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Abstract: The rapid development of machine vision has prompted the continuous emergence of
new detection systems and algorithms in surface defect detection. However, most of the existing
methods establish their systems with few comparisons and verifications, and the methods described
still have various problems. Thus, an original defect detection method: Segmented Embedded
Rapid Defect Detection Method for Surface Defects (SERDD) is proposed in this paper. This method
realizes the two-way fusion of image processing and defect detection, which can efficiently and
accurately detect surface defects such as depression, scratches, notches, oil, shallow characters,
abnormal dimensions, etc. Besides, the character recognition method based on Spatial Pyramid
Character Proportion Matching (SPCPM) is used to identify the engraved characters on the bearing
dust cover. Moreover, the problem of characters being cut in coordinate transformation is solved
through Image Self-Stitching-and-Cropping (ISSC). This paper adopts adequate real image data to
verify and compare the methods and proves the effectiveness and advancement through detection
accuracy, missing alarm rate, and false alarm rate. This method can provide machine vision technical
support for bearing surface defect detection in its real sense.

Keywords: bearing surface defect; defect detection; image processing; character recognition

1. Introduction

Bearings are important mechanical parts produced in large quantities by assembly
lines. In the process of bearing production and assembly, due to the impact of some factors
such as equipment wear, collision, and extrusion, oil pollution, bearings inevitably show
some abnormal shapes, colors, or dimensions, which are so-called bearing defects. The
bearing defects can cause different degrees of quality problems in the machine, leading to
failures or serious damage to the machine. Therefore, bearing surface defect detection [1]
and bearing fault diagnosis [2–4] are of great significance.

Bearing fault diagnosis generally analyzes the signals in bearings to identify the
damage or fault in the bearings. Peng [5] uses an improved Hilbert–Huang transform
(HHT), which is a time-frequency method to detect the bearing faults. Randall [6] analyzes
the impulsive signals from bearing faults by spectral correlation and envelope analysis.
Lou [7] designs a scheme for bearing fault diagnosis based on processing the vibration
signals by the wavelet transform and neuro-fuzzy classification. Moreover, with the
development of artificial intelligent, some deep learning based methods [8–10] analyze
time/frequency-domain vibration signals, extract features from them, and the neural
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networks can be sufficient to identify the faults of bearings. Besides, some state-of-the-art
damage identification methods [11–13] have excellent identification capability and can be
used to diagnose the bearing faults.

Bearing surface defect detection methods can be roughly divided into two categories:
one is the methods based on image processing and detection algorithms [14–16], and the
other is the methods based on machine learning (deep learning) [17–19]. However, the
two methods are not mutually contradictory. For instance, Liu [20] uses methods of image
processing and detection to filter, locate, segment, and detect bearing images but uses
the neural network method for reasoning on the character recognition on the bearing
dust cover. Shen [21] also adopts image processing methods for filtering, segmentation,
dimension detection, and character recognition of bearing images. However, in the process
of defect detection, he detects defects through SVM training the Blob feature of bearing
images. Chen [22] uses the traditional subtraction method and template matching to detect
defects and characters, respectively. Deng [23] detects defects through shape features: the
edge detection detects the defect boundary, the chain code indicates the defect boundary,
and the tightness information is used to extract the defects.

This article focuses on bearing surface defect detection. The existing methods of
bearing surface defect detection have some typical common problems. Firstly, they have
repetitive steps and high redundancy. Secondly, the modules of the system are too indepen-
dent, lacking integration and essential connections. These not only increase the complexity
of the algorithms but also reduce the accuracy of defect detection. This paper has proposed
some innovative methods that have solved the problems mentioned above and improved
performances. We adopt a simple but effective method: Image Self-Stitching-and-Cropping
(ISSC) to maintain the character integrity. The character recognition method based on
Spatial Pyramid Character Proportion Matching (SPCPM) is used to identify the engraved
characters on the bearing dust cover. Moreover, we realized the two-way fusion of image
processing and defect detection through the Segmented Embedded Rapid Defect Detection
Method for Surface Defects (SERDD). These methods make the entire bearing surface defect
detection system simpler and more practical, significantly improve the detection accuracy,
and decrease missing alarm rate and false alarm rate compared to peers.

