
machines

Article

Aeroelastic Response of Aircraft Wings to External Store
Separation Using Flexible Multibody Dynamics

Aykut Tamer

����������
�������

Citation: Tamer, A. Aeroelastic

Response of Aircraft Wings to

External Store Separation Using

Flexible Multibody Dynamics.

Machines 2021, 9, 61. https://

doi.org/10.3390/machines9030061

Academic Editors: Florian Ion Tiberiu

Petrescu, Jiaying Zhang, Michael I.

Friswell and Alexander Shaw

Received: 30 January 2021

Accepted: 11 March 2021

Published: 13 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: c© 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mechanical Engineering, Imperial College London, London SW7 2AZ , UK;
a.tamer@imperial.ac.uk

Abstract: In aviation, using external stores under the wings is a common method of carrying payload
or fuel. In some cases, the payload can be rigidly attached to the wing. However, stores must often be
ejected during flight for aircraft, such as military type, which carry drop tanks and missiles. This may
cause the wing to respond dynamically with increasing amplitudes, due to the impulsive load of
ejection and the change of total mass. This is especially critical in aircraft with highly flexible wings,
such as those with high aspect ratios. In this case, it is crucial to evaluate the wing response to store
separation, which requires a suitable simulation environment that is able to support nonlinear and
multidisciplinary analysis. To address such a need, this work presents the use of flexible multibody
dynamics in the simulation of wing response to store separation. To demonstrate, a highly compliant
wing was selected with a rigid body that was mounted on the wing to represent an external store.
The time marching simulation of the wing before and after the store separation was presented to
show the features and benefits of the method.

Keywords: aircraft store separation; aeroelasticity; flexible multibody dynamics

1. Introduction

An external store is a component that is required when there is no available space
inside an aircraft’s body. A classic application of external stores is to the weapons or
drop tanks used in combat aircraft, which have been very common since the early days
of aviation [1]. Recently, unmanned aerial vehicles (UAVs) have also started carrying
wing-mounted stores, which are typically weapons for combat purposes [2]. With an
increasing future interest in UAVs [3], especially due to them being a low-cost alternative
to conventional combat aircraft [4], it is expected that the adoption of this role will continue
to increase. In brief, manned and unmanned aircraft both carry external stores for ejection
at some point during a mission.

These external stores are usually positioned under the wing, alhough sometimes under
or above the fuselage is preferred. Depending on the store weight, size, and geometry,
store separation causes two consequences: (i) a change in aircraft configuration and, hence,
wing behavior, and (ii) the transient response of the wing and store during the short period
of the separation process. Whilst the first case can be considered to be two distinct aircraft,
the latter should consider the two configurations. Therefore, the store ejection has an
intrinsic characteristic that should be handled cautiously. In particular, the separation of
external stores from an aircraft wing during flight is a safety concern. An obvious issue
is the strike of the store after being released. To address this, the trajectory of the stroke
needs to be carefully estimated. This is usually achieved through conducting high fidelity
computational fluid dynamics simulations [5,6]. In most safe separation studies, the wing
is assumed to be rigid. Still, there are some works that consider the effect of wing elasticity
on the store separation process [7–9]. In these studies, the focus is on the store trajectory,
rather than the response of the wing.

In addition to the wing-store strike, the response of the wing to the store separation
due to impulsive load induced by the ejection and change in the mass distribution carried
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by the structure is another safety issue. There are no reported incidents that are related to
wing response to store separation, but recent works show that there is an increased interest
in this problem due to the prevalence of more compliant wing structures. For example,
dynamic loads that are associated with local impulsive excitation are obtained using mode
displacement and force summation methods in refs. [10,11] investigated the aeroelastic
behavior of wings due to store ejection using fluid–structure coupling. The structural model
is a linear model that is obtained using a Finite Element Method. Additionally, a frequency-
domain method using linear FEM is used in Ref. [12] to compute wing response. Linear
structural models could provide accurate results for relatively stiff wings. However, as
wing compliance increases, this could lead to moderate and large deformations. As a result,
non-linear behavior may arise due to changes in structural, dynamic, and aerodynamic
loads. Therefore, the resulting wing response could be very different from that of a linear
structure. As in the case of any non-linear dynamical system, the wing could experience
limit cycle oscillations or chaotic response [13,14]. Therefore, the assumption of linearity can
result in misleading results as the non-linear effects due to the wing flexibility increasing.
A better approach would be to use a method that can support nonlinear simulations.

