table 4 with correlation coeffi-
cients [37] calculated from the data of thruster 1. The residuals (𝑟௜) of linear regression can 
be defined by 𝑟௜ = 𝑦௜ − (𝛽଴ ൅ 𝛽ଵ𝑥௜), (3)
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are shown.

2.2.3. Residual Calculation

The use of residuals of linear regression improves the applicability of the proposed
method in varying shaft speeds because the strong correlation between the shaft speed and
feature values is removed. This is demonstrated in Table 4 with correlation coefficients [37]
calculated from the data of thruster 1. The residuals (ri) of linear regression can be defined by

ri = yi − (β0 + β1xi), (3)
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where yi is the calculated feature value, and β0 and β1 are the intercept and the regression
coefficient of the linear regression model, identified using the least squares fitting. The
predictor xi is the shaft speed and i is the sample number. The residual calculation is
done in the “speed range selection” and “inference” processes in the flowcharts shown in
Figure 2.

Table 4. Correlation coefficients of shaft speed with feature values and residuals computed from the
identification data of thruster 1.

No. 1 2 3 4 5 6 7 8 9 10 11

Features 0.75 0.08 −0.14 0.69 0.32 0.67 0.83 0.83 0.71 0.61 0.36
Residuals 0 0 0 0 0 0 0 0 0 0 0

As was mentioned in Section 2.2.2, the nature of the selected feature has a significant
impact on the distribution of its residual when the linear model is applied. Figure 6
demonstrates the effect of selected quantile on the distribution of data when different
quantiles were calculated from 1–10 BPFI harmonics. The graphs show that the tails of
the distribution moved further away from the line indicating normal distribution when
high quantiles such as upper quartile or maximum were used. Additionally, the p-values
of Kolmogorov-Smirnov test [41] decreased when the higher quantiles were used.
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In this study, the median was selected as the quantile for the features computed from
the amplitude spectrum (features no. 4–11) because the associated residual sometimes
follows the normal distribution better than the residuals associated with the higher quan-
tiles. However, this is not a general rule, and therefore, the check for normal distribution
is included in the selection of the operational area, which is introduced in the following
section.

The application of non-linear models for regression is beyond the scope of this study.
Such models could improve the fit of the model, but there is a risk that the identified model
becomes complicated and overfitted reducing its robustness in later use. The training of
non-linear models would benefit from large data sets, which are often unavailable.
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2.2.4. Shaft Speed Selection

To select the appropriate shaft speed ranges for condition monitoring, statistical tests
for normal distribution are included in the identification stage in the algorithm. Firstly, the
samples in training data are sorted in the order of magnitude based on the shaft speed.
Then, specific quantiles are computed from them which is illustrated in the upper left plot
in Figure 7. In this study, the quantiles were the deciles and the zeroth quantile (minimum).
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on shaft speed and quantiles are calculated (upper left). The data are then categorized in different ranges based on the
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The (lower right) plot shows the number of normal distributed residual sets inside each tested shaft speed range. In this
example, only the range no. 26 became selected because it had the widest range from the fourteen overlapping ones that
had the highest number of normal distributed sets.

The samples are categorized in separate ranges based on the quantiles with the goal
to analyze the data set in separate ranges with varying sizes. The ranges are illustrated in
the upper right plot in Figure 7 where 55 separate ranges are shown. The first range covers
the speed values from the minimum to the first decile, the second range covers the speed
values from the minimum to the second decile, and so on.

In practice, the amount of data is limited, and therefore, the user should set a minimum
sample size for each range. In the lower left plot in Figure 7, the user set the limit to 60
samples. This limit is also used later in the experiments in Section 3. If the number of
samples in a range is too low, the data may not be extensive enough for the identification
of a robust model.

The residual values for each feature are calculated in each range where the sample size
is above the defined limit by using Equation (3). A statistical test for normal distribution is
then done on each set of residual values separately assuming they are independent data sets.
The one-sample Kolmogorov-Smirnov test was used in this study. It is a nonparametric test
to evaluate if the empirical cumulative distribution of the data is equal to the hypothetical
cumulative distribution [41]. The applied statistic is the maximum absolute difference
between the empirical Cumulative Distribution Function (CDF) calculated from the data
vector x and the hypothesized CDF

D∗ = max
x

(∣∣F̂(x)− G(x)
∣∣), (4)
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where F̂(x) is the empirical CDF and G(x) is the CDF of the hypothesized distribution,
which is in this case the normal distribution. However, other suitable tests for normal
distribution, such as the Anderson-Darling test [42], could be used as well. The results are
presumably slightly different then.

