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Abstract: This research focuses on the minimum process of classifying three upper arm movements
(elbow extension, shoulder extension, combined shoulder and elbow extension) of humans with three
electromyography (EMG) signals, to control a 2-degrees of freedom (DoF) robotic arm. The proposed
minimum process consists of four parts: time divisions of data, Teager–Kaiser energy operator
(TKEO), the conventional EMG feature extraction (i.e., the mean absolute value (MAV), zero crossings
(ZC), slope-sign changes (SSC), and waveform length (WL)), and eight major machine learning
models (i.e., decision tree (medium), decision tree (fine), k-Nearest Neighbor (KNN) (weighted KNN,
KNN (fine), Support Vector Machine (SVM) (cubic and fine Gaussian SVM), Ensemble (bagged trees
and subspace KNN). Then, we compare and investigate 48 classification models (i.e., 47 models
are proposed, and 1 model is the conventional) based on five healthy subjects. The results showed
that all the classification models achieved accuracies ranging between 74–98%, and the processing
speed is below 40 ms and indicated acceptable controller delay for robotic arm control. Moreover,
we confirmed that the classification model with no time division, with TKEO, and with ensemble
(subspace KNN) had the best performance in accuracy rates at 96.67, recall rates at 99.66, and precision
rates at 96.99. In short, the combination of the proposed TKEO and ensemble (subspace KNN) plays
an important role to achieve the EMG classification.

Keywords: electromyography (EMG); upper-limb motion; machine-learning; robot arm control

1. Introduction

Electromyography (EMG) has been considered an important area for study, especially
as biological signal control to promote quality of life and self-reliance. There are several
areas of applications of EMG, such as disease diagnosis, rehabilitation evaluation, and
control strategy for the assistive device. EMG provides rich information obtained by
muscle contractions [1–9]. Recent research developments in the field of robots have led
to robotic arm control with very complex mechanical capabilities, sensor technology, and
control algorithms that do not necessarily make it easier for users to intuitively control
robots [2–4,10]. Hand gesture recognition (HGR) is an important part of human–robot
interaction that studies to recognize commands from humans by the development of robot
technology. HGR models are human–computer systems that predict what motions or
gestures were conducted and when a human conducted the gesture [3–5,7,8,10]. Human–
robot interactions (HRI) are a wide research field. Currently, those systems are used in many
applications and researches such as robot control systems [11–23], medical recognitions
and rehabilitations [24–27], and intelligence assistive devices [5,12,15,28–34].
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There are several issues related to the process of controlling the robotic arm using the
EMG signal. Noise, motion artifact, and crosstalk have an impact on the prediction inten-
tion. The high variability of EMG signal amplitude estimation is a challenge in developing
the control system [3,23,35–38]. Ideally, an assistive upper limb robotic arm system should
fulfill several criteria such as an intuitive interface for the user; robust system; adaptive
to the user; minimal number of sensors and not sensitive to the precise muscle place-
ment; short and easy training/calibration (possibly without training); provide feedback
(closed-loop control); low cost and simple computational; and produce good estimation
with perceivable delays (real-time) [4,8,14,25,29,39]. Laksono et al. [9] proposed a model
mapping for three EMG channels from three different muscles to control the robotic arm to
predict three movements of the upper arm. This simple model can discriminate against
three upper arm movements by considering the influence of the targeted muscle position
when doing the movement; the characteristics of the muscles that perform the activity will
play an important role in carrying out the movement. Even though the model was capable
of performing motion mapping, the overall reported accuracy in 76.64% was still not opti-
mal. The existing research on the classification of hand movements based on EMG signals
still faces many challenges such as weak robustness, the minimum number of sensors,
short training data, low computational process, and good prediction with perceivable time
delay [2,4,10,34,39–43]. To address these challenges, we propose models for classifying
upper arm movements that conducted 1- and 2-degrees of freedom (DoF) motions using
machine learning. The HGRs include three movements (elbow extension, shoulder exten-
sion, combined shoulder and elbow extension), and a case with no movement (default
condition). Simultaneous and independent control of multi degrees of freedom (DoF),
such as elbow and shoulder joints, is the main target of the machine learning-based model
for controlling robotic arm using electromyography (EMG) signal [44]. This research also
focused on the positioning of the EMG sensor on the target muscles that are directly in-
volved in the movement of the upper arm. In this research, we introduce machine-learning
models for controlling the robot arm that EMG signals are obtained from three muscles as a
multi-channel (three channels of input). This three-motion produced four class predictions
consist of motion 1, motion 2, motion 3, and no motion.

Machine learning has been used extensively in HGR and other EMG-related studies
targeting different functionalities. Several kinds of research focusing particularly on elbow
and shoulder movements have been reported in Triwiyanto et al. [13], Antuvan et al. [14],
Martinez et al. [16], Hassan, Abou-Loukh, and Ibraheem [19], Young et al. [45], Jiang et al. [46],
and Tsai et al. [47], classification of upper limb motion using extreme learning machines
by Antuvan et al. [39], using Support Vector Machine (SVM) [6,8,19,48], investigation of
shoulder muscle activation pattern recognition using machine learning by Jiang et al. [46],
and detection movements using EMG signal for upper limb exoskeletons in reaching tasks
by Trigili et al. [49]. These papers verify the suitability of EMG signals for biopotential
intelligent robot control.

