
machines

Article

Validation of Complex Control Systems with Heterogeneous
Digital Models in Industry 4.0 Framework †

Kirill Semenkov *, Vitaly Promyslov, Alexey Poletykin and Nadir Mengazetdinov

����������
�������

Citation: Semenkov, K.; Promyslov,

V.; Poletykin, A.; Mengazetdinov, N.

Validation of Complex Control

Systems with Heterogeneous Digital

Models in Industry 4.0 Framework .

Machines 2021, 9, 62. https://doi.org/

10.3390/machines9030062

Academic Editor: Vadim R. Gasiyarov

Received: 7 February 2021

Accepted: 9 March 2021

Published: 14 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

V.A. Trapeznikov Institute of Control Sciences of the Russian Academy of Sciences, 117797 Moscow, Russia;
vitalionics@gmail.com (V.P.); poletik@ipu.ru (A.P.); mengazne@ipu.ru (N.M.)
* Correspondence: semenkovk@mail.ru
† This paper is an expanded version of the conference paper: “Semenkov, K.; Promyslov, V.; Poletykin, A.;

Mengazetdinov, N. Verification of Large Scale Control Systems with Hybrid Digital Models and Digital Twins”,
published in Proceedings 2020 International Russian Automation Conference (RusAutoCon), Sochi, Russia,
6–12 September 2020. pp. 325–329.

Abstract: The precise evaluation of the system design and characteristics is a challenge for experts
and engineers. This paper considers the problem of the development and application of a digital
twin to assess cyberphysical systems. We analyze the details of digital twin applications at different
lifecycle stages. The work reviews and summarizes properties of models concerning the digital
and physical components of a cyberphysical system (CPS). The other issue of a CPS is increasing
cybersecurity threat for objects, so special attention is paid to the heterogeneous digital twin usage
scenarios to improve CPS cybersecurity. The article also details the heterogeneous digital twin’s
implementation for a real upper-level control system of a nuclear power plant. The presented
heterogeneous digital twin combines virtual machines with real equipment, namely hardware-in-
the-loop (HiL) components. The achievements and drawbacks of the implemented model, including
single timescale maintaining challenges, are discussed.

Keywords: industrial automation; cyber-physical systems; instrumentation and control; virtualiza-
tion; industry 4.0; digital twin

1. Introduction

The idea of Industry 4.0 and the term itself were phrased for the first time in Germany,
in 2011, by the working group on the vision of industry development prospects [1]. The
group performed the activity on an assignment of the German government. In a small
period, the idea and the term have become widespread. In that period, other countries had
performed researches of a similar kind as well, and the idea under discussion is also known
as industrial internet, advanced manufacturing, smart industry, smart manufacturing,
etc. [2]. The authors of the concept [3] consider the industrial enterprise of the future as a
flexible and adaptable cyberphysical system (CPS) that unites manufacturing, warehousing,
and logistics through the medium of the Internet of Things (IoT).

The list of digital technologies that a manufacturing company of Industry 4.0 should
use includes (see, for example [2,4,5]) cloud and fog computing, artificial intelligence and
mobile autonomous robots, virtualization, new data transmission protocols for the IoT,
and many others. These technologies are intended to make up a CPS that integrates digital
resources and physical, real objects into a consistent environment.

One of the technologies that became a part of Industry 4.0 cyberphysical industrial
systems is the digital twin technology. While it is already widely used today, there is no
well-established single definition of the term “digital twin” yet. For example, IBM [6]
defines a digital twin as “a dynamic virtual representation of a physical object or system,
usually across multiple stages of its lifecycle. It uses real-world data, simulation or machine
learning models, combined with data analysis, to enable understanding, learning, and
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reasoning. Digital twins can be used to answer what-if questions and should be able to
present the insights in an intuitive way.” The Industrial Internet Consortium [7] states
that “a digital twin is a formal digital representation of some asset, process or system
that captures attributes and behaviors of that entity suitable for communication, storage,
interpretation or processing within a certain context.” The W3C definition [8] seems to us
more reflected to the practical aspects of realization of digital twins of instrumentation
and control systems (I&C systems): “A digital twin is a virtual representation of a device
or a group of devices that resides on a cloud or edge node. It can be used to represent
real-world devices which may not be continuously online, or to run simulations of new
applications and services, before they get deployed to the real devices.”

We share the common view that a digital twin should have some general properties.
Following the Industrial Internet Consortium white paper [7] and Tao et al. [9], present
some of them:

• A digital twin may follow its real counterpart at various lifecycle stages or during a
single lifecycle stage.

• A digital twin should have a connection with its real counterpart and collects the data
from the real-world object.

• A digital twin “should enable computational and analytic models to analyze these data
to describe, diagnose, predict and simulate the states and behaviors of the real-world
objects and systems” [7].

High-risk enterprises are usually more conservative in the choice of technologies.
However, the concept of Industry 4.0 is considered in relation to nuclear power plant
(NPP) control systems since it potentially allows to increase the efficiency and safety of the
operation of such facilities [10]. In addition to the general properties presented above, we,
on our end, tried to achieve during the practical implementation of the digital twin:

• Keeping the balance between abstract model and real components in the digital twin.
• Performing configuration management to establish strict conformance of the digital

twin and real system during the lifecycle.
• Maintaining the high relevance of the digital twin timing characteristics.

A digital twin comprises a computational model and interface of data exchange with
the real object. So, when the interface is not a matter of consideration, we often refer to the
digital twin as the model or digital model.

Both the I&C system and its digital twin are cyber-physical systems (CPS) because they
integrate computation and control with the physical environment’s sensing and actuation.
This potentially allows to interchangeably use some software and hardware components in
both systems: real and digital.