The kstest function in Matlab® was used with the default significance level (α = 0.05 or
5%) for the null hypothesis rejection in this study. The hypothesis result H = 0 indicates
that null hypothesis is not rejected at the α significance level, i.e., the data are normal
distributed. The result H = 1 indicates that the null hypothesis is rejected at the defined
significance level, and then the data do not come from the standard normal distribution.
While the shaft speed selection is an exploratory study by nature, multiplicity corrections
were neglected on the hypothesis tests [43].

In the lower right plot of Figure 7, the independent hypothesis results of the residual
sets of the 11 features introduced in Table 3 are put together. The plot shows the number of
normal distributed residual sets in each range. From these ranges, the algorithm selects
the ranges where the highest number of normal distributed residual sets were obtained
(11 in this case). If the ranges overlap, only the widest area is selected to ensure the
usability of the model in as wide operational area as possible. Therefore, the range no. 26
(249.86–353.47 rpm) became selected alone in this example.

In online monitoring, the algorithm filters the samples based on the selected shaft
speed ranges as indicated in the flowchart in Figure 2. If a new sample is inside the selected
speed ranges, it is accepted and proceeds to the quality control process introduced in
Section 2.2.1.

2.2.5. Multicollinearity Check

The squared Mahalanobis distance calculation uses the covariance information among
the input variables. The inverse matrix of the covariance coefficients may become inaccurate
if the variables are highly correlated [18]. The residual calculation removes the strong
correlation between the shaft speed and input variables (see Table 4), but the residuals
may be strongly correlated with each other. This may happen when several redundant
features, such as lp norms with different order p, are used together. To elude the use of
highly correlated variables, the multicollinearity of the residual sets is evaluated by using
the Variance Inflation Factor (VIF)

VIF =
1

1− R2
j

, (5)

where R2
j is the coefficient of determination from the regression of explanatory variable

(rj) onto all other explanatory variables. If the coefficient of determination is close to one,
collinearity is present and VIF is large. VIF = 1 indicates the complete absence of collinearity.
As a rule of thumb, a VIF value that exceeds 5 or 10 could indicate a problematic amount
of collinearity [37]. If VIF goes above the threshold, the selection of different features is
recommended as shown in the flowchart in Figure 2.

2.2.6. Multivariate Normal Distribution

The model identification is done based on training data consisting of machine opera-
tion from periods where an undamaged (or healthy) condition is probable. It is assumed
that the residuals follow the identified normal distributions when the system is in undam-
aged condition. Therefore, the residuals are modeled as multivariate normal vectors x that
belong to a multivariate normal distribution with mean vector µ and covariance matrix Σ.
The probability density function (PDF) of the multivariate normal distribution function is

f (x, µ, Σ) =
1√

|Σ|(2π)d
exp
(
−1

2
(x− µ)Σ−1(x− µ)T

)
, (6)
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where d is the dimension of the multivariate normal distribution. In this study, the co-
variance matrix for each distribution was defined based on normalized residuals (µ = 0,
σ = 1).

For each multivariate normal distribution, the identification of several parameters
is required. The parameters are summarized in Table 5 and correspond to the “model
parameters” identified from data, as shown in Figure 2. Different parameter values are
identified for different shaft speed areas.

Table 5. Parameters for the distributions identified in each shaft speed range.

Parameters Definition Number of Parameters

β0, β1 Regression parameters for each feature 22
µ Means of each residual set (≈0) 11
σ Standard deviations of each residual set 11

Σ1, Σ2, Σ3 Covariance matrices 3

In this study, separate models were used for time domain features (no. 1–3), bearing
features (no. 5–8) and gear features (no. 9–11), because the algorithm should have diagnos-
tic ability. Therefore, three covariance matrices were identified for each shaft speed range.
In total, 47 parameters were identified and saved for each selected shaft speed range with
these settings. The means of residuals (µ) are approximately zero and can be replaced with
zeros.

2.2.7. Probabilistic Monitoring

The deviations of calculated samples from the identified distributions are monitored
by calculating the squared Mahalanobis distance in the inference process depicted in
Figure 2. The squared Mahalanobis distance from a monitored sample rm to a distribution
with the mean (µ) and the covariance matrix (Σ) can be defined by

D = (rm − µ)TΣ−1(rm − µ). (7)

The monitored sample rm consists of the d regression residual values, which are
normalized based on the means and standard deviations identified in the training set.