The key to any EMG control is the measurement system in use. As expected, accurate
EMG signal recording increases the performance of the pattern recognizing model. In this
paper, the experiment was conducted systematically to investigate the impact of using
Teager–Kaiser energy operator (TKEO) and variable segmentation levels of EMG signal
input. To get better classification performance and try to tackle the challenges, we propose
the following framework to classify EMG signals for controlling a robotic arm. The use
of multi-channels for data retrieval has aided in recognition as it covers more muscle
areas. Hence, in this research the focus of EMG data collection is in three positions, namely
brachioradialis, biceps brachii, and deltoid to move the robotic arm. EMG processes such
as data segmentation had similarly been shown to better the results of discriminative
models [34]. We performed three levels of data segmentation. On the first level, no
segmentation was performed. On the second and third level, the EMG signal was split into
two or three segments of data and treated as distinct input to feature extraction process. To
overcome muscle activation signals, TKEO was used for onset detection [47,50,51]. TKEO
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method has been mainly used to enhance the magnitude and frequency of time-domain
signals without requiring the conversion of those signals to the frequency domain [41]. The
other preprocessing processes, such as normalization, rectification, and smoothing signals
using moving average, are commonly used by many researchers [47,52–54].

Feature extractions take an important role in machine learning. Features were ex-
tracted from the different EMG signal sources. The feature of EMG signals commonly
includes time-domain (TD) and frequency-domain (FD) feature. Feature extraction pro-
posed in this paper was multi-feature TD, which includes the mean absolute value (MAV),
zero crossings (ZC), slope-sign changes (SSC), and waveform length (WL) [47,52–55]. A
calibration phase was utilized to acquire training phase data. From this, we evaluated the
features as well as extent of the sampled data. In total, four classes (motion 1, motion 2,
motion 3, and no motion) were classified. Machine learning model classifiers were used as
a feasible decoder to predict the four movements. The results obtained in this study were
applied online for real-time implementation. The performance shown includes a fairly
accurate and consistent prediction accuracy. Three metric performances; accuracy, recall,
and precision were evaluated for evaluation of performance. In real-time processing, there
were various optimal controller delays in the literature review that reported below 500 ms
which is still feasible for real-time robotic control [4,8].

In this paper, we deployed a teleoperation HRI cooperating between surface EMG and
an upper-arm robotic, to fast-detect the user’s hand gesture intention. We implemented an
offline supervised machine-learning algorithm, using a set of five subject-independents.
The proposed system established various scenarios consisting of three-level variables of
segmentation signal, using TKEO, and classification types of the machine-learning model,
such as decision tree, k-Nearest Neighbor (KNN), SVM, and Ensemble. All machine-
learning algorithms are provided in the classification learner application in Matlab®. The
significant contribution of this study is to provide the results of investigations regarding
the optimal performance of the supervised machine-learning model using limited data
training to classify upper arm motions based on three EMG signal channel inputs from three
different target muscles and to control the robotic arm in teleoperation HRI simultaneous.

2. Materials and Methodology

Five healthy subjects participated as volunteers for the experiment. All of the participants
provided written informed consent letters following approval procedures (number 27–226) is-
sued by the Gifu University ethics committee and complying with the Helsinki declaration.
This experiment explored machine-learning approaches that can be useful in the prediction
of elbow and shoulder joint movements classification as an alternative to the modeled
equation for robotic controlling. The proposed experiment system used to describe the pro-
cess of controlling the robotic arm using EMG signal classification is illustrated in Figure
1. The subjects conducted upper limb motion which was similar to our previous research.
The experimental setup that included EMG measurements system, muscle position, data
acquisition, data analysis, and robotic control is described by Laksono et al. [9].

Machines 2021, 9, x FOR PEER REVIEW  4 of 13 
 

 

Figure 1. The proposed system for electromyography (EMG) controlled robotic arm. 

2.1. Feature Extraction Stage 

EMG signals are easily corrupted by the environment in the data acquisition process. 

Motions artifacts, crosstalk, baseline offset, and power line frequency may lead to distor‐

tion in the process classification [41,48,52,54,56,57]. We used an isolator to reduce the pow‐

erline frequency noise. Three EMG sensors were used to capture EMG signals and then 

they were used as inputs for the learning process. Teager–Kaiser energy operator (TKEO) 

was used for enhancing the amplitude and frequency of TD EMG signals without con‐

verting those signals to the FD [41–43]. TKEO was performed to enhance muscle activa‐

tion detection. The TKEO is denoted in Equation (1): 

𝛾 𝑥 𝑖 𝑥 𝑖 𝑥 𝑖 1 𝑖 1   (1)

Then, the conventional EMG feature extraction methods were employed to extract 

meaningful information for EMG signal classification. Each of them is explained below. 

Mean absolute value (MAV) was used as an onset  index to detect muscle activity. 

MAV is the average absolute value of EMG signal amplitude. MAV is a popular feature 

used in EMG hand movement recognition applications [55]. It is defined as 

𝑀𝐴𝑉
1
𝑀

|𝑋𝑖|  (2)

Waveform length (WL): WL is the cumulative length of the waveform overtime seg‐

ment. WL  is similar  to waveform amplitude,  frequency, and  time  [55]. The WL can be 

formulated as 

𝑊𝐿 |𝑋𝑖 1 𝑋𝑖|  (3)

Zero crossing (ZC) is the number of times that the amplitude values of EMG signal 

cross zero in the x‐axis. In the EMG feature, the threshold condition is used to avoid back‐

ground noise. ZC provides an approximate estimation of  frequency domain properties 

[55]. The calculation is defined as 

 𝑍𝐶 𝑓 𝑥 𝑥 ∩ |𝑥 𝑥 | 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  

𝑓 𝑥
1,     𝑖𝑓 𝑥 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0,                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(4)

Figure 1. The proposed system for electromyography (EMG) controlled robotic arm.
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2.1. Feature Extraction Stage

EMG signals are easily corrupted by the environment in the data acquisition process.
Motions artifacts, crosstalk, baseline offset, and power line frequency may lead to distortion
in the process classification [41,48,52,54,56,57]. We used an isolator to reduce the powerline
frequency noise. Three EMG sensors were used to capture EMG signals and then they were
used as inputs for the learning process. Teager–Kaiser energy operator (TKEO) was used
for enhancing the amplitude and frequency of TD EMG signals without converting those
signals to the FD [41–43]. TKEO was performed to enhance muscle activation detection.
The TKEO is denoted in Equation (1):

γ[x(i)] = x2(i)− x(i + 1)× (i− 1) (1)

Then, the conventional EMG feature extraction methods were employed to extract
meaningful information for EMG signal classification. Each of them is explained below.

