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Abstract: Assessing passenger cars’ dynamic performance is a critical aspect for car industries, due to
its impact on the overall vehicle safety evaluation and the subjective nature of the involved handling
and comfort metrics. Accordingly, ISO standards, such as ISO 4138 and ISO 3888, define several
specific driving tests to assess vehicle dynamics performance objectively. Consequently, proper
evaluation of the dynamic behaviour requires measuring several physical quantities, including accel-
erations, speed, and linear and angular displacements obtained after instrumenting a vehicle with
multiple sensors. This experimental activity is highly demanding in terms of hardware costs, and
it is also significantly time-consuming. Several approaches can be considered for reducing vehicle
development time. In particular, simulation software can be exploited to predict the approximate
behaviour of a vehicle using virtual scenarios. Moreover, motion platforms and detail-scalable
numerical vehicle models are widely implemented for the purpose. This paper focuses on a cus-
tomized simulation environment developed in C++, which exploits the advantages of object-oriented
programming. The presented framework strives to perform concurrent simulations of vehicles with
different characteristics such as mass, tyres, engine, suspension, and transmission systems. Within
the proposed simulation framework, we adopted a hierarchical and modular representation. Vehicles
are modelled by a 14 degree-of-freedom (DOF) full-vehicle model, capable of capturing the dynamics
and complemented by a set of scalable-detail models for the remaining sub-systems such as tyre,
engine, and steering system. Furthermore, this paper proposes the usage of autonomous virtual
drivers for a more objective evaluation of vehicle dynamic performances. Moreover, to further
evaluate our simulator architecture’s efficiency and assess the achieved level of concurrency, we
designed a benchmark able to analyse the scaling of the performances with respect to the number of
different vehicles during the same simulation. Finally, the paper reports the proposed simulation

environment’s scalability resulting from a set of different and varying driving scenarios.

Keywords: autonomous vehicle; vehicle dynamics; torque vectoring; object-oriented programming;
real-time simulations

1. Introduction

Over the last decades, automotive original equipment manufacturers (OEM) aimed to
make their cars increasingly smarter, more autonomous, and safer by widening the use
of efficient electronic control units (ECUs) and active systems to improve both vehicle
performance and passengers’ safety. Since the anti-lock braking system (ABS) was intro-
duced for serial production, several advanced driver-assistance systems (ADASs) have
been developed for vehicle longitudinal, lateral, and vertical stability control [1-3]. As a
result, modern cars, even those belonging to the city car segment, feature a plethora of
ADAS functions. Besides the older longitudinal dynamics controllers, such as the ABS [4],
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the adaptive cruise control (ACC) [5], and the traction control system (TCS) [6-9], other
functionalities recently arose targeting the lateral stability enhancement, such as the elec-
tronic stability program (ESP) [10,11], the active front steering (AFS) [12-14] and the direct
yaw moment controller (DYC) for torque vectoring (TV) transmission control [15]. Even if
less common than the former systems, vertical dynamics control systems, such as the active
suspension control (ASC) [16] and the active body control (ABC) [17], are being introduced
in top-end passenger cars to improve safety and ride comfort. As a result, the complexity
of modern vehicle control systems is reaching hardly sustainable levels, with up to over
100 million lines of source code distributed on board among over 100 ECUs [18].

ADASs generally improve vehicle safety and stability, but their effectiveness relies
on the accurate estimation of the instantaneous vehicle dynamic states [19], enabled by
a variety of onboard sensors, such as inertial navigation sensors (INS), global navigation
satellite systems (GNSS), and wheel speed and orientation sensors [20,21]. Besides estima-
tion, ADASs rely on model predictive control strategies to correctly perform their safety
actions, thus requiring the embedding of a numerical vehicle dynamic (VD) model on
the ECU.

In the literature, different dynamic models and formulations estimate vehicle per-
formance in terms of longitudinal, vertical, and lateral dynamics. Advanced simulations
delivering high-accuracy predictions rely on high-fidelity rigid multibody (MB) mod-
els [22,23], which can be eventually enriched by vehicle body concept models to account
for the body flexibility as well [24,25]. However, the MB modelling approach is quite
complex and demands high computational effort. It may lead to MB models with more
than 100 bodies, each of which needs an accurate definition of constraints, geometry, and
mass properties. Although new efficient ECUs have been developed and recent studies
tried to achieve real-time (RT) MB simulation of vehicle dynamics in embedded applica-
tions [26-28], the computation is often too expensive with respect to the limited amount of
computational resources of an embedded platform, and it is not always compatible with
hard RT constraints.