The problem of store separation is, in general, time-dependent and non-linear. Such
problems could be handled using spectral methods [15,16] or time marching simulations.
This work prefers the latter and it presents the use of flexible multibody dynamics to
simulate the wing aeroelastic response to store separation. When considering the efficient
handling of large deformations and rotations and the ease of simulating non-linear time-
dependent problems, flexible multibody dynamics is a promising method in solving aircraft
store separation problems. To the author’s knowledge, this work is the first utilization of
multibody dynamics in the stability assessment of aircraft wings releasing external stores
during flight. A solver with an extensive aeroelastic library was selected to achieve realistic
results, which includes geometrically exact beam formulations, and static and unsteady
aerodynamics. The aeroleastic response of the wing is analyzed using time marching
simulations of the wing, both with and without store separation.

The contents of the paper are organized, as follows. Section 2 describes the method
and presents a verification of the method using a simple mechanical system. In Section 3, a
high aspect ratio aircraft is explained to show the basic elements that are used to model the
problem. Section 4 presents the analysis results and demonstrates the use of multibody
dynamics in the dynamic response analysis of a high aspect ratio wing. Section 5 concludes
the paper.

2. Method

This section describes the method of simulating a high aspect ratio wing response to
store separation and then verifies its use for the separation aspect using a two degree of
freedom model.

2.1. Multibody Dynamics

Aircraft wings are lightweight structures, and some are even specially made compliant
to increase payload carrying capacity or flight efficiency. As a result, wings can demonstrate
non-linear behavior with moderate to large deformations. Additionally, store separation
changes the configuration of the simulation model, which requires special attention. There-
fore, the method that is used to compute the wing response to store separation should be
a non-linear and comprehensive solver. This work uses MBDyn open-source multibody
dynamics code [17]. MBDyn has been developed at the Aerospace Science and Technology
Department of Politecnico Di Milano and it contains a wide range of elements, including
an extensive fixed and rotary wing aeronautics library. MBDyn simulates heterogeneous
dynamical system that are based on first principles. In other words:
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Mẋ = p (1)

ṗ = f(ẋ, x, t) + φT
/xλ (2)

φ(x) = 0 (3)

differential algebraic equations are directly solved [18]. MBDyn can provide the following
capabilities to its users:

• nonlinear dynamics of rigid and elastic bodies;
• geometrically exact beam and shell elements;
• lumped and super elements;
• smart materials, electric and hydraulic networks and active control;
• essential fixed-wing and rotorcraft aerodynamics; and,
• links to external solvers for co-simulation of multiphysics problems, such as Computa-

tional Fluid Dynamics (CFD) and terradynamics.

Being an open-source code, MBDyn is extensively used in research and development.
Some examples include aircraft maneuver simulations with coupled CFD [19], the simula-
tion of tiltrotor flight mechanics [20], aeroservoelastic analysis of wind turbines [21], and
the trajectory optimization of robotics [22].

2.2. Verification

Multibody dynamics is a well-established discipline of computational mechanics and
it has been verified and validated extensively against problems of distinct characteristics
and variable complexity. Still, the separation of two bodies using MBDyn has not been
done, and there is a need to verify the approach on a simple problem before applying it to a
complex multidisciplinary problem regarding the separation of two bodies. To demonstrate
the capability of the method in solving store separation, experiments that are conducted in
a wind tunnel would be the most suitable way. In the absence of the necessary resources,
an alternative would be to verify against an analytical solution. The latter approach is
acceptable, since the simulation tool has been verified in many complex problems [23–25]
and only the separation aspect of the problem needs further attention.