The squared Mahalanobis distance follows the chi-square distribution with d degrees
of freedom, and therefore, each value can be converted into a probability [44,45]. An
appropriate threshold value can be selected from the distribution to detect outliers [46]
or to monitor the system health [18]. Figure 8 demonstrates the probabilities associated
with D values using d = 3 and 5. In this study, the chi2cdf function in Matlab® was used for
calculating the probability associated with the squared Mahalanobis distance.

The probabilistic values defined by α could be used as the reference limits to indicate
if the new samples belong to the identified distribution. Jin et al. [18], for example, recom-
mend the use of 99.9th percentile (α = 0.001) as the limit but inferred that the limit depends
on the risk of system malfunction. Yu [15] used a certain number of consecutive values (=3)
exceeding a probabilistic control limit as the sign of health state change in the monitored
machine. In addition, the D values can be monitored in moving windows. The moving
median with window size n = 5 was used in this study as an addition to the monitoring of
individual values.

2.3. Classification Tests

To study the diagnostic performance quantitatively, classification tests were done in a
binary setup where the methods predict the labels of samples as positive or negative, i.e.,
as “damage” or “no damage,” respectively. The actual labels were defined based on the
reports made by ISO certified vibration analysts of the manufacturer.
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Two different approaches introduced in Section 2.3.1 were used to evaluate the perfor-
mance of the proposed method. The method was compared with the reference classifiers,
introduced in Section 2.3.2. The performance of the methods was evaluated by using four
criteria as presented in Section 2.3.3. To achieve an estimate for the unbiased generalization
performance, the methods were compared by using the nested cross-validation approach
discussed in Section 2.3.4.

2.3.1. Classification Approaches for the Proposed Method

The first approach utilizes probabilistic thresholds α to classify individual samples in
classes. If a sample defined by squared Mahalanobis distance (D) is below the threshold
defined by α, the sample comes from the defined distribution and is a member of the
negative class. Otherwise, it is a member of the positive class. Three different thresholds
α = {0.1, 0.05, 0.001} were tested to separate the classes from each other. The models
were trained by using only the data from the negative class. This approach is named as
“probabilistic threshold” here.

To obtain a more equal approach to the actual classifiers from the training perspective,
an alternative approach called “two distributions” was used as well. Two different models
were trained by using the samples of the positive and negative classes in separate models.
New samples were then classified by estimating D values using both models and by
labeling the sample based on the lower value. For example, if the model trained based on
the positive class produced a lower value than the model trained based on the negative
class, the sample belonged to the positive class.

Figure 9 illustrates the flowcharts for both approaches. The quality control of signals
was done in advance with parameter values shown in Table 2. The shaft speed range of the
samples was defined before classification tests based on the identification data, introduced
in Section 2.1.3, by using the approach presented in Section 2.2.4. The training of the model
included the identification of the parameters presented in Table 5.

2.3.2. Reference Methods

Fault classification based on machine learning algorithms has been widely studied
during the last decades. Some of the commonly applied classifiers were chosen as the
reference methods here. They include k-Nearest Neighbor (k-NN), Linear Discriminant
Analysis (LDA), Support Vector Machines (SVM) and AdaBoost M1. Each of these al-
gorithms have been previously applied in machine diagnosis studies, such as in [47–50],



Machines 2021, 9, 39 15 of 27

respectively. The details of theoretical bases and implementations of the classifiers are
reported in the previous literature and are, therefore, omitted here.

Machines 2021, 9, x FOR PEER REVIEW 15 of 27 
 

 

rithms have been previously applied in machine diagnosis studies, such as in [47–50], re-
spectively. The details of theoretical bases and implementations of the classifiers are re-
ported in the previous literature and are, therefore, omitted here. 

 
Figure 9. “Probabilistic threshold” approach (left) and “two distributions” approach to classification (right). 

The hyperparameter values of the classifiers were optimized based on the mean ac-
curacy in the inner resampling loop of the nested cross-validation by using the exhaustive 
search. The tested values are shown in Table 6. The features shown in Table 3 were used 
as the input variables for the classifiers after normalizing them to unit variance and zero 
mean. The computations were done by using Matlab® 2019a. 

Table 6. Classifiers used as reference methods, tested hyperparameter values and Matlab® func-
tions used for classifier training. 