2. Methods

In the existing surface defect detection methods, defect detection is an important
module after image processing [24–26]. This paper changes this mode and adopts an
innovative two-way fusion method of image processing and defect detection. Defect
detection is no longer an independent step in the whole system, but some integrated and
synchronized parts in image processing. Some defect detection processes are even the
image processing itself. We call this defect detection method as Segmented Embedded
Rapid Defect Detection Method for Surface Defects (SERDD). Because it is integrated and
synchronized with image processing, SERDD can streamline the system’s execution steps
and reduce algorithm complexity and time overhead.

The core idea of SERDD is to embed defect detection into image processing through
particular characteristics of image processing, to form a segmented detection mode. Notch,
abnormal dimension, non-character region defects, and character defects are detected
in four image processing stages of bearing positioning, bearing segmentation, character
extraction, and character recognition, respectively, as shown in Figure 1. The principle and
implementation processes are described in the following section.
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Figure 1. Schematic diagram of Segmented Embedded Rapid Defect Detection Method for Surface
Defects (SERDD).

3. Algorithm Steps
3.1. Algorithm Flow

The algorithm of SERDD is combined with two parts: image processing and defect
detection. The specific algorithm flow is shown in Figure 2. It can be seen from Figure 2
that image processing proceeds in sequence from image reading to character recognition.
SERDD embeds the defect detection into image processing modules in the yellow boxes.
Therefore, in addition to completing image processing tasks, these modules also have
the ability of simultaneous defect detection. These will be described in detail in the
following sections.

Figure 2. Algorithm flow of SERDD.

3.2. Image Preprocessing

The bearing surface image obtained by the image acquisition system is shown in
Figure 3.
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Figure 3. Bearing surface image.

Bilateral filtering and median filtering are successively used on the image, eliminating
most of the noise on the bearing surface and background.

3.3. Bearing Positioning and Notch Detection
3.3.1. Bearing Positioning

Since the big difference between bearing and background, we can easily find the
bearing’s outer contour. According to the contour, the center of the bearing and radius can
be calculated by the least square method. The outer circle can be deduced reversely from
the center of the bearing and radius.

3.3.2. Notch Detection of Bearing Outer Ring

By calculating the Euclidean distance between the contour of the outer ring and the
circle derived by the least square method, it can be determined whether there is a notch on
the bearing’s outer circle. Namely, if the Euclidean distance is greater than the reference
threshold, some notches are on the outer contour.

Assuming that the point set on the contour of the outer circle is Con = {x1, x2, · · · , xn},
and xi is a point somewhere on the contour, and assuming that the point set on the circle
derived from the center of the circle and radius is Cir = {y1, y2, · · · , yn}, and yi is a point
on the circle corresponding to xi, the distance between the two is:

dist(Con, Cir) =
n

∑
i=1

√
(xi − yi)2 (1)

The basis for judging whether there is a notch on the outer ring is:

d =

{
1, dist(Con, Cir) > T
0, dist(Con, Cir) ≤ T

(2)

d = 1 means there is a defect; otherwise, there is no defect. T means the distance threshold
for judging whether there is a notch. Figure 4 is an instance of the notch defect.
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Figure 4. Schematic diagram of a notch defect.

3.4. Bearing Segmentation and Abnormal Dimension Detection
3.4.1. Bearing Segmentation

Since the radius ratio of the outer ring, inner ring, and dust cover of the standard
bearing of the same model is fixed, we can divide the outer ring, inner ring, and dust cover
of the bearing accordingly, as shown in Figure 5.

Figure 5. Segmentation of the outer ring, inner ring and dust cover of the bearing.

3.4.2. Abnormal Dimension Detection

The reason for adopting segmentation based on a fixed ratio is described below. Once
the outer ring, inner ring, or dust cover divided by the standard bearing ratio deviates,
there must be a dimension defect. SERDD performs abnormal dimension detection here.
Since the inside and outside edges of the three parts are in low gray value, we only need to
count the number of low-gray pixels in the edge regions to determine whether there is a
dimension defect, as shown in Figure 6.
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(a)

(b)

(c)

Figure 6. Abnormal dimension instances of outer ring, dust cover and inner ring. (a) Abnormal
dimension instance of outer ring. (b) Abnormal dimension instance of dust cover. (c) Abnormal
dimension instance of inner ring.