For this purpose, a two degree of freedom system mass-spring-damper lumped
parameter model was selected, as shown in Figure 1. In this form, the two degree of
freedom model has an analytical solution and, hence, can be easily compared to a solution
obtained using multibody dynamics. Figure 1 presents the schematic of the verification
problem. The problem consists of two masses, one of which (m1) is connected to the ground
by a spring (k1) and damper (c1). The grounded mass is connected to another mass (m2),
which is free on its other side. In the initial condition, these two masses were interconnected
by spring (k2) and damper (c2) elements. There is harmonic forcing on (m1) at a 20 Hz
excitation frequency. At 0.5 s, the interconnecting spring and damper connection was
deactivated to observe the response before and after the separation. Equation (4) gives the
equations of motion, with the numerical values of the parameters being reported in Table 1.

[
m1 0
0 m2

][
ẍ1
ẍ2

]
+

[
c1 + c2 −c2
−c2 c2

][
ẋ1
ẋ2

][
k1 + k2 −k2
−k2 k2

][
x1
x2

]
=

[
f1
0

]
(4)
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(a) Initial Configuration (b) Separated Configuration

Figure 1. A 2-DOF mass-spring-damper system before (a) and after (b) the separation of the second
mass.

Table 1. Store Separation Verification Parameters.

Parameter Value

Mass (m1, m2) 7000, 500 (kg)
Stiffness (k1, k2) 1 × 108, 1 × 108 (N/m)
Damping (c1, c2) 1 × 105, 1 × 105 (kg × rad/s)

Force on main body 3750 (N) at 20 Hz.
Time of store separation 0.5 s

The lumped parameter system shown in Figure 1 was modeled in the MBDyn envi-
ronment to demonstrate how a similar analysis can be conducted in a multibody software,
proving its validity by comparing the simulation results with that of the analytical solution.
In the MBDyn framework, this system consisted of two rigid structures, three structural
nodes, five joints, and one force. The ‘total pin’ joints were located between the ground and
main body and store and ground, to constrain the two translational and three rotational
motions. Two ‘rod’ joints were used to represent the linear spring and dampers. An ‘abso-
lute force’ was applied in the form of a sine wave at 20 Hz on the main body. In the store
separation analysis, the mass was released at the specified time. The ’driven’ element was
used to separate the store from the main body at a given time that is prescribed in the input
file. The multibody model was simulated using MBDyn, and the resulting displacements,
velocities, and accelerations were recorded.

Figure 2 shows the simulation results for both rigid bodies. Before the separation,
they both have almost identical motion due to the very rigid spring connection. After the
two masses were separated, the forces acting on the released mass (m2) vanishes, and it
follows a constant velocity motion, which is exactly equal to the velocity at the instant
of separation. On the other hand, although there is still forcing applied on the (m1), the
amplitude of its motion changes. The resulting displacement amplitudes of (m1), which
are obtained independently while using the analytical solution and multibody dynamics
simulation, are compared in Table 2. The reported values are identical, which verifies the
discontinuity aspect of the separation problem.

Table 2. Comparison of the steady displacement response that was obtained using multibody solution
and the analytical solution.

Displacement Amplitude
Before Separation

Displacement Amplitude
After Separation

MBDyn Simulation 0.29 mm 0.24 mm
Analytical Solution 0.29 mm 0.24 mm
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Figure 2. Response of two bodies before separation and after separation at 0.5 s.

3. Demonstration Model

This section describes the aircraft wing that was used in the analysis. Firstly, the
aircraft is described, and then the multibody dynamics realization of the aircraft wing
model is explained.