Classifier Hyperparameter Values Matlab® Function 
k-NN ‘NumNeighbors’: 1–49, odd numbers only fitcknn 

LDA ‘Gamma’: 0–1, step 0.025 
‘Delta’: 0 and 1 × 10−6 × 10x, where x = 0–9, step 1 

fitcdiscr 

SVM 
‘KernelScale’: 1 × 10−5 × 10x, where x = 0–10, step 0.4 
‘BoxConstraint’: 1 × 10−5 × 10x, where x = 0–10, step 

0.4   
fitcsvm 

AdaBoost M1 
‘LearnRate’: {0.1, 0.25, 0.5, 0.75, 1} 
‘MaxNumSplits’: 10–90, step 10 

‘NumLearningCyles’: 10–150, step 20 
fitcensemble 

2.3.3. Evaluation Criteria 
The classifier performance was evaluated based on the accuracy, precision, recall and 

specificity. Accuracy can be defined as 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃 ൅ 𝑇𝑁𝑇𝑃 ൅ 𝐹𝑃 ൅ 𝑇𝑁 ൅ 𝐹𝑁, (8)

Figure 9. “Probabilistic threshold” approach (left) and “two distributions” approach to classification (right).

The hyperparameter values of the classifiers were optimized based on the mean
accuracy in the inner resampling loop of the nested cross-validation by using the exhaustive
search. The tested values are shown in Table 6. The features shown in Table 3 were used
as the input variables for the classifiers after normalizing them to unit variance and zero
mean. The computations were done by using Matlab® 2019a.

Table 6. Classifiers used as reference methods, tested hyperparameter values and Matlab® functions
used for classifier training.

Classifier Hyperparameter Values Matlab® Function

k-NN ‘NumNeighbors’: 1–49, odd numbers only fitcknn

LDA ‘Gamma’: 0–1, step 0.025
‘Delta’: 0 and 1 × 10−6 × 10x, where x = 0–9, step 1 fitcdiscr

SVM ‘KernelScale’: 1 × 10−5 × 10x, where x = 0–10, step 0.4
‘BoxConstraint’: 1 × 10−5 × 10x, where x = 0–10, step 0.4

fitcsvm

AdaBoost M1
‘LearnRate’: {0.1, 0.25, 0.5, 0.75, 1}
‘MaxNumSplits’: 10–90, step 10

‘NumLearningCyles’: 10–150, step 20
fitcensemble

2.3.3. Evaluation Criteria

The classifier performance was evaluated based on the accuracy, precision, recall and
specificity. Accuracy can be defined as

Accuracy =
TP + TN

TP + FP + TN + FN
, (8)

where TP is the True Positive count, TN is the True Negative count, FP is the False Positive
count and FN is the False Negative count. Accuracy was used in this study as the criterion
to be maximized in the hyperparameter optimization in the classifiers.
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Precision reveals the accuracy of the positive predictions. Low precision indicates that
the classifier labels samples falsely as positive which may result in an increased amount of
useless maintenance actions. Precision is defined by

Precision =
TP

TP + FP
. (9)

Recall (or sensitivity) shows the ratio of predicted true positives to the total number
of true positives. Low recall indicates that the classifier labels the samples of the positive
class falsely as negative class which increases the risk that the damaged machine will be
kept in operation although it should be taken to service. Recall is defined by

Recall =
TP

TP + FN
. (10)

Specificity shows the ratio of predicted true negatives to the total number of true
negatives. Low specificity indicates that the samples of the negative class are falsely labeled
as positive class which is a harmful feature as it increases the number of false alarms.
Specificity is defined by

Speci f icity =
TN

TN + FP
. (11)

2.3.4. Nested Cross-Validation

The nested cross-validation was applied to estimate the unbiased generalization
performance of the classifiers. The outer resampling loop, which was used for the perfor-
mance evaluation, applies the repeated random sub-sampling validation [51]. The inner
resampling loop, which was used for hyperparameter optimization in classifiers, applies
the 10-fold cross-validation which is programmed in the Matlab® functions presented in
Table 6.

As shown in Section 2.2.6, the proposed algorithm has the requirement of normal
distributed data for model identification, and therefore, a specific approach for the random
sampling in the outer resampling loop was developed. The approach is illustrated in
Figure 10 with a flowchart.
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Figure 10. Generation of training and test sets for outer resampling in nested cross-validation approach. Parameter N stands
for the sample size and H is the hypothesis result in Kolmogorov-Smirnov test. Split ratio defines the ratio between training
and test set sizes.
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As discussed in Section 2.3.1, the appropriate shaft speed range was first identified
based on the full set of samples in the identification data. Although the data set in this range
is normal distributed, the subsets of data points in this set may not be normal distributed
when they are sampled randomly for the training sets. Therefore, the check for normal
distribution was done again for each randomly sampled training set, as shown in Figure 10,
and only the sets that had normal distributed residuals were accepted for training sets. The
check was done separately for both the data in negative and positive classes, because both
classes were used to train the models in “two distributions” approach.