3.5. Polar to Cartesian (P2C) Coordinate Transformation

The three regions are all in the shape of a ring. In order to facilitate subsequent charac-
ter recognition and defect detection, we introduced Polar to Cartesian (P2C) coordinate
transformation [27] to transform the ring into a more tractable rectangular band.

As shown in Figure 7, R is the outer radius of the ring, r is the inner radius of the ring,
H is the width of the rectangular band, L is the length of the rectangular band, and f (x, y)
is the coordinate point somewhere on the ring, F(m, n) is the point of the rectangular band
corresponding to f (x, y), m and n are the numbers of rows and columns of the band (the
upper left corner of the rectangular band is (0,0)), and h is the height of F(m, n) in the band.

Figure 7. Polar to Cartesian coordinate transformation.
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The corresponding relationship is as follows:{
x = x0 ± (r + h) cos θ

y = y0 ± (r + h) sin θ
(3)

H = R− r (4)

L = 2πR (5)

After P2C, we can convert the three-part image in Figure 5 into the rectangular band
image in Figure 8.

(a)

(b)

(c)

Figure 8. Results of Polar to Cartesian (P2C). (a) The rectangular band of outer ring. (b) The
rectangular band of dust cover. (c) The rectangular band of inner ring.

3.6. Image Self-Stitching-And-Cropping (ISSC)

Unlike the outer and inner rings, the dust cover has engraved characters whose
grayscale performance is nearly the same as defects. Thus, they need to be removed
through character recognition. P2C cut a ring at the polar axis direction and convert it into
a rectangular band. Once a character crosses the polar axis, as shown in the red line of
Figure 9a, it will be cut during P2C. As shown in Figure 9b, “C” is cut so that the subsequent
character recognition will fail to recognize “C” normally.

In the actual industrial site, the bearings’ placement is random, so it is impossible to
avoid the problem of characters being cut.

Liu [20] proposes a band expansion method based on character width to solve the
problem of the character being cut. This method restores the cut characters but retains the
characters’ cut parts and may cut another character again. Chen [28] does not use P2C but
counts the binary histograms every a short distance on the dust cover, rotates the dust cover
until the histograms match the template’s histograms, and then separates the character
region. Due to the difficulty of this matching, the performance is not satisfactory enough.

ISSC proposed in this paper can perfectly solve the problem of a character being cut.
It is divided into two steps: stitching and cropping. In the stitching step, the band acquired
in P2C is copied and horizontally stitched, which can restore the original cut character
in the center of the “new band”. In the cropping step, a simple binary segmentation is
used to distinguish between foreground and background roughly. The pixel value of
the foreground becomes 0, and the pixel value of the background is 255. After that, the
cropping position is located by counting the pixel number of foreground in every column.
If the pixel number of foreground in a column does not exceed a certain threshold, the
column is a background region, which means the cropping position can be set in this
column. The distance between another cropping position and this cropping position is the
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length of the original band. After these two steps, a new band without any cut character
is acquired.

Figure 10 shows the performance of this method from an example. First, the original
image is copied and horizontally stitched, increasing the length of the band from the
original L to 2L and restoring the original cut character at the purple column in the figure.
After the binary segmentation, black pixels in every column of the band are counted from
left to right. Once the number of black pixels in a certain column does not exceed a certain
threshold, the column is a background region, as shown at the left yellow column in the
figure. A L-length band is cropped from the left yellow column to the right one to get a
complete band without any cut character.

(a)

(b)

Figure 9. An instance of a character being cut. (a) The character in the dust cover crosses the polar
axis. (b) The character is cut after P2C.

Compensation light-reflection and color attenuation may create redundant contours,
which may disturb the segmentation. However, the cropping position can only be located at
a certain column without any contours. Thus, all the columns with normal and redundant
contours are excluded. So compensation light-reflection and color attenuation cannot
influence the performance of ISSC.
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Figure 10. Image Self-Stitching-and-Cropping (ISSC) process.

This method can effectively retain all the information of the original image without
adding redundant information. Figure 11 and Algorithm 1 shows the process.