Mean absolute value (MAV) was used as an onset index to detect muscle activity.
MAV is the average absolute value of EMG signal amplitude. MAV is a popular feature
used in EMG hand movement recognition applications [55]. It is defined as

MAV =
1
M

M

∑
i=1
|Xi| (2)

Waveform length (WL): WL is the cumulative length of the waveform overtime
segment. WL is similar to waveform amplitude, frequency, and time [55]. The WL can be
formulated as

WL =
M−1

∑
i=1
|Xi + 1− Xi| (3)

Zero crossing (ZC) is the number of times that the amplitude values of EMG signal
cross zero in the x-axis. In the EMG feature, the threshold condition is used to avoid back-
ground noise. ZC provides an approximate estimation of frequency domain properties [55].
The calculation is defined as

ZC =
N−1

∑
n=1

[ f (xn − xn+1) ∩ |xn − xn+1| ≥ threshold]

f (x) =
{

1, i f x ≥ threshold
0, otherwise

(4)

Slope-sign change (SSC): SSC is related to ZC. It is another method to represent
the frequency domain properties of EMG signal calculated in the time domain. The
number of changes between positive and negative slope among three sequential segments
is performed with threshold function for avoiding background noise in EMG signal [55]. It
is given by

SSC =
N−1

∑
n=2

[ f [(xn − xn−1)× (xn − xn+1)]]

f (x) =
{

1, i f x ≥ threshold
0, otherwise

(5)

2.2. Machine Learning (ML) Stage

The classification started with preparing data for the learning process. Data was
generated from three EMG channels recorded at a sampling rate of 2000 Hz with recording
times varying between 1.5–3 s per motion stored in the workspace. In total, five subjects
performed three motions. The data were segmented as follows; 60% for training and 40%
for performance validation.
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As mentioned, 40% of the data was reserved for testing/inferencing. The machine
learning models operate as shown in Figure 2. In this case, the learning algorithm is
fed with a pair of training data, which conventionally includes a response signal and a
corresponding correct signal, which acts as a teacher. After the learning phase, inferencing
can be made with the generated model. This output prediction based on weightings of the
learned model for accurate inferencing; the data supplied should be novel to the model
and hence the separation into testing data employed in the model.
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Figure 2 shows the proposed machine learning model subdivision (six scenario mod-
els) utilized in the systematic investigation of optimal controller. The data is subdivided
into two groups; processed with TKEO and without TKEO dataset. For each of the datasets,
three variations of data are applied with the variation of dividing the signal into no segment,
two segments, and three segments as inputs for training. Feature extraction is performed
on each of the models to arrive at a trained model. A total of 48 types of trained models
were investigated.

We used four features (MAV, WL, ZC, and SSC as multi-features from each channel)
for training in one segment as an input. As such, 13 predictor signals (features) and one
correct “teacher” signal were fed to the training model. For the second data input (using
two segments input for each channel), we used similar features resulting in 25 predictors.
Then, three segments were input in 37 predictors. It is worth noting that the same data was
fed to the two distinct groups for comparison purposes. In both cases, we used five-fold
cross-validation for accuracy estimation and to avoid overfitting.

A Matlab classification learner application that performs multiclass error-correcting
output code with the different learner models was employed. In this case, eight types
of machine learning learner models were employed; decision tree (medium), decision
tree (fine), KNN (weighted and fine), SVM (cubic and fine Gaussian SVM), Ensemble
(bagged trees and subspace KNN) were used. The hyperparameters for each classifier were
initialized with the default setting. All ML methods performed training data properly.
Based on the prediction performance (see Table 1), KNN (fine) and ensemble (subspace
KNN) algorithms had the best accuracy for the method using TKEO and the method
without using TKEO, respectively. These models were used for further analysis, shown in
the next section.

Ensemble classifier is a system made by combining different classifiers to produce
more safe and stable predictions [58]. The system is built with the N classifier that can
be single or multiple, while the classification is appropriate to the feature vector, for each
feature vector 1, each classifier yields the output value (the resulting output value is
counted). Then, the output of the ensemble classifier is determined by the number of votes.
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If the number of classifiers is, in fact, the average value of the classifier’s decision, it is
rounded off, and the ensemble classifier decision is determined. All feature vectors are
applied by this process [59]. We used the ensemble (subspace KNN) method using six
dimensions subspace and learner nearest neighbors using 30 learners.

One of the classifications of machine learning methods with advisory learning is KNN.
Under the structure from the training dataset, the classification is carried out according to
the nearest distance to points in a training data set. In this study, we used model type fine
KNN with k = 1 selected, and Euclidean distance calculation formulas were used.

Table 1. Accuracy of machine learning training model prediction performance.