Based on the inferences in [52], 50% of the data was used for both the training and test
sets, i.e., the split ratio was 1:1. The number of random iterations in the outer resampling
was 3 × N, where N is the sample size. In both the training and test sets, the balanced
division between the negative and positive classes was used. Each classifier, including the
reference methods, was trained and tested by using the same samples.

3. Results and Discussion

Section 3.1 demonstrates the performance of the algorithm based on the actual
measurement data that contains both the undamaged and damaged condition in the
thrusters. The performance in classification is then compared with the reference methods
in Section 3.2. The results and additional research recommendations are further discussed
in Section 3.3.

3.1. Application on Data Sets
3.1.1. Thruster 1

The data set for model identification with 207 samples included shaft speed in the
range 143.32–602.53 rpm. The number of accepted samples in quality control was 201 and
the selected shaft speed range was 249.86–353.47 rpm, which consisted of 141 samples (see
Figure 7). The derived parameter values and covariance matrices of the identified models
are presented in Appendix A.

The application of the models is demonstrated in Figure 11 where the first 141 samples
were used to train the models. The samples 142–344 are new independent samples inside
the selected shaft speed range and they correspond to a 364-day period, indicating there
were various days in which accepted samples were missing in the selected shaft speed
range.
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Two periods with the same length are indicated in the plots to represent negative
class and positive class. The data used for these samples were used for classification in
Section 3.2 as well. The defects were confirmed based on the videoscope inspection after
sample no. 196.

Figure 11 indicates that the squared Mahalanobis distance values had an increasing
trend after the training period indicating that the operation began to diverge from the oper-
ation in the training period. Perhaps the moving median gives a clearer indication of this
progress. The bearing model especially gave distinct indications of change around samples
no. 142–195, which corresponds to a 102-day period before the videoscope inspection. In
addition, the time domain model showed some changes after the 141 first samples and the
gear model showed deviations more regularly at the end of the complete period shown. In
conclusion, the models together suggest that the condition changed in the thruster based
on the observations in the monitored speed range.

3.1.2. Thruster 2

The data set with 162 samples for model identification included shaft speed in the
range 296.14–748.40 rpm. All the samples were accepted in quality control and the se-
lected shaft speed was 296.14–459.94 rpm, which consisted of 113 samples. The identified
parameter values of this operational area are shown in Appendix A.

The application of the models in monitoring is demonstrated in Figure 12 where the
first 113 samples were used to train the model. Samples 114–418 are new independent
samples in the selected shaft speed range and they correspond to a 370-day period. The
defects were confirmed based on videoscope inspection after sample no. 272. The periods
marked with negative and positive classes were used for the classification in Section 3.2.
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The monitoring results for thruster 2 shown in Figure 12 have similarity to the behavior
in Figure 11. The monitored D values started to increase after the training period. Especially,
the time domain and bearing models showed high values regularly on the 81-day period
shown by samples no. 170–272 before the videoscope inspection. The gear model gave
clearer indications of change during the period marked as positive class.

3.2. Classification Tests

The data used for classification are shown as scatter plots between the shaft speed and
feature values in Figures 13 and 14 for thrusters 1 and 2, respectively. Some of the features,
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such as features no. 1, 4, 7 and 9, show distinct clusters between the classes in both data
sets. However, the patterns are different although the same type of damage was reported
on both thrusters. For example, feature no. 5 does not show clear difference between the
classes in 300–350 rpm in Figure 13, whereas Figure 14 shows some difference between the
classes. Some of the features, such as features no. 2 and 3, do not show distinct differences
between the classes in neither of the figures. Many features had a positive correlation with
the shaft speed, but it is not fully linear, as shown by features no. 1 and 9 in Figure 14. In
addition, the feature values had a discontinuity around 380 rpm shaft speed indicating
there could be two separate operational areas.
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Figure 13. Scatter plots of shaft speed with feature values in the data set of thruster 1. The x-axis shows the shaft speed
(rpm) and the y-axis shows the feature value. The samples representing “positive class” are taken after the videoscope
inspection and “negative class” represents the undamaged condition. The definitions for features no. 1–11 are given in
Table 3.

Figure 15 shows the classification results for the data set of thruster 1. The bearing
feature set had the highest accuracy from different feature sets in general. At least 90%
accuracy was reached with the bearing feature set by each method apart from the AdaBoost
M1, which had low accuracy (50.18%). The highest test accuracy (95.51%) was achieved
by using “probabilistic threshold” approach with α = 0.001. The other criteria (precision,
recall, specificity) reached over 94% value then as well.