The use of concept models, consisting of lumped-parameter models commonly used
during the early-stage design phases, emerged for targeting RT embedded applications.
Concept models represent a computationally more affordable alternative to the corre-
sponding high-fidelity MB models, enabling an accurate and reliable RT prediction of the
vehicle dynamic behaviour as required by ADASs [29]. The lumped-parameter vehicle
models (LPVMs) consist of a few bodies and a limited number of degrees of freedom
(DOFs) with associated relatively low computational cost. Their complexity ranges from
simple 2 DOF quarter-car or bicycle models, which can capture only the basic vertical and
either the longitudinal or the lateral behaviour of a vehicle, up to 15-18 DOF full-vehicle
models (FVMs) [30-32]. Offering a good compromise between predictive accuracy and
computational efficiency, FVMs already proved their effectiveness in supporting the ve-
hicle dynamic simulation for RT driver-in-the-loop (DiL) testing [33,34]. A human driver
immersed into a virtual-reality scenario acts on a virtual vehicle, enabling the assessment
both subjectively and objectively of the influence of multiple design choices related, but
not limited to, VD performances. Furthermore, FVMs are also enabling the development of
more recent control strategies aiming for autonomous driving, such as fuzzy controllers [35]
and/or proportional-integral-derivative (PID) controllers [36,37].

This work’s contribution builds on the verge of extending the above-mentioned DiL
approach, including some of the more basic autonomous driving functions, such as steering
and throttle control, leading to the concept of virtual-driver-in-the-loop (vDiL) simulations.
The proposed vDiL approach enables comparative vehicle design assessments on different
driving scenarios while achieving a more objective benchmark than the human driver-in-
the-Loop (hDiL) alternative. In practice, a replica of the virtual driver program is used in
different simulations, while varying the design parameters under investigation.

In particular, this paper describes the main components and the overall architecture
of a simulation environment required to evaluate the vehicle dynamic performances using
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vDiL. The presented simulation environment enables the validation of the vDiL results,
while investigating more complex scenarios where the impact of the ADAS or even of the
autonomous driving functions can be assessed [38,39].

The presented research originates from the need for simulating several independently
controlled actors, while allowing to choose among several vehicle variants, with different
types of models or different control strategies. This motivation led us to design a new
simulation environment, which was deeply inspired from a predecessor simulator [34].
The new architecture relies on the benefits of the object-oriented programming paradigm
and exploits a hierarchical evaluation of the vehicle sub-modules, which is also more
representative of the hierarchical organization of the plethora of different ECUs used in
modern cars.

Within the proposed simulation framework and for the sake of describing a first
proof-of-concept validation, we adopted a 14 DOF FVM that exchanges information with
scalable-detail models of the remaining core vehicle sub-systems such as tyre, engine, and
steering system. Moreover, a vDiL agent module was programmed. In particular, our
testing scenarios exemplify how the proposed simulation platform enabled the comparison
of the lateral dynamics of two vehicles with identical physical characteristics, but with two
different strategies for driving torque distribution, i.e., a simplified mechanical differential
model [40,41] and a DYC-based torque vectoring (TV) system [42].

The paper is organized as follows. Section 2 describes the concurrent software ar-
chitecture of the simulator. Section 3 explains the implemented driving tests. Section 4
discusses the computational efficiency of the proposed simulator and presents the achieved
level of concurrency. Moreover, it discusses the numerical results achieved during constant
steer (CS) and constant radius (CR) tests according to ISO 4138, along with a severe lane
change (SLC) manoeuvre as defined by ISO 3888 standard. Section 5 provides concluding
remarks and an overview of future developments.

2. Architecture of the Simulation Environment

A new simulation environment was designed and implemented using modern C++
(ISO 17), although we were inspired by an existing simulator [34]. Thanks to the modern
object-oriented programming (OOP) paradigm, the proposed simulator offers a modular
infrastructure, where code procedures and data are hierarchically grouped and system-
atically encapsulated into objects [27]. This allows a more effective representation of the
increasing level of complexity required from the vehicle industry market.

In fact, the OOP paradigm is based on the concept of “objects”, which can contain
data, in the form of fields or attributes or properties, but also embed specific functionalities,
in the form of procedures or methods able to process the known data and produce new
objects. Exploiting OOP, the design of the environment was more natural, as it allowed
to focus on expressing the interactions and hierarchies between objects, more than on
the data transactions and the corresponding procedures typical of the older procedural
programming approach. Moreover, we exploited polymorphism to effectively capture the
modular but also hierarchical variety of objects necessary for the dynamic simulation of
several variants of a vehicle. In fact, the proposed software architecture more naturally
supports the implementation of a multitude of alternatives for each sub-component of the
vehicle, while it captures the interfaces between them at a more abstract level. Thanks to
OOP and modern C++ (ISO 17), the vehicle simulation manager class was programmed to
be thread-safe: several variants of a vehicle can be simulated concurrently.