Model
Decision

Tree
(Medium)

Decision
Tree (Fine)

KNN
(Weighted)

KNN
(Fine)

SVM
(Cubic)

SVM (Fine
Gaussian)

Ensemble
(Bagged

Trees)

Ensemble
(Subspace

KNN)

1 80.5% 80.5% 89% 89% 89% 82% 84.5% 92.5%
2 74.5% 74.5% 92% 95.5% 92% 75.5% 89.5% 96%
3 77% 77% 93.5% 94% 93% 74% 86% 95%
4 90% 90% 94.5% 96.5% 95% 95.5% 91.5% 96%
5 82% 82% 93% 96.5% 93.5% 92% 90% 96%
6 85% 85% 93.5% 97.5% 95.5% 94% 93.5% 98%

2.3. Performance Analysis

The performance of six trained models was compared based on classification accuracy.
The performance of the ML for each model is shown in Table 1 below. From the table,
accuracy ranged between 80.5–98%. The highest accuracy was selected as the target model
for evaluation. As such, Ensemble (subspace KNN) was chosen for model 1, 2, 3, and 6
while KNN (fine) was chosen for model 4 and 5.

The confusion matrix for five subjects is plotted in Figure 3. From the figure, all models
achieved significant performance with regard to accuracy. Motion prediction comparison
shows that the rank of accuracy class 2 (motion 2) is higher than the others, and class 3
(motion 3) is the lowest rank. The best accuracy is having a bigger number of true-positive
rates (TPR) than others and a smaller number of false-negative rates (FNR). Mostly all
training models have the value of TPR about 74–96.5% and the value of FNR about 0–
16%. Compared with 65 primary studies reviewed by Jaramillo-Yanez et al. regarding
the use of ML on HGR using the EMG signal, the accuracy of the classification model
resulted in a range of 70–100% [8]. We showed that all ML training models are working
and predicting properly.

The prediction performances in every motion were computationally analyzed using
three performance metrics: accuracy, recall, and precision. The classification accuracy
metric (see Equation (6)) is the ratio of motions perceived correctly among all of the test
data. The classification recall metric (Equation (7)) is the fraction of motions predicted
correctly for a class among the test data of this class. The precision metric (Equation (8)) is
the ratio of motion realized correctly from a class among the motions recognized by the
ML model as this class [8].

Accuracyuser(i) =
∑

g
j,k=1 ni,j,k

∑
g
j=1 ∑

g
k=1 ni,j,k

(6)

Recalluser(i)class(k) =
ni,k,k

∑
g
j=1 ni,j,k

(7)

Precisionuser(i)class(j) =
ni,j,j

∑
g
k=1 ni,j,k

(8)

where ni,j,k is the number of motions conducted by the subject i, which were recognized
by the model as j, but they were k. iєI = i1, i2, ..., iu is the set of test subjects, jєJ = j1, j2, ...,
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jg is the set of predicted classes, kєK = k1, k2, ..., kg is the set of actual classes, u is the total
number of test subjects, and g is the number of classes.
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3. Results and Discussion

Identifying multiple hand motions using a few EMG sensors and muscles is one of
the challenges for improving high levels of usability in controlling robotic hands, which
we are attempting to solve. The experiment was conducted systematically, and the results
are shown below.

The overall performance comparison for five subjects shows that the users could
achieve the acceptable percentage of performances, including accuracy (Figure 4), recall
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(Figure 5), and precision rates (Figure 6). The development of a machine learning model
that is used to discriminate EMG signals from three sensor inputs of three muscles for
three kinds of movements shows promising results. Scenarios of six models were used
based on the level of the frequency cut-out factor in the segmentation, whether or not using
TKEO is used, and the model classification. The results of the classifications performance
percentage of the five subjects are, for the accuracy rate, in the range of 65–100%, for the
recall rate, in the range 91–100%, while for the precision rate, in the range of 70–100%.
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Subject D reports the highest consistent accuracy results than the others, model 1
achieved the highest average percentages of accuracy at 97.67%, while model 6 obtained
the lowest at 86.33%(see Table 2). At least all the subjects reported consistent results for
recall rate, ranging from 96.97% to 99.67%. Subject A had the most consistent precision with
model 1 which reported an average precision of 96.99%. The reasons why the performances
are varied are because of motion artifacts and inconsistent motion issues.
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Table 2. Total performance index.

Model Accuracy Recall Precision

1 96.67% 99.66% 96.99%
2 94% 99.64% 94.31%
3 96% 99.29% 96.62%
4 86.67% 99.57% 86.92%
5 83.67% 97.7% 85.49%
6 86.33% 96.97% 89.31%
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Table 3 shows the processing time required for the different ML model classification.
The measured delay controller for the HGR model must reach optimal timing. Overall, all
the models that are used by the five subjects require less than 40 ms for processing speeds
of time data analysis (see Figure 7). The fastest average processing time is obtained by
model 4 at 2.7 ms, while the longest time is acquired by model 3 at 36.5 ms (see Table 3).
If the data collection time is less than 200 ms and the data analysis time is added, the
embedded system should be quite relevant to categorize as the real-time system [4,8,60,61].

Table 3. Average processing speed time of six models.

Model Average Time (s) SD

1 0.0314 0.0019
2 0.0345 0.0022
3 0.0365 0.0033
4 0.0027 0.0005
5 0.0031 0.0005
6 0.0020 0.0020

Based on the performance accuracy rates, recall rates, precision rates, and processing
time, model 1 (TKEO processing with no division inputs per channel using ensemble
subspace KNN) classification achieved the best performance. Model 1 hit accuracy rates
in 96.67%, recall rates 99.66%, and precision rates 96.99%, while model 5 (without using
TKEO, two segments input per channel, and four features with ensemble (subspace KNN)
classifier)) had the worst performance. Model 5 had performance accuracy rates, recall
rates, and precision rates of 86.33%, 96.97%, and 89.31%. Subject D showed more consistent
performance than others. Based on this study, using TKEO achieved better performance
results. However, inconsistent motions and motion artifacts are the main issue. Improving
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experiment setup for participants, such as giving a proper explanation and monitoring of
participants, can be done to decrease inconsistency.
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4. Conclusions

We designed 48 classification models for discriminating three EMG signals at three
upper limb motions and compared and evaluated the minimum parameters of feature
extractions and machine learning models with five healthy subjects’ data. The results
showed that all the proposed models achieved accuracy rates in the range of 74–98% and
the processing speed was below 40 ms, which is an acceptable delay for controlling a robotic
arm. Then, the best classification model was discriminated with 12-parameter-ensemble
(subspace KNN) accuracy rates of 96.67, recall rates of 99.66, and precision rates of 96.99.
The difference between the best model and the conventional model was TKEO. It seemed
that TKEO functioned to make the results of MAV, ZC, SSC, and WL stand out. Further
research will deal with classifying more than three upper motions with three EMG sensors.