Algorithm 1: ISSC
Input: The image which needs ISSC: I
Output: I′

1 Totalcols = I.cols ∗ 2;
2 initialize Stitch with the same rows but double columns as I;
3 copy I to Stitch.colRange(0, I.cols);
4 copy I to Stitch.colRange(I.cols, Totalcols);
5 for j=1:Totalcols do
6 for i=1:I.rows do
7 if Pixel value in (i,j) is not zero then
8 sum[j]++;
9 end

10 end
11 end
12 for i=1:(Totalcols) do
13 if sum[i] + sum[i+10] + sum[i+25] + sum[i+35] == 0 then
14 cropping columns are c1 = i + 10 and c2 = i + 10 + I.cols;
15 end
16 end
17 define cropping area as Rect(c1, 0, I.cols, I.rows);
18 I′ = I(Rect);
19 ReturnI′
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Figure 11. ISSC flowchart.

3.7. Threshold Segmentation

The grayscale image cannot accurately extract characters or defects, so we need to
perform binary segmentation on the image. The binary segmentation method we use is the
OTSU algorithm [29–31]. Assuming that the band has N pixels, m is the pixels occupied by
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the foreground (characters or defects), n is the pixels occupied by the background, and T is
the set threshold, then:

w0 =
m
N

(6)

w1 =
n
N

(7)

σ2
T = w0(µ0 − µT)

2 + w1(µ1 − µT)
2 (8)

w0 and w1 respectively represent the proportion of foreground and background pixels,
µ0 and µ1 respectively represent the average gray levels of foreground and background
pixels. µT and σ2

T respectively represent the overall average and variance when T is the
set threshold. The OTSU algorithm traverses the threshold from 0 to 255 and finds TOTSU
which makes σ2

T the largest, that is:

TOTSU = arg max
T

(σ2
T) (9)

The OTSU algorithm segments gray images by finding the threshold that maximizes
the variance between foreground and background. It can quickly and accurately segment
characters, defects, and backgrounds due to the apparent differences between characters
and backgrounds in the image. Besides, it can increase the segmentation accuracy of some
images, such as low saturation images.

3.8. The Removal of Small Connected Domains and Holes

After the threshold segmentation of the outer ring, dust cover, and inner ring bands,
some noise or reflective spots are retained to form small white connected domains in
the non-character regions and small black holes inside the characters. These connected
domains and holes will interfere with the subsequent algorithms. Figure 12 demonstrates a
removal example of connected domains and holes in a dust cover. It can be seen that all
the small white connected domains in the non-character region have been removed [32],
all the holes inside the characters have been filled, which is helpful for character extraction
and recognition.

Figure 12. The removal process of small connected domains and holes in a dust cover.

3.9. Character Extraction and Defect Detection of Non-Character Regions
3.9.1. Character Extraction

Before character recognition, each character needs to be extracted from the dust cover
band. The first step is to extract all the contours in the band, but only keep the outermost
contour [33]. The step ensures that each character has only one contour. The next step is to
calculate the minimum bounding rectangle according to the outermost contour and crop
each character. As shown in Figure 13.
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Figure 13. Character extraction process.

3.9.2. Defect Detection of Non-Character Regions

As can be seen from Figure 12, the bands have no noise, leaving probably only defects
or characters. Therefore, in the character extraction step, characters can be easily found
by contour extraction. It should be noted that if there is a defect in the band, the defect
contour will also be extracted as a character candidate. Before character cropping, a simple
step of contour counting function is added. Suppose the number of contours is not equal to
the original number of characters in the band. In that case, it can be judged that there is a
defect in the non-character region (defects may lead to adhesion of two character contours,
and this step can also detect such character defects). For example, the normal band has
13 characters: WTOO 608Z CHINA, so the number of contours in the band is 13. Once
the number of contours of a band is more than 13, the situation is abnormal regardless of
whether the extra contour is a character or a defect. Some instances are shown in Figure 14.
Additionally, there is a scenario: a defect adds one contour, and due to another defect, one
character is removed from the bearing surface. The algorithm cannot detect this defect.
However, this defect is classified as a character defect and can be detected by the character
recognition method in the following section.

Defects such as depressions, scratches, and oil can all be detected in this step. There
are no characters on the outer and inner rings, so it must be a defect as long as any contour
is extracted.