Figure 1 depicts the proposed modular architecture. The simulation starts by instanti-
ating one or more vehicle objects. Each vehicle is created as an independent instance of the
same abstract object class, which relies on several interacting sub-objects such as the car,
tyre, powertrain, or driver sub-modules. Each vehicle instance retrieves the information
required for its own construction, using a set of specific configuration files. Different
configuration files define the required vehicle properties such as car geometry, inertial
parameters, masses, steering system, engine, tyres, and suspension characteristics. Each of
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the input files must obey a prescribed syntax format, although OOP would also allow the
easy implementation of the possibility of supporting different input file syntaxes.

Initialization Simulation core cycle for a single car GUI
Configuration files | 14 DOF FULL VEHICLE MODEL | User interface
Geometry - Masses - Steer CAR ; IL‘ DATA
%  suspensions P ¢ 8 2 it
vi_: ., File .car F;,‘ : RT plot
“L Ny Current dynamic
: state
Steer F ~ DATA
i Ex,Fy,F Z i
L o gad s Cnput s
= ﬁ Driving/Braking | i
= torque - Veh‘lctle
N Y asse
Road Trajectory évheed( Steer ‘ User Command
Profile File .trj % pee A PIDs param
; Throttle VIRTUAL
F"l.c jrd gcﬁ]rr/ gtrtaEL — brver [ Target Speed
‘\ﬂ g POWERTRAIN clutch Target Trajectory
Mz corr. factor

Figure 1. Diagram of the simulator architecture.

The number and type of the input files depend on the type of object used to define the
simulation: if the user sets a driving torque distribution strategy based on a DYC for TV,
two more configuration files are required to provide the reference yaw rate lookup table
(LUT) defined as explained in [42].

At least two more additional configuration files are used to define road profiles and
trajectories that vehicles must follow during the same prescribed ride simulation.

After the file-based initialization stage, the proposed simulation environment enables
the concurrent simulation of different vehicles, each encapsulating its characteristics and
control strategies. A dedicated graphical user interface (GUI) was instrumental for editing
at runtime the different PID parameters, allowing for a better and more efficient fine-tuning
of the dedicated PID-based virtual driver’s behaviour.

The RT vehicle simulations, in response to the virtual driver’s actions, are computed
using a very efficient numerical model for vehicle dynamic simulation based on a lumped-
parameter formulation with 14 DOFs. A set of output signals, such as car position, forces,
and torques, are sent to the GUI enabling RT data visualization, in addition to their storage
for post-processing purposes.

To prevent slowing down the simulation execution, the communication towards the
GUI application was delegated within a lower-priority thread using a client-Server User
Datagram Protocol (UDP).

The vehicle simulation is based on a modular architecture relying on four sub-moduels:
car, powertrain, tyre, and virtual driver. Each of the sub-module classes was defined al-
lowing its evaluation to run in a separated thread, with no dependencies either on the
states of the other sub-modules or on the communication towards the external GUI. To
prevent concurrency issues such as race condition and deadlock and achieve thread-safety,
we used the shared-memory paradigm, enriched by the usage of a set of dedicated mem-
ory mutexes. All the above-mentioned concurrent programming features are supported
natively by modern C++ since the 2011 revision, making the current version of the code
immediately portable towards different platforms, including the embedded ones.

2.1. Car Sub-Module

The car sub-module represents the core of the system implementing the lumped-
parameter FVM. It is an explicit solver for the set of ordinary differential equations (ODEs)
governing the dynamic equilibrium of the vehicle chassis (three translational and three
rotational equilibrium conditions) and of each of the wheels (translational equilibrium in
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the vertical direction and rotational equilibrium around the spindle axis). The 14 DOFs of
the model are as follows:

the 3 rigid-body rotations (pitch, roll, and yaw) of the vehicle body;

the 3 rigid-body translations of the vehicle body;

the vertical displacement of each wheel centre w.r.t. to the vehicle body;
the rotation of each wheel around the spindle axis.