3.1. Aircraft

The proposed approach can be used in any type of aircraft and wing. Having said
this, highly compliant structures can benefit from the method more than relatively stiff
wings, as the former types are likely to exhibit nonlinear behavior due to moderate and
large deformations. For this purpose, a high aspect ratio was judged to be more suitable as
an example, since it is expected to be highly compliant to sudden time dependent forces,
as experienced by the wing after the release of an external mass. As a result, the benefit
of using a fully nonlinear solver could be more easily demonstrated. Consequently, an
unmanned aircraft with a high aspect-ratio wing was selected as the demonstration vehicle,
as presented in Figure 3.

Figure 3. Geometric representation of high altitude long endurance unmanned air vehicle [26].

The aircraft of interest is a high-altitude long-endurance (HALE) unmanned aircraft
and it has been previously studied for generalized eigen-analysis in Ref. [26] and for
limit cycle oscillations in Ref. [13]. Having highly compliant wings, this aircraft is a good
candidate to demonstrate the wing response to store separation. Because this work focuses
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on the wing response, the fuselage was not included and a single cantilever wing was
considered, with the numerical values that are reported in Table 3. An external store under
the wing is considered with the parameters that are given in Table 4. The wing is simulated
at a high altitude flight condition, the conditions of which are available in Table 5.

Table 3. Parameters of the aircraft model [26].

Parameter Value

Time of store separation 25 s
Half-span 16 m

Chord 1 m
Mass per unit length 0.75 kg/m

Moment of inertia (%50 chord) 0.1 kgm
Span-wise elastic axis %50 chord

Center of gravity %50 chord
Bending rigidity 2 × 104 Nm2

Torsional rigidity 1 × 104 Nm2

Bending rigidity (Chordwise) 4 × 106 Nm2

Altitude 20 km
Density of air 0.0889 kg/m3

Table 4. Numerical values of the store.

Parameter Value

Mass of Store 10 kg
Store Support Stiffness 1 × 108 N m−1

Store location with respect to the wing root 7 m

Table 5. Flight Condition.

Parameter Value

Altitude 20 km
Air Density 0.089 kg m−3

Flight Speed 40 kn

3.2. MBDyn Model Description

The wing model without the store, and its separation process, was previously de-
veloped while using MBDyn [17,26] with the elements that are presented in Figure 4.
Additional features were added to this model to simulate the wing response to store sepa-
ration. Namely: stores, the store-wing connection, and drive element to release the store.
The final overall multibody dynamic model consists of the following:

1. Simulation parameters: time step, final time, solution tolerances, and iteration limits.
2. Structural model: 16 three-node finite-volume beam elements [27] defined the 16 m

span wing structure. The whole wing structure required 32 nodes for structural
discretization, each was assigned inertial properties.

3. Beam cross-section: properties were given as a diagonal (6 × 6) constitutive law
matrix, which remains constant along the span.

4. Aerodynamic model: the wing was discretized by aerodynamic elements formu-
lated by lifting line theory. The aerodynamic elements included both steady and
unsteady aerodynamics, therefore helping to achieve realistic static deflection and
dynamic response.

5. Boundary condition: ground joint was used to support the wing root.
6. Store: a rigid body at Xstore = 7 m spanwise location was defined to represent the

store, which was connected to the wing via spring and damper, as shown in Figure 5.
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The store has no aerodynamic model attached to it.
7. Separation: the driven element was used to keep the store connected to the wing

for t < 25 s. 25 s was defined based on the time required to achieve the steady-state
solution of the same wing under the same flight conditions.

8. Gravity: introduced to achieve realistic wing static response of a highly flexible wing
and motion of the store after separation.

Figure 4. Modeling elements used in aeroelastic wing-store multibody model.

Figure 5. Store and its connection to the wing (not to scale).