3.10. Character Recognition and Defect Detection of Characters
3.10.1. Character Recognition

The existing machine vision literature adopts targeted character recognition
methods [34]. Liu [20] trains 50 samples with a small neural network, and it can clas-
sify seven classes of characters and defective characters. Shen [21] divides each character
into 3× 3 cells, calculates the proportion of the character part in each small cell as a feature
vector, and then recognizes the character by 2-norm of the difference between the template
feature vector and this feature vector. Chen’s method [22] rotates and matches character
regions through cross-correlation coefficients. Then it recognizes characters through the
moment invariant features of the character edge envelopes. According to the position,
division, and normalization features of characters, Wang [34] uses LabVIEW’s virtual
instrument technology and image processing technology to recognize characters.

This paper proposes a character recognition method based on Spatial Pyramid Charac-
ter Proportion Matching (SPCPM). Inspired by Shen’s method [21], this method identifies
whether the character is correct by character proportion matching. It has been found by
experiments that the character recognition method of Shen [21] cannot detect all the defects
on characters, and it is easy to confuse different characters like “8” and “6”. Moreover, we
have found inspiration from the improvement from HOG [35] to PHOG [36,37] and given
the sense of “space” and “level” to character features, namely adding the concept of Spatial
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Pyramid Matching (SPM) [38,39]. This method enriches and concretizes the features and
further increases the difference of different characters so as to recognize each character
more accurately and identify whether there are defects on the characters more accurately.

To get the character proportion features, it divides a single character into m× n cells
firstly, as shown in Figure 15.

(a)

(b)

(c)

(d)

Figure 14. Defects in the non-character regions. (a) Depression in the band of dust cover. (b) Scratch in the band of dust
cover. (c) Oil in the band of dust cover. (d) Scratch in the band of outer ring.

Figure 15. Character segmented into 2× 2 cells.

Assuming a pixel p in the i-th cell, since the image is binary, the value of p can only be
0 or 255. The proportion of character in this cell can be calculated by Formula (10).

Ci =
n(p=255)

n(p=0) + n(p=255)
(10)
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Here, n(p=255), n(p=0) respectively represent the pixel number of character and the
pixel number of background. After obtaining the proportion of each cell, combine them into
a 1× (m× n) vector, which is the feature vector of this character, as shown in Equation (11).

C = [C1, C2, · · · , Cm×n] (11)

Here, C is the feature vector of this character.
Finally, the 2-norm of the difference between template feature vector Ct and C is

calculated. If the 2-norm is less than a certain threshold, it means that the characters
match successfully. Otherwise, the recognition fails. The calculation of the two norms is as
Equation (12).

‖C− Ct‖2 =

√√√√m×n

∑
i=1

(C− Ct)2
i (12)

To improve the accuracy of character matching and recognition, SPM [38,39] has been
introduced. SPM divides the image into several cells and calculates the feature information
of each cell. Meanwhile, a multi-scale segmentation method is adopted to extract different
fine-grained feature information.

SPCPM divides characters into several scales. For example, as shown in Figure 16, the
character “8” is divided into 1× 1, 2× 2, 3× 3 cells. The character proportion of each cell
in each scale is still calculated by Formula (10) and the feature vector is still calculated by
Formula (11).

Figure 16. An instance of Spatial Pyramid Character Proportion.

Assuming that the feature vectors corresponding to different scales is C1×1, C2×2, · · · ,
Ck×k, then these feature vectors are flattened into one-dimensional vector, as shown in
Formula (13). Figure 17 intuitively reflects this process.

[C1×1]

[C2×2]

...

[Ck×k]


⇒ [C1×1, C2×2, · · · , Ck×k] = Cmulti−scale (13)
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Figure 17. Formation of multi-scale feature vector of the character proportion.

Finally, character proportion matching is achieved by Equation (12). The whole process
is as shown in Figure 18 and Algorithm 2.