2.2. Powertrain Sub-Module

The powertrain sub-module is responsible for computing the angular velocity of the
engine, from which the engine torque, Ty, is derived by interpolating the specified maxi-
mum torque-velocity curve and scaling it by the throttle command. The torque distribution
to the driving wheels is considered even for a vehicle equipped with a conventional me-
chanical differential, while the following uneven distribution is implemented for a vehicle
equipped with DYC for TV:

R

Tqw = 0.5 X (Td — Mzd W) 1)
M,R

Tigw = 0.5 x (Td + Zd W) )

where Tyq,, and Tyq,, are the torque values delivered to the right and left wheel, respectively,
while Ry, is the wheel radius, d the vehicle half-track width, and M is the yaw moment
required by the desired understeer correction calculated as described in [43]. For the
vehicles used in the proposed simulation, we used Ry, = 0.3135 m and d = 1.4673 m.

2.3. Tyre Sub-Module

The tyre sub-model is responsible for simulating the road-tyre interaction and com-
puting the vertical, longitudinal, and lateral forces, along with the longitudinal and lateral
slip coefficients. At each simulation step, vertical forces are estimated by a simple spring—
damper model. Longitudinal and lateral forces are computed using a simplified version of
Pacejka Magic Formula, as explained in detail in [41].

2.4. Virtual Driver

The driver sub-module of the simulation software is used to control the throttle
position, the steering wheel angle, and the M, correction factor using three nested PID reg-
ulators as described in [40,41] and depicted in Figure 2. A kinematic model is implemented
to derive the steering angle at wheels, based on the actual value of the steering input given
by the virtual driver and on the steering ratio.

Three independent PID controllers are used to calculate the values of the steering
wheel angle (), the throttle command (th), and, in the case of a vehicle with DYC, the
desired yaw moment, Mz, input.

Considering the discrete-time nature of the simulation, all the implemented PID
regulators rely on a classical formulation as follows:

k — —
5(k) = b5 ect(k) + Kis 2 eqt(i) dt + Kys ect(k) dict(k 1) 3)
i=0
k — —
th(k) = Kp es(k) + Kim ) es(i) dt + Kam es(k) j’f(k 1) @
i=0
& T k - T k - 1
Mz(k) = OpM, eyr(k) + KiMZ Z eyr(i) dt + KdMZ Cy ( ) CZ}:’ ( ) (5)

i=0
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where e is the current cross-track error determined as the distance of the current vehicle
position from the reference trajectory; es represents the error between the target speed and
the current vehicle speed; and ey, is the error between the current vehicle yaw rate and
the desired yaw rate. The index, k, is the number of the current iteration timestep in a
range from 1 to N, with N representing the total number of simulation timesteps. The
integration time, dt, represents the time interval between two consecutive iteration steps. It
is worth noting than the duration of dt has a remarkable influence on the overall quality and
stability of simulation. On the one hand, an extremely low value of dt corresponds to a very
dense time discretization, thus assuring a high dynamic accuracy of the simulation results.
However, this can lead to numerical instabilities when using discrete derivatives, such as
in Equations (3)-(5), in presence of numerical noise [40]. On the other hand, higher values
of dt generally reduce the dynamic accuracy, leading to information loss and potentially
instability and divergency when simulating highly dynamic problems. In the scope of
this paper, we used values of the integration time, dt, between 0.001 and 0.005 s, assuring
a good compromise between accuracy and stability corresponding to these values. K5,
Kis, and Kq; are the proportional, integral, and derivative gains, respectively, for the steer
regulator; Ky, Kjy, and Kgy, are the proportional, integral, and derivative gains for the
throttle regulator; Kpm , Kim,, and Kqyy, are the proportional, integral, and derivative gains
for the throttle regulator.

+

Desired
Position

Desired
Speed

Current position

\ 4

angle Yaw Rate
PID —p LUT
steer

Desired
Yaw Rate ¥+ PID 17 =P
DYC

= Vehicle
Current yaw rate

Current Speed

PID Throttle >
Throttle

VIRTUAL DRIVER

Figure 2. Nested PID controllers behind the virtual driver agent module.

3. Virtual Driving Tests

Several driving tests were carried out based on ISO standard manoeuvres to assess
the effectiveness of the implemented simulator. The most relevant tests carried out were
those concerning the evaluation of lateral behaviour of the vehicles by simulating the CS,
CR, and SLC manoeuvre.

The first two tests are defined by the ISO 4138 standard for the characterization
of understeering characteristics of the vehicle, and the last one is defined by ISO 3888
standard. The ISO 4138 defines a standardization of the driving manoeuvres to evaluate
the understeer gradient of a vehicle. It consists in varying a specific feature of the vehicle
motion, while measuring and keeping constant other motion features.