It should be noted that MBDyn has an extensive library of mechanical parts, joints,
and forcing options [17]. Additional elements could be added to make the model more
complex. For example, the rod connection could include dedicated joints, friction, or an
impulsive force could be included at separation. However, within the scope of this work
and the available data, the above multibody dynamics models can be considered to be
sufficient in terms of the essential components.

4. Results and Discussion

This section presents the results that were obtained using the model described in the
previous section to demonstrate the benefits of using multibody dynamics in aircraft wing
response to store separation.

4.1. Simulation without Store Separation

The first results present the simulation of the wing-store configuration to explain the
distinct characteristics of the simulation. The displacement of the wing tip was obtained
from the simulation and is shown in Figure 6. The simulation starts at t = 0 s and the
tip starts from a reference position. When the simulation starts, the gravity and the flight
speed are introduced gradually, rather than instantly, to aid with convergence. Gravity



Machines 2021, 9, 61 8 of 13

dominates just after initiation as the wing flaps down, being mainly resisted by the elastic
forces. However, as the aerodynamic forces build up with increased airspeed, the wing
recovers and the wingtip moves upwards. Gravity, aerodynamic, and elastic forces come
to equilibrium near t = 20 s, after which the wingtip position remains constant.

Figure 6. Tip response of wing without separation.

4.2. Wing Response to Store Separation

Figure 7 presents the response of the wingtip before and after the store separation,
which is compared to that of the ‘no separation’ case. At t = 25 s, the store is released from
the wing. As a result of weight change, an impact load acts on the wing and the wing tip
moves up and starts oscillating. The oscillations are unstable in nature with increasing
amplitude, while the ‘no separation’ case remains constant, which implies a stable blade.
This result could be attributed to the non-linearities of the whole system as a result of the
change in wing state after separation.

Figure 7. Tip response after store separation as compared to the no-separation case.

It is also worth looking at the deformed shape of the wing. Figure 8 shows the
displacement at the beam nodes, which, in turn, defines a displacement shape. Initially, the
wing nodes form a straight line at t = 0 s. As the gravity dominates, but is resisted by the
elastic forces, the wing flaps down and comes to a lower state around t = 5 s. Subsequently,
the aerodynamic loads build up and, consequently, the wing flaps up. This continues until
the wing reaches steady-state. Right after the separation, the wing starts an instant upward
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movement. As the time increases, the amplitude of wing displacement gains amplitude
and the solution diverges eventually.

Figure 8. Displacement shape of the wing at different times.

With Figure 8, it can be observed that, as the amplitude increases, the oscillatory com-
ponent of the motion is not visible. In order to better observe the time-dependent motion
that the wing undergoes, the oscillatory wing deformation was obtained by subtracting the
steady wing motion just before the separation from the total displacement. Consequently,
Figure 9 presents wing oscillatory motion after the store is released. The displacement
shapes were identified at different time steps within the same cycle (near 50 s). The curves
suggest that the oscillatory motion is a combination of the typical first and second bending
modes of a cantilever beam.

Figure 9. Wing oscillatory motion identified at different time steps within the same cycle.

4.3. Stability Enhancement

Two analyses were conducted in order to demonstrate how the suggested method can
be used to improve the stability of the wing motion after store separation.

4.3.1. Wing Stiffening

Increasing structural stiffness is an obvious choice for stabilizing the wing. To achieve
this, a symmetric rectangular thin-walled beam was assumed inside the wing, as shown
in Figure 10. This could be seen as an oversimplified assumption, since aircraft wings
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are much more complex than a box beam representation. Nevertheless, considering that
the beam constitutive matrix was symmetric and constant throughout the wing in the
original model, a simple box beam assumption could be acceptable within the scope of
this work. It should also be noted that the proposed method could be used in parallel to
advanced wing geometries as long as the cross-section constitutive matrix is provided.
However, the objective here is to estimate the required amount of increase in the stiffness
of the wing, leading to reductions in the oscillations after store separation. For this reason,
the constitutive matrix needs to be modified. Consequently, the change in the box-beam
thickness was related to the change in the area, moment of the cross-section area, and
wing mass.