Author Contributions: P.W.L., M.S. and K.M. made the conception and design of the study. P.W.L.,
M.S.A.b.S., T.K. and J.M. conducted experiments and analyzed data. P.W.L., T.K., M.S. and J.M. wrote
and edited this paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the Gifu University ethics (approval procedures number
27–226) issued by Gifu University ethics committee).

Informed Consent Statement: Written informed consent has been obtained from the patients (confi-
dential; not for publishing).

Data Availability Statement: Not applicable.

Conflicts of Interest: This paper has no conflicts of interest.

References
1. Sasaki, M.; Matsushita, K.; Rusydi, M.I.; Laksono, P.W.; Muguro, J.; Bin Suhaimi, M.S.A.; Njeri, P.W. Robot control systems using

bio-potential signals Robot Control Systems Using Bio-Potential Signals. AIP Conf. Proc. 2020, 2217, 020008. [CrossRef]
2. Farina, D.; Jiang, N.; Rehbaum, H.; Holobar, A.; Graimann, B.; Dietl, H.; Aszmann, O.C. The Extraction of Neural Information

from the Surface EMG for the Control of Upper-Limb Prostheses: Emerging Avenues and Challenges. IEEE Trans. Neural Syst.
Rehabil. Eng. 2014, 22, 797–809. [CrossRef]

http://doi.org/10.1063/5.0000624
http://doi.org/10.1109/TNSRE.2014.2305111


Machines 2021, 9, 56 11 of 13

3. Bi, L.; Feleke, A.; Guan, C. A review on EMG-based motor intention prediction of continuous human upper limb motion for
human-robot collaboration. Biomed. Signal Process. Control 2019, 51, 113–127. [CrossRef]

4. Parajuli, N.; Sreenivasan, N.; Bifulco, P.; Cesarelli, M.; Savino, S.; Niola, V.; Esposito, D.; Hamilton, T.J.; Naik, G.R.; Gunawardana,
U.; et al. Real-Time EMG Based Pattern Recognition Control for Hand Prostheses: A Review on Existing Methods, Challenges
and Future Implementation. Sensors 2019, 19, 4596. [CrossRef]

5. Meattini, R.; Benatti, S.; Scarcia, U.; De Gregorio, D.; Benini, L.; Melchiorri, C. An sEMG-Based Human–Robot Interface for
Robotic Hands Using Machine Learning and Synergies. IEEE Trans. Compon. Packag. Manuf. Technol. 2018. [CrossRef]

6. Toledo-Pérez, D.C.; Rodríguez-Reséndiz, J.; Gómez-Loenzo, R.A.; Jauregui-Correa, J.C. Support Vector Machine-Based EMG
Signal Classification Techniques: A Review. Appl. Sci. 2019, 9, 4402. [CrossRef]

7. Jia, G.; Lam, H.-K.; Liao, J.; Wang, R. Classification of electromyographic hand gesture signals using machine learning techniques.
Neurocomputing 2020, 401, 236–248. [CrossRef]

8. Jaramillo-Yánez, A.; Benalcázar, M.E.; Mena-Maldonado, E. Real-Time Hand Gesture Recognition Using Surface Electromyogra-
phy and Machine Learning: A Systematic Literature Review. Sensors 2020, 20, 2467. [CrossRef]

9. Laksono, P.W.; Matsushita, K.; Bin Suhaimi, M.S.A.; Kitamura, T.; Njeri, W.; Muguro, J.; Sasaki, M. Mapping Three Electromyog-
raphy Signals Generated by Human Elbow and Shoulder Movements to Two Degree of Freedom Upper-Limb Robot Control.
Robotics 2020, 9, 83. [CrossRef]

10. Simao, M.; Mendes, N.; Gibaru, O.; Neto, P. A Review on Electromyography Decoding and Pattern Recognition for Human-
Machine Interaction. IEEE Access 2019, 7, 39564–39582. [CrossRef]

11. Rubio, J.D.J.; Ochoa, G.; Mujica-Vargas, D.; Garcia, E.; Balcazar, R.; Elias, I.; Cruz, D.R.; Juarez, C.F.; Aguilar, A.; Novoa, J.F.
Structure Regulator for the Perturbations Attenuation in a Quadrotor. IEEE Access 2019, 7, 138244–138252. [CrossRef]

12. Tavakoli, M.; Benussi, C.; Lourenco, J.L. Single channel surface EMG control of advanced prosthetic hands: A simple, low cost
and efficient approach. Expert Syst. Appl. 2017, 79, 322–332. [CrossRef]

13. Triwiyanto, T.; Rahmawati, T.; Yulianto, E.; Mak’Ruf, M.R.; Nugraha, P.C. Dynamic feature for an effective elbow-joint angle
estimation based on electromyography signals. Indones. J. Electr. Eng. Comput. Sci. 2020, 19, 178–187. [CrossRef]

14. Antuvan, C.W.; Ison, M.; Artemiadis, P. Embedded Human Control of Robots Using Myoelectric Interfaces. IEEE Trans. Neural
Syst. Rehabil. Eng. 2014, 22, 820–827. [CrossRef]