The time domain feature set resulted in the highest test accuracy, 88.78%, with “two
distributions” approach. The test accuracies of the reference methods were in the range
79.46–82.92% but AdaBoost M1 suffered from overfitting because the training accuracy
was 99.51%. The “probabilistic threshold” approach had the lowest test accuracy 56.13%
(α = 0.001) to 75.68% (α = 0.1).
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Figure 15. Thruster 1 classification results. The plots from top to bottom show the averages of accuracy, precision, recall and
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With the gear feature set, “probabilistic threshold” approach reached test accuracies
75.01–81.79% whereas “two distributions” approach had the test accuracy 84.47%. These
accuracies are lower than the test accuracies of some of the reference methods, the range of
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which was 83.98% (AdaBoost M1) to 89.28% (k-NN). AdaBoost M1 suffered from overfitting
while the training accuracy was 97.44%.

The highest test precision (98.58%) was achieved by using LDA with the bearing
features as input variables. The highest recall (100%) was achieved by using “probabilistic
threshold” approach (α = 0.1) with the bearing feature set. By using α = 0.05 or “two
distributions” approach, the value was almost as high. The highest specificity (99.96%)
was achieved by using AdaBoost M1 with the bearing features as input variables, but the
accuracy was poor indicting that the classification was unsuccessful. With the precision,
recall and specificity criteria, one must acknowledge that the hyperparameters in the
classifiers were optimized by maximizing the test accuracy in the inner resampling loop.
Different results may be obtained by using a different criterion.

In the data set of thruster 2, the predictive power of the different feature sets was more
equal than in the other data set. This can be inferred especially from the results of “two
distributions” approach, the performance of which was relatively similar with different
feature sets, as shown in Figure 16. Other approaches like SVM and k-NN supposedly give
(fainter) indications of the more equal predictive power as well when all the performance
criteria are examined together.
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With bearing features, the highest test accuracy, 96.51%, was obtained by using the
“two distributions” approach, while the second highest accuracy, 89.62%, was achieved by
using the “probabilistic threshold” approach with α = 0.001. The reference methods had
accuracies in the range 83.84% (AdaBoost M1) to 87.88% (SVM).

With time domain features, the highest test accuracy, 91.91%, was achieved by using
SVM. Then again, two other reference methods, LDA and AdaBoost M1, had test accuracies
below 50.40%. The test accuracy of “two distributions” approach was 90.55%, while the
“probabilistic threshold” approach had accuracies in the range 68.69% (α = 0.001) to 80.30%
(α = 0.1).

With gear features, the highest test accuracy, 94.68%, was achieved by using the “two
distributions” approach. The “probabilistic threshold” approach had test accuracies in the
range 75.97–84.99% and the reference methods had accuracies in the range 65.79% (LDA)
to 81.54% (SVM).

The highest precision (98.58%) was achieved by using the “probabilistic threshold”
approach with α = 0.001 when the gear features were used as input variables. The highest
recall (98.76%) was achieved by using the “two distributions” approach with the bearing
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features as input variables. The highest specificity (99.98%) was achieved with AdaBoost
M1 with the time domain features as input variables, but the accuracy was only 50.35%,
indicating that the classification was unsuccessful.

Based on Figures 15 and 16, the precision and specificity increased together with
decreasing α in “probabilistic threshold” approach, apart from the precision with the time
domain features in Figure 15. This suggests that the number of false positive predictions
go down when the limit value for D is set higher (i.e., α is set lower). On the other hand,
this increases the risk that the number of false negatives grows and then recall decreases,
which is shown in Figures 15 and 16.

3.3. Discussion
3.3.1. Significance of Results

Classification results show that the threshold (α) had a significant effect on the classifi-
cation accuracy when individual samples were classified. This is seen, for example, with
the time domain feature set of thruster 1 while the accuracy varied between 56% (α = 0.001)
and 76% (α = 0.1). The selection of the threshold is a trade-off between the number of
false positives and false negatives. In general, the higher threshold limit (e.g., α = 0.001)
results in the lower the number of false positives, but also the number of false negatives
grows. With the low threshold limit (α = 0.1), the number of false positives increases and
the number of false negatives decreases.

In the light of this challenge, it could be useful to monitor the squared Mahalanobis
distance in moving windows, as shown in Figure 11 or Figure 12, thus reducing the
variation of the values used for inference. The use of moving mean or median is a standard
approach in statistical process control [53]. Alternatively, a long enough segment of
consecutive points on the other side of the threshold could indicate the change in condition,
as was inferred in [15].