Table 1 summarizes the constant, varied, and measured features for each of the two tests.

Table 1. ISO 4138—test conditions.

Test Method

Constant Varied Measured or Calculated

Constant Radius
Constant Steer

Radius Speed Steering wheel angle
Steering wheel angle Speed Radius




Machines 2021, 9, 41 7 of 16
As explained in [43], in dynamic conditions, the steering angle 6 is given by
180 L
b = — E‘i‘K ay (6)

where L is the wheelbase length of the vehicle; R, the turning radius; and ay, the lateral
acceleration. The understeer gradient, K, can be derived as follows:

ET

ay

@)

The lateral acceleration depends on the longitudinal velocity, s, and the turning
radius, being

ay = R (8)

In real driving scenarios, vehicles are equipped with specific sensors to measure 5,
s, and ay from which the understeer gradient, K, is derived, while in the virtual tests
proposed in this work, those values are estimated by the implemented 14 DOF FVM.

CR and CS manoeuvres can be used alternatively, being the steady-state equilibrium
independent of the actual testing method. The values of speed, steering wheel angle, or
turning radius can be obtained holding constant any of the three, while varying the second
in a controlled way and measuring the third one.

In the implemented CR manoeuvre, the two vehicles are driven by virtual PID-
controlled drivers at different speeds along the trajectory shown in Figure 3, consisting
of a clothoid, along which the vehicles are accelerated until reaching a speed of 30 km/h,
followed by a circular trajectory of standard constant radius, R, equal to 100 m. At that
point, the steering angle is increased up to the value of the Ackerman angle, which is
calculated, for the test vehicles with a wheelbase L =2.73 m, as

180 L
) = — —=156° 9
Ack T R ( )

400 f

0 100 200 300 400
X ml

Figure 3. Constant radius test trajectory.

Once the vehicles are on the circular path, the virtual drivers accelerate from 30 to
100 km/h following a stepwise constant law, with a step of 5 km/h, while ensuring that the
lateral acceleration increases by a rate not exceeding 0.1 m/s? /s, as ISO 4138 suggests. At
each step, the speed is kept constant to ensure that steady-state conditions are maintained
for at least 3 s. The understeer gradient is then calculated using Equation (7).

In addition to the CR test, a CS manoeuvre is implemented as well, during which the
steering wheel angle is kept fixed and equal to the Ackerman value 5, and the speed,
s, of the vehicles is steadily increased from 50 to 160 km/h, again with a step of 5 km/h.
With the imposed steering wheel angle, as the longitudinal speed increases, the car travels
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along circular trajectories with decreasing or increasing radii for an oversteering and an
understeering behaviour, respectively.

When the car reaches steady-state conditions for a given speed value, s, the actual
turning radius is calculated as follows:

R(s) = (10)

The understeer gradient, K, is finally derived from Equation (7).

A third driving test has been implemented as well, consisting of an SLC manoeuvre
defined according to the ISO 3888 standard. The latter defines the geometry of a test
track, with a total length of 61 m, designed to enable the assessment of obstacle avoidance
performance and road-holding capability of a vehicle. The test track, which is depicted in
Figure 4 and defined by the dimensional specifications listed in Table 2, is marked by cones
that are placed as shown in the schematic of Figure 5.

)

. | , .
' / ! i
1 F 2 i3 i 4 i 5

|

Figure 4. Track for the severe lane change (SLC) test.

Table 2. Obstacle avoidance track dimension.

. Length Lane Offset Width b
Section
[m] [m] [m]
1 12 - 1.1 vehicle width + 0.25
2 13.5 - -
3 11 1 vehicle width + 1
4 125 - -
5 12 - 1.3 vehicle width + 0.25 (min > 3)
5 [ eeees
- /_\
>4 ............
Cone
—— desired path
- 5 1 L y
150 200 250 300

X [m]
Figure 5. SLC desired trajectory.

To perform this manoeuvre, the virtual driver strives to follow as closely as possible
the specific test trajectory that follows the middle line of the test track, as shown in Figure 5.
In particular, the virtual vehicle is expected to enter Section 1 with the highest gear
position that allows guaranteeing a minimum engine speed of 2000 RPM during the
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manoeuvre, and after 2 m the driver must release the throttle and drive up to the end of
Section 5. The test is considered faultless if the vehicle never crosses the track borders as
defined by the cones.