Algorithm 2: SPCPM
Input: The character image I1,the template character image I2
Output: The 2-norm Norm of I1’s Feature vector V1 and I2’s Feature vector V2

1 Function CharacterProportion(image, m, n):
2 for i=1:m do
3 for j=1:n do
4 define the cells’ area: Rect(i ∗ width, j ∗ height, width, height);
5 character = I1(Rect);
6 count character pixel number numc;
7 count background pixel number numb;
8 characterProportion: Cp = numc

numc+numb
;

9 Array[count] = Cp;
10 count++;
11 end
12 end
13 Return Array
14 End Function
15 use function CharacterProportion and change m, n to get pyramid character

proportions:
16 C1×1=CharacterProportion (I1, 1, 1);
17 C2×2=CharacterProportion (I1, 2, 2);
18 C3×3=CharacterProportion (I1, 3, 3);
19 flatten C1×1, C2×2, C3×3 to get V1;
20 for i=1:num of characters do
21 for j=1:length[V1] do
22 tmp = V1 −V2;
23 Norm =

√
tmp2 ;

24 end
25 end
26 Return Norm
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Figure 18. SPCPM flowchart.

Character proportion is the statistical information of image features, which lacks
structural information of image features, and Spatial Pyramid makes up for this weak-
ness. Moreover, owing to the existence of hierarchical features, the sensitivity of features
increases. Therefore, SPCPM can improve the accuracy of character recognition and defect
detection. Specific comparisons will be given in the experimental section.
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3.10.2. Defect Detection of Characters

The character recognition in this paper is not only for recognizing characters but
also for detecting character defects. The character recognition and defect detection work
perfectly together here. Once the character to be recognized does not match any template
character, it can be judged that the character has a defect. The defect detection process
is the same as the previous section, so it will not be described here. Possible defects are
depressions, scratches, and shallow characters, as shown in Figure 19.

Figure 19. Character defects on the dust cover.

4. Experimental Results
4.1. Experimental Setup

A suitable combination of image acquisition devices is used in this research. Firstly,
according to the industrial field’s actual requirements, a CCD area-array camera with a
resolution of 2 million pixels and a frame rate of 24 fps was chosen. Comparison and
analysis of the effect of the combination of lens and light source on bearing surface defect
detection were tested. Finally, a 25 mm prime lens and coaxial surface light source were
assembled on the camera. All the parameters like exposure and brightness were set at
proper values according to the actual situation to acquire high-quality images. The image
acquisition devices could avoid the appearance of dark, blurred, low saturation, and low
contrast images, reduce the complexity of the algorithm and improve the detection speed.

Because the authors of the two articles we compared did not provide the corresponding
data set and there was no recognized bearing surface image data set, we could only conduct
experiments and verify through our own data set. In this paper, 650 bearings produced
by a bearing enterprise were used as experimental samples. The bearing specifications
were the same, and the characters on the dust cover had two types: “608Z WTOO CHINA”
and “608Z WTOO”. Among them, there were 483 standard bearing samples and 167
defective bearing samples. A total of 1285 effective bearing surface images were obtained,
including 120 images with depressions, 82 images with scratches, 45 images with abnormal
dimensions, 36 images with notches, 22 images with shallow characters, and 15 images
with oil. All these bearing images were input into our algorithm for defect detection, and
corresponding results could be obtained.

We measured the effectiveness and advancement of this method by the following
indicators. The number of normal bearings was defined as N1, the number of successful
detection of normal bearings was n1, the number of defective bearings was N2, and the
number of successful detection of defective bearings was n2, then:
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Detection accuracy of normal bearings R1 is:

R1 =
n1

N1
(14)

Detection accuracy of defective bearings R2 is:

R2 =
n2

N2
(15)

False alarm rate R3 is:

R3 =
N1 − n1

N1
(16)

Missing alarm rate R4 is:

R4 =
N2 − n2

N2
(17)

4.2. Results and Analysis of Defect Detection

Table 1 shows the experimental results obtained by testing with all the collected images.
In the actual bearing defect detection process, detection accuracy was more important than
false alarm and missing alarm because the detection error was the alarm source. Lowering
the rate of error was the most fundamental way to lower the alarm. So the primary aim of
SERDD was to control the detection error. Moreover, a missing alarm was more significant
than a false alarm because missing detection made the defective bearings enter the market.
Once the defective bearings were assembled on the machines, it would bring huge security
risks. Therefore, we have further tightened the basis for determining defects in each step of
SERDD and finally achieved zero missing alarm results. We sorted out the experimental
data in the paper [20,21] and compared them with our results, as shown in Figure 20.