The accuracy of the “two distributions” approach indicates that training separate
models for normal and damaged conditions could be useful. However, the fault patterns
in the signals should then be relatively fixed in the operational areas monitored, which
is not certain, as indicated by the different patterns in Figures 13 and 14. In addition, the
separation of the symptoms of superposed faults and other disturbances in signals is also
required, unless it is probable that they occur together. Moreover, the correct labeling of
each data sample in large data sets used for model training is often unrealizable without a
robust automated approach to it.

Therefore, the classification results are approximate and not a definitive proof of the
performance of the methods. A predicted false negative, for example, could be a result
of the fact that the sample does not contain characteristics of the defect even though the
true label was set positive. This highlights the importance of a well-planned and executed
sample selection to obtain significant results [54].

3.3.2. Suggestions for Future Research

The operational state of the thruster was unknown apart from the rotational speed of
the pinion shaft. In practice, the steering angle changes and the vessel may be in transit or
performing a task using the dynamic positioning. These factors presumably have effects on
the acceleration signals, and therefore, their correlations with the signals should be further
analyzed in various operational circumstances. The utilization of such information could
reduce the variation in inference, if the information was used to filter samples or to predict
feature values, for example.

The data used for system identification are based on the normal operation of the az-
imuth thrusters and can only be relied on during such operations. Therefore, the identified
system cannot fully describe the behavior of the physical one when it encounters high
domain oscillations and vibrations inflicted by extreme conditions. The identification of
the entire operational domain is limited by the associated costs and the lack of facilities to
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gather the ideal data sets for that. Therefore, alternative approaches should be developed
to improve the system identification procedure.

In addition, the uncertainty of inference should be studied by focusing on the effects
of feature values and the parameters shown in Table 2. Furthermore, the sample size
requirements [55] for the model training should be studied to enhance the robustness of the
models while the amount of training data is limited in practice. Additionally, the testing of
different hypothesis tests for normal distribution could provide alternative views to the
operational area selection.

As shown by the overlapping classes in Figures 13 and 14, the feature sets used in
this study were not optimal for the fault cases studied. Undoubtedly, clearer difference
between classes could be obtained by using wrapper methods [32] on large feature sets
during classifier training or by using other criteria [34]. However, these approaches give
feature sets that are specific to the data sets analyzed, and their benefits for new data sets
remain unclear. In addition, the various methods for signal processing could increase
the sensitivity to defects, which can be inferred from the success in previous industrial
applications [24].

Finally, a change detected in the operation is not necessarily inflicted by a defect in the
monitored system. Therefore, reliable references should be identified for the implemented
model to verify its performance. In the development stage, this could be done based on
human expertise, but in the long run, automated adaptation mechanisms [56] may be
required, where the use of synchronized data from redundant sensors could be useful.

4. Conclusions

A probabilistic condition monitoring algorithm was introduced and validated based
on noisy, real-world acceleration signals from two azimuth thrusters used in an operat-
ing drill ship. The algorithm contributes to the general problem of sample selection by
including automated procedures for the control of data quality and for the selection of
shaft speed areas to be monitored. The automation accelerates the implementation of the
method in a large fleet of thrusters.

The method was tested against reference classifiers and the results were obtained
through an unbiased cross-validation approach. The results suggest that the algorithm
performed slightly better in a binary classification task relative to the reference classifiers
when the bearing features were used in the “probabilistic threshold” approach. With the
least sensitive feature set (i.e., time domain features), the best reference classifiers were
more accurate. The use of the “two distributions” approach with two models generally
improved the performance over the “probabilistic threshold” approach, which applied one
model.

The classification results suggest that the monitoring of individual samples of squared
Mahalanobis distance against some threshold value results in various false positives and
negatives. This was also confirmed in the monitoring tests. Therefore, the smoothed trend
given by the moving median could be a more useful indicator for the practical application.

The reduction of variation in monitoring should be further pursued. The use of
additional information on the thruster operation, such as the momentary steering angle,
together with the information on vessel movement could improve the accuracy. Moreover,
the contributions of model parameters to the uncertainty in inference require further
analysis leading the way towards the online maintenance of the model.
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Appendix A

The identified parameter values for thruster 1 in the speed range 249.86–353.47 rpm
are shown in Table A1. The means (µ) of residual values are omitted (µ ≈ 0). The VIF
values were computed by using only the residuals that are together in the models: Time
domain model had features no. 1–3, the bearing model had features no. 4–8 and the gear
model had features no. 9–11. The low values indicate that the models did not suffer from
high multicollinearity.