As explained in Table 3, these manoeuvres must be executed using a different combi-
nation of the available PID regulators. To perform these tests at the same time, it is possible
to instantiate several driver and vehicle objects with different characteristics. Specifically,
three different drivers and two vehicles were instantiated. Each driver was assigned one
of the above manoeuvres to be executed with two different vehicles. The following table
shows the assigned manoeuvres and the activation status of the regulators for steer and
throttle control in each test.

Table 3. Regulators’ activation status during the driving tests.

Driver ID Manoeuvre Steer Controller Throttle Controller
driver 1 CR enabled enabled
driver 2 CS disabled enabled
driver 3 SLC enabled enabled only before Section 1

CR, constant radius; CS, constant steer.

If the vehicle is configured to use the TV strategies, the DYC PID-controller is also
activated in any of the three driver cases.

The two vehicles instantiated are identical, except for the driving torque distribution
system: vehicle 1 is equipped with a simplified mechanical differential that performs
an even torque distribution, while vehicle 2 exploits uneven driving torque distribution,
controlled by a DYC approach. This further clarifies the advantages of OOP and the
high flexibility of the proposed simulator that can simulate different driving scenarios
concurrently. The advantages of concurrent simulation and the results of these driving
tests are illustrated, respectively, in Sections 4.1 and 4.2.

4. Results and Discussion

This section describes the numerical assessments conducted to highlight the benefits
of the concurrent simulation architecture introduced using OOP (as discussed in Section 2)
and to validate the proposed vDiL approach’s usability. All results presented in this section
have been achieved through simulations executed on a workstation featuring an Intel®
Core™ i7-6700HQ 2.60 GHz quad-core eight-thread processor, and 16 GB of DDR4 RAM,
running on Windows 10 Enterprise operating system and assigning to the correspondent
process higher execution priority. At first, tests assessed the level of concurrency with an
increasing number of independent vehicles’ simulation. Afterwards, we demonstrated the
potential of the platform and the presented virtual driver approach by simulating a set of
comparative standard driving tests, which are typically adopted for performing vehicle
dynamics objective evaluations on test tracks.

4.1. Assessment of the Concurrency Level

As described in Section 2, this paper deals with the advantages of a concurrent
simulation architecture, which allows multiple—and potentially although not necessarily
different—car simulations to run concurrently.

In other words, the proposed concurrent software architecture is a necessary but not
sufficient condition to achieve parallel RT execution of different car simulations. Con-
currency refers just to the possibility of having various simulations to be launched inde-
pendently. In contrast, achieving RT parallel simulation demands additional complexity
levels: considering the time variable, mechanisms for enforcing time-related deadlines,
and implementing dedicated constructs for coordinating and orchestrating the operations
among all the parallel threads.

The proposed concurrent architecture can achieve real-time execution for all the
simultaneously executed jobs provided that the available computing resources can meet
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computational time([s]
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N
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the computational demands at any time. Therefore, it is interesting to consider a benchmark
focusing on the scaling of the computational performances for an increasing number of
concurrently simulated vehicles. Moreover, it not only allows the further evaluation of the
efficiency of the proposed architecture but also assess the achieved level of concurrency.

We performed 10 different simulations with an increasing number of identical vehi-
cles, during a path-following scenario. This context represents the more computationally
demanding simulation case, because virtual drivers use all the regulators illustrated in
Figure 2.

Figure 6a shows the trend of minimum and maximum computation times required
when issuing an increasing number of parallel simulations. The almost constant value of
the minimum curve tells us that there is always at least one thread, thus at least one parallel
simulation, able to conclude the job with a performance comparable to the single-vehicle
simulation case. Conversely, a sever degradation of the slowest thread performances
happens only from above six concurrently simulated vehicles. This suggests that the
computational resources within the used workstation are saturated only when we launch
more than six concurrent threads: in all those cases, only a subset of the threads are able to
stay resident on the CPU, while the remaining threads’ operations start to be scheduled
asynchronously. Although the computational efficiency is out of the scope of this paper, it
is worth noticing also that all the simulations were completed within the real-time barrier,
showing great potential for achieving parallel real-time simulation of several vehicles.
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T

10 —
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Min 7| rd
————— RT barrier - /,/
& 4 b hardware limit for e
3 ~
7 e perfect parallelism .~
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r
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number of vehicles number of vehicles
(a) (b)

Figure 6. Simulator performances (a) and speed-up (b).