Table 1. Overall results of defect detection.

Number of Normal
Bearings

Number of Detected
Normal Bearings

Number of Defective
Bearings

Number of Detected
Defective Bearings

965 939 320 320

Detection Accuracy of
Normal Bearings

Detection Accuracy of
Defective Bearings

Average Detection
Accuracy False Alarm Rate Missing Alarm Rate

97.31% 100.00% 98.66% 2.69% 0.00%

Figure 20. Comparison accuracy results between our method and [20,21].
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It can be seen from the figure that the false alarm rate of the paper [20] was the highest,
reaching 4%. The false alarm rate of paper [21] was relatively low, only 2.06%, but its
missing alarm rate was 6%, which is not allowed in actual detection. The experimental
results of ours were as follows: the detection accuracy of normal bearings was 97.31%,
the detection accuracy of defective bearings was 100%, the average detection accuracy
was 98.66%, the false alarm rate was controlled at 2.69%, and the missing alarm rate was
0%. It should be noted that the average detection accuracy was 0.66% higher than [20]
and 2.69% higher than [21]. The detection accuracy of normal bearings was slightly lower
than that of the paper [21] and the false alarm rate was slightly higher than that of the
paper [21]. This is because the missing alarm rate was controlled at 0%, which resulted
in a partial loss of accuracy. In terms of processing speed, as shown in Figure 21, ref [20]
took 2.11 s on average to detect a bearing image which resolution was 480 × 640 pixels
and [21] took 1.56 s on average to detect a bearing image which resolution was 1600 ×
1200 pixels. Thanks to SERDD, it took an average of 0.66 s to detect a bearing image which
resolution was 1296 × 972 pixels. When the image resolution was at the same level, the
speed of SERDD was more than twice that of state-of-the-art methods. Moreover, if SERDD
detected defects at the first segment of SERDD, it took only 0.32 s. The time shown here
includes the CPU time of processing the programs and reading the images.

Figure 21. Comparison speed results between our method and [20,21].

Due to the segmented feature of SERDD, we adopted separate tests for each step
of SERDD. For the four defect detection parts, we chose 100 targeted bearing images,
respectively. In order to simulate the actual situation as much as possible, the 100 images
contained defects to be detected and contained various other defects. The results of the
four defect detection parts are shown in Tables 2–5 respectively.

Table 2. Detection results of notches.

Number of Normal
Bearings

Number of Detected
Normal Bearings

Number of Notched
Bearings

Number of Detected
Notched Bearings

64 64 36 36

Detection Accuracy of
Normal Bearings

Detection Accuracy of
Notched Bearings False Alarm Rate Missing Alarm Rate

100.00% 100.00% 0.00% 0.00%
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Table 3. Detection results of abnormal dimension.

Number of Normal
Bearings

Number of Detected
Normal Bearings

Number of Bearings
with Abnormal

Dimension

Number of Detected
Bearings with

Abnormal Dimension

55 55 45 45

Detection Accuracy of
Normal Bearings

Detection Accuracy of
Bearings with

Abnormal Dimension
False Alarm Rate Missing Alarm Rate

100.00% 100.00% 0.00% 0.00%

Table 4. Detection results of depressions, scratches and oil in non-character regions.

Number of Normal
Bearings

Number of Detected
Normal Bearings

Number of Bearings
with Depressions

Number of Detected
Bearings with
Depressions

52 52 16 16

Number of Bearings
with Scratches

Number of Detected
Bearings with

Scratches

Number of Bearings
with Oil

Number of Detected
Bearings with Oil

20 20 12 12

Detection Accuracy of
Normal Bearings

Detection Accuracy of
Bearings with
Depressions

Detection Accuracy of
Bearings with

Scratches

Detection Accuracy of
Bearings with Oil

100.00% 100.00% 100.00% 100.00%

False Alarm Rate Missing Alarm Rate

0.00% 0.00%

Table 5. Detection results of character depressions, character scratches, and shallow characters.