15. Fukuda, O.; Tsuji, T.; Kaneko, M.; Otsuka, A. A human-assisting manipulator teleoperated by EMG signals and arm motions.
IEEE Trans. Robot. Autom. 2003. [CrossRef]

16. Martinez, D.I.; De Rubio, J.J.; Vargas, T.M.; Garcia, V.; Ochoa, G.; Balcazar, R.; Cruz, D.R.; Aguilar, A.; Novoa, J.F.; Aguilar-Ibanez,
C. Stabilization of Robots With a Regulator Containing the Sigmoid Mapping. IEEE Access 2020, 8, 89479–89488. [CrossRef]

17. Bin Suhaimi, M.S.A.; Matsushita, K.; Sasaki, M.; Njeri, W. 24-Gaze-Point Calibration Method for Improving the Precision of
AC-EOG Gaze Estimation. Sensors 2019, 19, 3650. [CrossRef]

18. Sánchez-Velasco, L.E.; Arias-Montiel, M.; Guzmán-Ramírez, E.; Lugo-González, E. A Low-Cost EMG-Controlled Anthropomor-
phic Robotic Hand for Power and Precision Grasp. Biocybern. Biomed. Eng. 2020, 40, 221–237. [CrossRef]

19. Hassan, H.F.; Abou-Loukh, S.J.; Ibraheem, I.K. Teleoperated robotic arm movement using electromyography signal with wearable
Myo armband. J. King Saud Univ. Eng. Sci. 2019. [CrossRef]

20. Aguilar-Ibanez, C.; Suarez-Castanon, M.S. A Trajectory Planning Based Controller to Regulate an Uncertain 3D Overhead Crane
System. Int. J. Appl. Math. Comput. Sci. 2020, 29, 693–702. [CrossRef]

21. Rusydi, M.I.; Sasaki, M.; Ito, S. Affine Transform to Reform Pixel Coordinates of EOG Signals for Controlling Robot Manipulators
Using Gaze Motions. Sensors 2014, 14, 10107–10123. [CrossRef]

22. García-Sánchez, J.R.; Tavera-Mosqueda, S.; Silva-Ortigoza, R.; Hernández-Guzmán, V.M.; Sandoval-Gutiérrez, J.; Marcelino-
Aranda, M.; Taud, H.; Marciano-Melchor, M. Robust Switched Tracking Control for Wheeled Mobile Robots Considering the
Actuators and Drivers. Sensors 2018, 18, 4316. [CrossRef] [PubMed]

23. Wang, N.; Lao, K.; Zhang, X. Design and Myoelectric Control of an Anthropomorphic Prosthetic Hand. J. Bionic Eng. 2017, 14,
47–59. [CrossRef]

24. Nascimento, L.M.S.D.; Bonfati, L.V.; Freitas, M.L.B.; Junior, J.J.A.M.; Siqueira, H.V.; Stevan, J.S.L. Sensors and Systems for Physical
Rehabilitation and Health Monitoring—A Review. Sensors 2020, 20, 4063. [CrossRef] [PubMed]

25. Fang, C.; He, B.; Wang, Y.; Cao, J.; Gao, S. EMG-Centered Multisensory Based Technologies for Pattern Recognition in Rehabilita-
tion: State of the Art and Challenges. Biosensors 2020, 10, 85. [CrossRef] [PubMed]

26. Qidwai, U.; Ajimsha, M.; Shakir, M. The role of EEG and EMG combined virtual reality gaming system in facial palsy
rehabilitation—A case report. J. Bodyw. Mov. Ther. 2019, 23, 425–431. [CrossRef] [PubMed]

27. Chowdhury, A.; Raza, H.; Meena, Y.K.; Dutta, A.; Prasad, G. An EEG-EMG correlation-based brain-computer interface for hand
orthosis supported neuro-rehabilitation. J. Neurosci. Methods 2019, 312, 1–11. [CrossRef] [PubMed]

28. Vujaklija, I.; Farina, D.; Aszmann, O.C. New developments in prosthetic arm systems. Orthop. Res. Rev. 2016, 8, 31–39. [CrossRef]
29. Ramírez-Martínez, D.; Alfaro-Ponce, M.; Pogrebnyak, O.; Aldape-Pérez, M.; Argüelles-Cruz, A.-J. Hand Movement Classification

Using Burg Reflection Coefficients. Sensors 2019, 19, 475. [CrossRef] [PubMed]
30. Campeau-Lecours, A.; Cote-Allard, U.; Vu, D.-S.; Routhier, F.; Gosselin, B.; Gosselin, C. Intuitive Adaptive Orientation Control for

Enhanced Human–Robot Interaction. IEEE Trans. Robot. 2019, 35, 509–520. [CrossRef]

http://doi.org/10.1016/j.bspc.2019.02.011
http://doi.org/10.3390/s19204596
http://doi.org/10.1109/TCPMT.2018.2799987
http://doi.org/10.3390/app9204402
http://doi.org/10.1016/j.neucom.2020.03.009
http://doi.org/10.3390/s20092467
http://doi.org/10.3390/robotics9040083
http://doi.org/10.1109/ACCESS.2019.2906584
http://doi.org/10.1109/ACCESS.2019.2941232
http://doi.org/10.1016/j.eswa.2017.03.012
http://doi.org/10.11591/ijeecs.v19.i1.pp178-187
http://doi.org/10.1109/TNSRE.2014.2302212
http://doi.org/10.1109/TRA.2003.808873
http://doi.org/10.1109/ACCESS.2020.2994004
http://doi.org/10.3390/s19173650
http://doi.org/10.1016/j.bbe.2019.10.002
http://doi.org/10.1016/j.jksues.2019.05.001
http://doi.org/10.2478/amcs-2019-0051
http://doi.org/10.3390/s140610107
http://doi.org/10.3390/s18124316
http://www.ncbi.nlm.nih.gov/pubmed/30544520
http://doi.org/10.1016/S1672-6529(16)60377-3
http://doi.org/10.3390/s20154063
http://www.ncbi.nlm.nih.gov/pubmed/32707749
http://doi.org/10.3390/bios10080085
http://www.ncbi.nlm.nih.gov/pubmed/32722542
http://doi.org/10.1016/j.jbmt.2019.02.012
http://www.ncbi.nlm.nih.gov/pubmed/31103130
http://doi.org/10.1016/j.jneumeth.2018.11.010
http://www.ncbi.nlm.nih.gov/pubmed/30452976
http://doi.org/10.2147/ORR.S71468
http://doi.org/10.3390/s19030475
http://www.ncbi.nlm.nih.gov/pubmed/30682797
http://doi.org/10.1109/TRO.2018.2885464