Figure 6b depicts the results of the same benchmark, in terms of the achieved speed-up
levels, computed as the ratio between the time required to complete all the simulations
sequentially and the time required from the slowest thread simulation. This chart highlights
more clearly that our architecture achieves almost perfect parallelism (slope of the blue
curve is lower than that of the dash-dotted line) with a linear scaling up to 6 simulations.
Above this value, the speed-up tends to saturate to a value of 4 x, which indicates how
our implementation can fully saturate all the CPU cores (dashed line). Fluctuations of
the speed-up above 4x are achieved due to the Intel hyperthreading functionality, which
allows the scheduling of the execution of more threads on the same physical core.

Figure 7 further clarifies the implication of concurrent execution of six identical
vehicles, all performing the same CR driving test task for 10 s, showing the evolution of the
time ratio between the software execution time, (texec), and the vehicle time, tg;,, calculated

as follows:
texec (S)

time ratio =
tsim (S)

(11)
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Figure 7. Thread execution time for the six concurrent simulations.

As illustrated, the simulation of each vehicle is not synchronized with the simulation
of the other vehicles, but it is performed asynchronously. The different simulations execute
at a variable computing speed and the virtual vehicles are substantially free to race. It
is worth mentioning that, with the simulations running on a pre-emptive multitasking
operative system, with other programs running, the execution is not deterministic as it may
be greatly influenced by several other factors suddenly changing the amount of available
computing power, such as graphics drivers interrupts, other programs possibly running
in the background, or system updates. At the very beginning, all the simulating threads
are warming-up, which is consistent with the fact that the CPU frequency is rising and
transitioning from lower energy-saving states to its maximum power. After few iterations,
we can appreciate that vehicles 3 and 4 start being the slowest threads, but they were allo-
cated more resources than the others, becoming the first two threads to complete. Similarly,
simulations of vehicles 5 and 6 advanced with a degrading performance, asymptotically
converging towards a time ratio threshold of about 0.27 s. As reported also in Figure 6a, for
the six simulations case, the total execution time ranged between 2.357 and 2.693 s, which
is also reported at the rightmost side of the chart in Figure 7. It is also worth noting that
all the simulations were executed maintaining a large margin from the real-time barrier,
corresponding to a time ratio equal to 1.

4.2. Results of the Virtual Driving Tests

This section illustrates an example of the simulation output for the CR, CS, and SLC
driving tests. As mentioned in Section 3, we used three drivers and two vehicles, with
identical characteristics but with different torque distribution strategies. Each driver was
assigned a specific manoeuvre, as indicated in Table 3, to be done with the two different
vehicles. In particular, vehicle 1 was supposed to be equipped with a simplified mechanical
differential, providing an even torque distribution to the driving wheels. Vehicle 2 was
designed to have a driving torque distribution based on two different TV strategies, to be
used in two different driving modes. In the two modes, indicated as mode 1 and mode
2, the implemented TV-based DYC allows, respectively, to reduce and to increase the
understeer gradient in comparison to vehicle 1 (corresponding to the baseline in Figure 8).
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Figure 8. Desired understeering behaviour for vehicle 2 in mode 1 and mode 2.

Figure 8 shows the dynamic steering angle curve, 5:1an as a function of the lateral
acceleration, ay, for vehicle 1 (baseline) along with the desired curves for vehicle 2 (mode 1
and mode 2) when the vehicle speed is set to 25 m/s and a ramp signal is used to define the
steering wheel input between 0° and 120° [43]. Vehicle 1 shows an oversteering behaviour
for lateral acceleration values up to 5.5 m/s?. Thanks to DYC, vehicle 2 in mode 1 shows
an oversteering behaviour up to 6.5 m/s? of lateral acceleration, while an understeering
behaviour is achieved by vehicle 2 in mode 2 in the entire range of lateral acceleration.

The implemented DYC allows following the desired 6§yn (a;) curve, for each driving

mode of vehicle 2, with a maximum error of £0.5°, as shown in Figures 9 and 10, where
the achieved trend of understeer gradient for vehicle 1 and vehicle 2 is calculated with the
CR and CS tests, respectively.

0.5 0.5 T T T T ~
04 F | = vehidel E 04 F | — vehidel ,I
_________ . i . . ’
03 vehicle 2 /] 03t vehicle 2 v
0.2 E 0.2
o0 o0
S 0.1 E 35 01
g g
Z 0T v 0
-0.1 E -0.1
-0.2 4 -0.2
=03 F 4 =03
—04 L L N L L —0.4 L L L L L
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Lateral acceleration [g] Lateral acceleration [g]
(a) (b)

Figure 9. Understeer gradient estimated by implementing the CR test for vehicle 1 and for vehicle 2 in driving mode 1 (a)

and in driving mode 2 (b).