Number of Normal
Bearings

Number of Detected
Normal Bearings

Number of Bearings
with Character

Depressions

Number of Detected
Bearings with

Character Depressions

51 49 24 24

Number of Bearings
with Character

Scratches

Number of Detected
Bearings with

Character Scratches

Number of Bearings
with Shallow

Characters

Number of Detected
Bearings with Shallow

Characters

12 12 13 13

Detection Accuracy of
Normal Bearings

Detection Accuracy of
Bearings with

Character Depressions

Detection Accuracy of
Bearings with

Character Scratches

Detection Accuracy of
Bearings with Shallow

Characters

96.08% 100.00% 100.00% 100.00%

False Alarm Rate Missing Alarm Rate

3.92% 0.00%

It can be seen from Tables 2–4 that the detection of notches, abnormal dimensions, and
defects in non-character regions could almost reach 100% accuracy. Only the detection of
character defects has a 3.92% false alarm rate. We picked out these two wrong images and
found that the characters detected incorrectly were both “N, I, A”. After a series of checks,
it has been found that the feature vectors of these three characters were sensitive to the
endpoints of these letters, which led to false alarms.

4.3. Experimental Results and Analysis of Character Recognition

SPCPM proposed in this paper is an improvement and innovation method based on
Shen’s method [21]. Therefore, we have rebuilt Shen’s method and conducted a set of
control experiments with this article. The results are shown in Tables 6 and 7.



Machines 2021, 9, 40 21 of 24

Table 6. Spatial Pyramid Character Proportion Matching (SPCPM) results of character recognition.

Number of Normal
Characters

Number of Detected
Normal Characters

Number of Defective
Characters

Number of Detected
Defective Characters

753 626 247 247

Recognition Accuracy
of Normal Characters

Recognition Accuracy
of Defective Characters False Alarm Rate Missing Alarm Rate

83.13% 100.00% 16.87% 0.00%

Table 7. Character Proportion Matching (CPM) [21] results of character recognition.

Number of Normal
Characters

Number of Detected
Normal Characters

Number of Defective
Characters

Number of Detected
Defective Characters

753 562 247 242

Recognition Accuracy
of Normal Characters

Recognition Accuracy
of Defective Characters False Alarm Rate Missing Alarm Rate

74.63% 97.98% 25.37% 2.02%

The data in Tables 6 and 7 are drawn as histograms for intuitive comparison, as shown
in Figure 22. As shown in Figure 22, the SPCPM method is superior to the CPM method
in all indicators. The normal character recognition accuracy improves by nearly 9%, and
the false alarm rate reduces by 9 % accordingly. The defective character recognition rate
increases to 100%, and the missing alarm rate declines to 0%.

Figure 22. Comparison results between SPCPM and CPM [21].

It can be seen that neither SPCPM nor CPM had a high recognition accuracy for
normal characters, and there were two reasons. First, under the influence of defects in
non-character regions, the shape of characters changed slightly, resulting in the failure of
recognizing the characters correctly. Second, in order to control the missing alarm rate, we
had a relatively strict judgment basis for normal characters, and it was was to judge normal
characters as defective characters. It is found that most of the normal character recognition
errors were caused by defects in non-character regions, which could be detected before
character recognition, so the overall defect detection accuracy was not affected. Besides,
we also tested character recognition of Tesseract [40], the mainstream OCR system, and the
results were not satisfactory. The overall recognition rate of Tesseract was about 52%.
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5. Conclusions

The research work in this paper aims at detecting bearing surface defects, and this
paper proposes a novel surface defect detection method, Segmented Embedded Rapid
Defect Detection Method for Surface Defects (SERDD). This method has the advantages
of high speed, high accuracy, high portability, low error, and low cost. In this method,
defect detection is embedded and fused into specific suitable image processing steps to
complete image processing and defect detection tasks at the same time. This paper also
proposes Image Self-Stitching-and-Cropping (ISSC) to prevent characters from being cut.
Moreover, this paper proposes a method of character recognition based on Spatial Pyramid
Character Proportion Matching (SPCPM), which can efficiently and accurately recognize
specific characters. Experiments have proved that the algorithm can accurately and quickly
detect defects such as depressions, scratches, notches, oil, shallow characters, abnormal
dimensions on the bearing, and is state-of-the-art in peer research.

However, much follow-up work remains to be done:

1. Improve the accuracy of SPCPM.
2. Deal with some possible situations of particular defects.
3. Set up the related execution equipment to build a defect detection system for bearing

surface defects.
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