Machines 2021, 9, 56 12 of 13

31. Rahman, S. Machine Learning-Based Cognitive Position and Force Controls for Power-Assisted Human–Robot Collaborative
Manipulation. Machines 2021, 9, 28. [CrossRef]

32. Zhou, S.; Yin, K.; Fei, F.; Zhang, K. Surface electromyography–based hand movement recognition using the Gaussian mixture
model, multilayer perceptron, and AdaBoost method. Int. J. Distrib. Sens. Netw. 2019, 15. [CrossRef]

33. Khushaba, R.N.; Kodagoda, S.; Takruri, M.; Dissanayake, G. Toward improved control of prosthetic fingers using surface
electromyogram (EMG) signals. Expert Syst. Appl. 2012, 39, 10731–10738. [CrossRef]

34. Mukhopadhyay, A.K.; Samui, S. An experimental study on upper limb position invariant EMG signal classification based on
deep neural network. Biomed. Signal Process. Control 2020, 55, 101669. [CrossRef]

35. Ko, A.J.; Latoza, T.D.; Burnett, M.M. A practical guide to controlled experiments of software engineering tools with human
participants. Empir. Softw. Eng. 2013, 20, 110–141. [CrossRef]

36. Faber, M.; Bützler, J.; Schlick, C.M. Human-robot Cooperation in Future Production Systems: Analysis of Requirements for
Designing an Ergonomic Work System. Procedia Manuf. 2015, 3, 510–517. [CrossRef]

37. Huang, Y.; Chen, K.; Zhang, X.; Wang, K.; Ota, J. Joint torque estimation for the human arm from sEMG using backpropagation
neural networks and autoencoders. Biomed. Signal Process. Control 2020, 62, 102051. [CrossRef]

38. Márquez-Figueroa, S.; Shmaliy, Y.S.; Ibarra-Manzano, O. Optimal extraction of EMG signal envelope and artifacts removal
assuming colored measurement noise. Biomed. Signal Process. Control 2020, 57, 101679. [CrossRef]

39. Antuvan, C.W.; Bisio, F.; Marini, F.; Yen, S.-C.; Cambria, E.; Masia, L. Role of Muscle Synergies in Real-Time Classification of
Upper Limb Motions using Extreme Learning Machines. J. Neuroeng. Rehabil. 2016, 13, 1–15. [CrossRef]

40. Englehart, K.K.; Hudgins, B. A Robust, Real-Time Control Scheme for Multifunction Myoelectric Control. IEEE Trans. Biomed.
Eng. 2003, 50, 848–854. [CrossRef] [PubMed]

41. Samuel, O.W.; Asogbon, M.G.; Geng, Y.; Al-Timemy, A.H.; Pirbhulal, S.; Ji, N.; Chen, S.; Fang, P.; Li, G. Intelligent EMG Pattern
Recognition Control Method for Upper-Limb Multifunctional Prostheses: Advances, Current Challenges, and Future Prospects.
IEEE Access 2019, 7, 10150–10165. [CrossRef]

42. Nougarou, F.; Campeau-Lecours, A.; Massicotte, D.; Boukadoum, M.; Gosselin, C.; Gosselin, B. Pattern recognition based on
HD-sEMG spatial features extraction for an efficient proportional control of a robotic arm. Biomed. Signal Process. Control 2019, 53,
101550. [CrossRef]

43. Rabin, N.; Kahlon, M.; Malayev, S.; Ratnovsky, A. Classification of human hand movements based on EMG signals using
nonlinear dimensionality reduction and data fusion techniques. Expert Syst. Appl. 2020, 149, 113281. [CrossRef]

44. Krasoulis, A.; Nazarpour, K. Myoelectric digit action decoding with multi-label, multi-class classification: An offline analysis. Sci.
Rep. 2020, 1–10. [CrossRef]

45. Young, A.J.; Smith, L.H.; Rouse, E.J.; Hargrove, L.J. A comparison of the real-time controllability of pattern recognition to
conventional myoelectric control for discrete and simultaneous movements. J. Neuroeng. Rehabil. 2014, 11, 1–10. [CrossRef]

46. Jiang, Y.; Chen, C.; Zhang, X.; Chen, C.; Zhou, Y.; Ni, G.; Muh, S.; Lemos, S. Shoulder muscle activation pattern recognition based
on sEMG and machine learning algorithms. Comput. Methods Programs Biomed. 2020, 197. [CrossRef]

47. Tsai, A.-C.; Hsieh, T.-H.; Luh, J.-J.; Lin, T.-T. A comparison of upper-limb motion pattern recognition using EMG signals during
dynamic and isometric muscle contractions. Biomed. Signal Process. Control 2014, 11, 17–26. [CrossRef]

48. Cai, S.; Chen, Y.; Huang, S.; Wu, Y.; Zheng, H.; Li, X.; Xie, L. SVM-Based Classification of sEMG Signals for Upper-Limb
Self-Rehabilitation Training. Front. Neurorobotics 2019, 13, 1–10. [CrossRef] [PubMed]

49. Trigili, E.; Grazi, L.; Crea, S.; Accogli, A.; Carpaneto, J.; Micera, S.; Vitiello, N.; Panarese, A. Detection of movement onset using
EMG signals for upper-limb exoskeletons in reaching tasks. J. Neuroeng. Rehabil. 2019, 16, 1–16. [CrossRef]

50. Kaiser, J.F. Some useful properties of Teager’s energy operators. In Proceedings of the 1993 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP 1993), Minneapolis, MN, USA, 27–30 April 1993; volume 3, pp. 149–152.