Figure 10. Box beam model to scale the thickness for stable wing response.

Figure 11 shows the tip response of the wing in its original stiffness and modified
version after increasing the thickness. Whilst the upper plot presents the full simulation,
the lower plot focuses on the oscillatory response by focusing on the final time steps. It
is clear from the lower plot that the oscillations of the wing reduce as the wing becomes
stiffer with an increasing thickness. It can also be observed that there are no oscillations
when the box-beam thickness of the wing is increased by 6%. Such analyses, with more
sophisticated finite element models of the cross-section, can be helpful, when a wing is
not initially designed for store separation, but later decided to do so. The amount of wing
design changes that are required to preserve the stability characteristics could be identified.

Figure 11. Tip response of the wing considering three different box beam thickness values.

4.3.2. Vibration Control

While structural modifications can enhance stability, the wing can also be equipped
with sensors and actuators to control the vibrations [28]. MBDyn can support such an
analysis through its control elements. There is no linearization requirement and the
controller can take effect during the time marching simulations. For this purpose, the
proportional–integral–derivative (PID) control was implemented. Based on the measured
acceleration at the wing tip, a control moment was applied to twist the blade and attenuate
the oscillations, as shown in Figure 12. This can be stated as [29]:

m(t) = Kp(t)e(t) + Ki

∫ t

0
e(τ)dτ + Kd

de(t)
dt

(5)
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where
Kp, Ki, Kd are the proportional, integral, and derivative gains,
m(t) is the control moment applied close to the wing root,
e(t) is the error, which is tip acceleration in this case,
t is the time.

Figure 12. A simplified representation of wing control.

The upper plot of Figure 13 presents the response of the wing after store separation and
focuses on wingtip oscillations for controlled and uncontrolled cases. It can be observed
that the amplitude of oscillations increases without limit in the uncontrolled case, while no
oscillations appear in the controlled case. The controller is active and the bottom plot of
Figure 13 presents the required moment. At the point of separation, the controller takes
effect and suddenly increases the amplitude of the moment to approximately 9 N m. A
few steps are required to control the wing, with decreasing amplitude of control moment,
which eventually vanishes.

Figure 13. Tip response of the wing for controlled and uncontrolled cases and the resulting con-
trol moment.

5. Conclusions

This work examined the dynamic response of a high aspect ratio wing due to the
separation of an externally supported store using flexible multibody dynamics. MBDyn,
an open-source multibody dynamics tool, was used to model a nonlinear aeroelastic wing
model, and then model the commands that release the store at a given time after the
wing reaches a steady-state solution. A high aspect ratio wing, carrying a load, was used
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to demonstrate the benefits of using the suggested approach. The analysis showed the
following:

• The wing response, which is stable before the response, could be unstable after the
separation of the external store.

• A preliminary investigation on wing stiffness showed that a 6 percent increase in the
wing structural mass is required to achieve a stable wing.

• As an alternative to the wing stiffening, the diverging wing response after the store
separation could be stabilized using a controller. In this case, a moment with maximum
9 N m amplitude is required.

This work could be followed by more complicated analysis to achieve a better under-
standing of the problem and to address other issues that are likely to occur after external
stores are released from aircraft wings. Using the suggested method and the developed
model as a basis, possible additions can be made, which are briefly mentioned, as follows:

• The simulations can be repeated for a flying aircraft, including the rigid body motion,
fuselage vibrational modes, and flight mechanics derivatives.

• The store can be given aerodynamic characteristics to include the effects of store
aerodynamics on the wing stability.

• The store location, store mass, wing airfoil, and the wing structure can be optimized
for a safe store separation, while ensuring that the payload carrying capacity of the
aircraft is kept the same.

• A flight envelope for stable store separation could be achieved.
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