As mentioned in the previous section, in steady-state conditions the two test methods
are equivalent, as confirmed by the substantially identical results achieved in the simulated
manoeuvres executed by driver 1 and driver 2.

As expected, using the driving mode 1 with driver 1, the understeer gradient of vehicle
2 is always lower than that of vehicle 1, while it is higher in driving mode 2 in the full
range of lateral acceleration.

Figure 11 shows the turning radius as a function of the longitudinal speed, measured
in steady-state conditions during the CS test conducted by driver 2, which further clarifies
the differences in the lateral behaviour of two test vehicles.
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Figure 10. Understeer gradient estimated by implementing the CS test for vehicle 1 and for vehicle 2 in driving mode 1 (a)

and in driving mode 2 (b).
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Figure 11. Turning radius as a function of the longitudinal speed for vehicle 2 in both driving mode 1 (a) and in driving
mode 2 (b), as compared to vehicle 1.

As expected, for a given value of the longitudinal velocity controlled by driver 2 as
indicated in Section 3, due to the higher oversteering in driving mode 1, vehicle 2 travels
along circular paths with a radius that is lower than the one exhibited by vehicle 1. Instead,
when driving mode 2 is selected, the DYC forces vehicle 2 to travel along higher-radius
circular trajectories as compared to vehicle 1.

The effects of TV on the lateral dynamic response of the two vehicles are evaluated also
using driver 3 to perform the SLC testing manoeuvre. In this test, driver 3 drives the vehicle
until Section 1 of the test track by achieving a longitudinal speed of 14 m/s. With this entry
speed value, driver 3 on vehicle 1 fails to complete the manoeuvre. Instead, due to the
effects of DYC on the lateral dynamics, which enhances the oversteering performances,
vehicle 2 is able to complete the driving test faultlessly.

Figure 12 shows the paths followed by the centres of gravity (CGs) of vehicle 1 and
vehicle 2, along with the desired path during the manoeuvre. Considering the track
dimensions defined in Table 2 and a vehicle width of 1.4673 m for Sections 3 and 5 of the
test track, the maximum allowed absolute values of the position error are 0.5 and 0.76
m, respectively. Vehicle 2, subject to DYC in driving mode 1, proves able to correctly
complete the manoeuvre, with a maximum position error of about 0.12 m. This is due to
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the higher level of oversteer that makes vehicle 2 more responsive to the driver’s steering
input, allowing it to travel on a path with a lower-curvature radius than vehicle 1 at the
same speed.

5 T T T T T T T T
vehicle 1
4ar vehicle 2 |7
CoTies
3 ones
E 2
>~ 1

_2 1 1 1 1 1 1 L 1
40 50 60 70 80 9 100 110 120 130
X[m]

Figure 12. SLC test results: simulated path for vehicle 1 and vehicle 2 in mode 1.

5. Conclusions

This paper proposed a C++ simulation platform for multiple and concurrent vDiL
simulations of road vehicles. In the proposed scheme, a software driver, replacing the
human driver interaction, calculates all the possible control signals such as throttle, brake,
and steering angle, based on the asked manoeuvre and relying on a set of nested PID
controllers. The preliminary evaluations of the simulator showed great potential for
achieving the concurrent simulation of several vehicles.

Several variants of a vehicle can be simulated with different characteristics such as
geometry, mass properties, tyres, and transmission. The simulation environment relies on
a modular and hierarchical architecture, which can more naturally be further expanded in
several ways: additional modules could be dedicated to perform other dynamic tests; other
modules could create an interface with more advanced virtual driving scenario software;
yet other modules could expand the current functionality implementing more complex
hardware interfaces such as a motion platform. In this latter scenario, our simulator
could be instrumental for comparing human-in-the-loop (HiL) with vDiL during closed-
loop manoeuvres, similar to those presented in this study or even more complex driving
scenarios on virtual tracks. Future works are planned to add modular and scalable-detail
sub-system models and more advanced control strategies, such as fuzzy or predictive
control models.

The advantages of using the vDiL approach have been illustrated. The reported test
results demonstrate the capabilities of the proposed simulator and its effectiveness in
evaluating the dynamic performance of multiple passenger cars with low computational
impact. The possibility of instantiating several vehicles, even different variants of a vehicle,
joined to the possibility of different virtual drivers has been achieved using the OOP
paradigm. The resulting software environment represents a flexible tool for simulating
different driving scenarios, enabling several research activities in line with the recent
automotive industry demands.
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