51. Li, X.; Zhou, P.; Aruin, A.S. Teager–Kaiser Energy Operation of Surface EMG Improves Muscle Activity Onset Detection. Ann.
Biomed. Eng. 2007, 35, 1532–1538. [CrossRef]

52. Phinyomark, A.; Khushaba, R.N.; Scheme, E. Feature Extraction and Selection for Myoelectric Control Based on Wearable EMG
Sensors. Sensors 2018, 18, 1615. [CrossRef]

53. Karabulut, D.; Ortes, F.; Arslan, Y.Z.; Adli, M.A. Comparative evaluation of EMG signal features for myoelectric controlled
human arm prosthetics. Biocybern. Biomed. Eng. 2017, 37, 326–335. [CrossRef]

54. Chowdhury, R.H.; Reaz, M.B.I.; Ali, M.A.B.M.; Bakar, A.A.A.; Chellappan, K.; Chang, T.G. Surface Electromyography Signal
Processing and Classification Techniques. Sensors 2013, 13, 12431–12466. [CrossRef]

55. Phinyomark, A.; Phukpattaranont, P.; Limsakul, C. Feature reduction and selection for EMG signal classification. Expert Syst.
Appl. 2012. [CrossRef]

56. Gopura, R.A.R.C.; Bandara, D.S.V.; Gunasekara, J.M.P.; Jayawardane, T.S.S. Recent Trends in EMG-Based Control Methods for
Assistive Robots. In Electrodiagnosis in New Frontiers of Clinical Research; IntechOpen: London, UK, 2013; pp. 237–268.

57. Soedirdjo, S.D.H.; Merletti, R. Comparison of different digital filtering techniques for surface EMG envelope recorded from
skeletal muscle. In Proceedings of the 20th Congress of the International Society of Electrophysiology and Kinesiology (ISEK
2014), Rome, Italy, 15–18 July 2014.

58. Rokach, L.; Schclar, A.; Itach, E. Ensemble methods for multi-label classification. Expert Syst. Appl. 2014, 41, 7507–7523. [CrossRef]

http://doi.org/10.3390/machines9020028
http://doi.org/10.1177/1550147719846060
http://doi.org/10.1016/j.eswa.2012.02.192
http://doi.org/10.1016/j.bspc.2019.101669
http://doi.org/10.1007/s10664-013-9279-3
http://doi.org/10.1016/j.promfg.2015.07.215
http://doi.org/10.1016/j.bspc.2020.102051
http://doi.org/10.1016/j.bspc.2019.101679
http://doi.org/10.1186/s12984-016-0183-0
http://doi.org/10.1109/TBME.2003.813539
http://www.ncbi.nlm.nih.gov/pubmed/12848352
http://doi.org/10.1109/ACCESS.2019.2891350
http://doi.org/10.1016/j.bspc.2019.04.027
http://doi.org/10.1016/j.eswa.2020.113281
http://doi.org/10.1101/2020.03.24.005710
http://doi.org/10.1186/1743-0003-11-5
http://doi.org/10.1016/j.cmpb.2020.105721
http://doi.org/10.1016/j.bspc.2014.02.005
http://doi.org/10.3389/fnbot.2019.00031
http://www.ncbi.nlm.nih.gov/pubmed/31214010
http://doi.org/10.1186/s12984-019-0512-1
http://doi.org/10.1007/s10439-007-9320-z
http://doi.org/10.3390/s18051615
http://doi.org/10.1016/j.bbe.2017.03.001
http://doi.org/10.3390/s130912431
http://doi.org/10.1016/j.eswa.2012.01.102
http://doi.org/10.1016/j.eswa.2014.06.015


Machines 2021, 9, 56 13 of 13

59. Noor, A.; Uçar, M.K.; Polat, K.; Assiri, A.; Nour, R. A Novel Approach to Ensemble Classifiers: FsBoost-Based Subspace Method.
Math. Probl. Eng. 2020, 2020. [CrossRef]

60. Rasool, G.; Iqbal, K.; Bouaynaya, N.; White, G. Real-Time Task Discrimination for Myoelectric Control Employing Task-Specific
Muscle Synergies. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 98–108. [CrossRef] [PubMed]

61. Smith, L.H.; Hargrove, L.J.; Lock, B.A.; Kuiken, T.A. Classification Error and Controller Delay. IEEE Trans. Neural Syst. Rehabil.
Eng. 2011, 19, 186–192. [CrossRef] [PubMed]

http://doi.org/10.1155/2020/8571712
http://doi.org/10.1109/TNSRE.2015.2410176
http://www.ncbi.nlm.nih.gov/pubmed/25769166
http://doi.org/10.1109/TNSRE.2010.2100828
http://www.ncbi.nlm.nih.gov/pubmed/21193383

	Introduction 
	Materials and Methodology 
	Feature Extraction Stage 
	Machine Learning (ML) Stage 
	Performance Analysis 

	Results and Discussion 
	Conclusions 
	References