Table A1. Identified parameter values of thruster 1 data set.

Feature No. σ β0 β1 VIF

1 9.09 × 10−3 −30.42 × 10−3 415.16 × 10−6 1.15
2 194.62 × 10−3 2.53 228.01 × 10−6 1.81
3 171.79 × 10−3 3.38 −1.04 × 10−3 1.62
4 236.88 × 10−6 −2.00 × 10−3 9.95 × 10−6 1.15
5 231.94 × 10−6 −256.99 × 10−6 3.44 × 10−6 1.09
6 88.18 × 10−6 −725.54 × 10−6 3.55 × 10−6 1.04
7 153.40 × 10−6 −2.04 × 10−3 9.99 × 10−6 1.11
8 55.34 × 10−6 −811.19 × 10−6 3.61 × 10−6 1.03
9 94.55 × 10−6 −714.60 × 10−6 4.29 × 10−6 1.55

10 71.53 × 10−6 −498.69 × 10−6 2.44 × 10−6 1.02
11 140.14 × 10−6 −240.91 × 10−6 2.43 × 10−6 1.55

The identified covariance matrices for the time domain model (Σ1), bearing model
(Σ2) and gear model (Σ3) of Thruster 1 were as follows:

Σ1 =

 1 359.40× 10−3 173.87× 10−3

359.40× 10−3 1 617.53× 10−3

173.87× 10−3 617.53× 10−3 1

 ,

Σ2 =


1 213.16× 10−3 115.86× 10−3 244.48× 10−3 20.74× 10−3

213.16× 10−3 1 −121.86× 10−3 −70.23× 10−3 16.63× 10−3

115.86× 10−3 −121.86× 10−3 1 85.52× 10−3 26.46× 10−3

244.48× 10−3 −70.23× 10−3 85.52× 10−3 1 164.39× 10−3

20.74× 10−3 16.63× 10−3 26.46× 10−3 164.39× 10−3 1

,

Σ3 =

 1 108.25× 10−3 592.75× 10−3

108.25× 10−3 1 110.76× 10−3

592.75× 10−3 110.76× 10−3 1

 .

The identified parameter values for thruster 2 in the speed range 296.14–459.94 rpm
are shown in Table A2. The low VIF values indicate that the models did not suffer from
high multicollinearity.
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Table A2. Identified parameter values of thruster 2 data set.

Feature No. σ β0 β1 VIF

1 35.39 × 10−3 −637.20 × 10−3 2.26 × 10−3 1.09
2 164.37 × 10−3 2.32 315.05 × 10−6 2.71
3 164.33 × 10−3 2.85 141.03 × 10−6 2.59
4 2.07 × 10−3 −18.38 × 10−3 59.99 × 10−6 1.57
5 282.56 × 10−6 −3.64 × 10−3 13.26 × 10−6 1.10
6 180.64 × 10−6 −1.38 × 10−3 5.13 × 10−6 1.18
7 727.55 × 10−6 −9.51 × 10−3 32.60 × 10−6 1.52
8 120.02 × 10−6 −893.59 × 10−6 3.51 × 10−6 1.26
9 506.33 × 10−6 −6.36 × 10−3 21.09 × 10−6 1.15

10 119.26 × 10−6 −1.15 × 10−3 4.28 × 10−6 1.03
11 364.50 × 10−6 −2.98 × 10−3 11.38 × 10−6 1.13

The defined covariance matrices for the time domain model (Σ1), bearing model (Σ2)
and gear model (Σ3) of thruster 2 were as follows:

Σ1 =

 1 −208.53× 10−3 −39.62× 10−3

−208.53× 10−3 1 773.87× 10−3

−39.62× 10−3 773.87× 10−3 1

 ,

Σ2 =


1 162.78× 10−3 127.74× 10−3 584.39× 10−3 168.96× 10−3

162.78× 10−3 1 16.66× 10−3 90.11× 10−3 264.24× 10−3

127.74× 10−3 16.66× 10−3 1 105.84× 10−3 368.07× 10−3

584.39× 10−3 90.11× 10−3 105.84× 10−3 1 100.01× 10−3

168.96× 10−3 264.24× 10−3 368.07× 10−3 100.01× 10−3 1

,

Σ3 =

 1 167.14× 10−3 335.51× 10−3

167.14× 10−3 1 105.94× 10−3

335.51× 10−3 105.94× 10−3 1

 .
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