In this paper, we discuss the general problems of the simulation of Industry 4.0
conformant I&C systems and present our practical result: the implementation of a digital
twin for a subsystem of an I&C of an NPP [10,11]. The presented digital twin introduces a
new type of digital twins, a “heterogeneous” digital twin that comprises simulation models
and real software and hardware components of the real system to achieve simulation
accuracy on adequate reflection of the I&C system. This paper is an expanded version of
the conference paper [12].

Section 2 of this paper provides a brief description of industrial I&C systems and
emphasize the importance of I&C system modeling. Sections 3 and 4 consider various
approaches to CPS modeling and the model restrictions. Section 5 says about the evolution
of a digital twin during the system lifetime and specifies the approaches to the configuration
management for the digital twin and the real twin. Section 6 is the practical part of the
work describing the implementation of the digital twin for I&C system of a nuclear power
plant. Section 7 is the results’ discussion.
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2. I&C as a Cyberphysical System of High Reliability

An I&C system in the most general form (see Figure 1) consists of a network of sensors
that take off data about the managed (physical) object state; actuators that directly carry out
control actions on the machinery and the equipment; data transfer channels; programmable
logic controllers (PLC) collecting and processing the data from sensors and generating
control commands; implementation of control algorithms; human–machine interfaces
(HMI). So, an I&C system itself is a cyberphysical system.
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Let emphasize that CPS development heightens concerns about system trustwor-
thiness, usability which include security, privacy, safety, reliability, resilience, and effi-
ciency [13].

The CPS reliability is conditioned by both the reliability of physical components and
software modules’ reliability. The reliability assessment problem for physical objects is
well-developed, while the reliability estimation for software systems is still an unsolved
issue. For example, Antonov et al. [14] performed an overview of software reliability
estimation quantitative methods and concluded that current numerical methods do not
provide credible estimations of reliability in a classical probability domain. That’s why the
term of software reliability is widely substituted by the term of software quality which,
according to the standard ISO/IEC 25010:2011 [15], is “the degree to which a product or
system can be used by specific users to meet their needs to achieve specific goals with
effectiveness, efficiency, freedom from risk and satisfaction in specific contexts of use.”
ISO/IEC standards introduce some metrics to estimate different software quality factors,
so by their values, it might be possible to draw indirect conclusions about the reliability of
specific software under a set of specific conditions.

That is why the software reliability estimation is usually performed by testing the
software in conditions as close as possible to the operation’s conditions. The test cases
should cover both normal and stress scenarios of software functioning.

The software quality assurance process has its difficulties:

• the absence of a real control object or its components for a sufficiently long time
(sometimes up to the final stage of development);

• the impossibility (for example, because of risk of physical destruction or high costs) of
tests in some operating modes.

Modeling at the earliest possible stages of software development increases testing
capability for the real system and reduces the costs and time of achieving the required
software quality. It allows checking both separate system components and the entire
architecture of the designed system.
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3. Comparison of Model Types Regarding Cyberphysical Systems

Simulation is an integral part of the design and development of any industrial system.
It helps to understand and predict a physical object’s behavior and the properties of control
algorithms; assess system reliability and safety and fault tolerance; know how the system
will react to control; divide the system into functional modules; design the data structure
and communication channels and so on. All of these problems are addressed using various
models. Table 1 shows a comparison of different models and an assessment of their
potential for use for a physical or digital component (“+” or “−” signs indicate whether
the model is suitable for a specific purpose or not).

Table 1. Comparison of the properties of the models.

Type of Model Motivation Physical Cyber

Analytical

Description of a physical object behavior + −
Verification and validation of algorithms (system grey/white-box design) − +

Verification of timing characteristics a + ±
Staff training + ±

Design of the control (system black box design) + +

Statistical Estimation of reliability and stability + +

Functional System design + +

Data and data flow Data representation and system logics without regard to real-time system
behavior − +

Full scale

Validation of system design + +
Validation of models + +

Validation of time behavior + +
Validation of system safety and security + +

Staff training + +

Virtual (digital twin)

Validation of system logical structure and interfaces + +
Validation of discrete (state-by-state) time behavior + +

Validation of system cybersecurity (integrity and confidentiality) + ±
Staff training + +

Heterogeneous: virtual and
some real components

Validation of system logical structure and interfaces + +
Validation of discrete (state-by-state) and analog time behavior + +

Validation of system cybersecurity (all properties) + ±
Staff training + +

a The verification is possible in very restrictive cases (see, for example, papers [16,17]).

Full-scale test prototypes can be built to test and verify the interaction of system
elements. There is a preliminary fitting to the real equipment; the final integration with
the physical object is carried out during the commissioning stage. In the first place, the
work requires time, labor and cost, because designing and building a full-scale prototype
requires a lot of resources, and such tests reveal errors and inconsistencies in the last stages
of system development. Correcting inconsistencies requires hard work to retest the system.

With the progress of the computational facilities, the concept of digital twins of
cyberphysical systems has been gaining popularity. The digital twin runs in a purely
virtual, computer environment. It receives the information about the physical object either
from a simulation or from a real object data via the Internet of Things.

4. Restrictions and Application of Digital Models of Cyberphysical Systems

With the virtual models of cyberphysical systems, one can configure the system and
test the interaction between system components and system modes at any development
stage. There are numerous successful applications of the digital twin for different systems
and purposes.
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For example, Lemay et al. [18], using a number of virtual machines running within a
computational cluster, created a digital training model for a SCADA (supervisory control
and data acquisition) system of a reference power plant. They used some simulations of
physical processes and PLCs, sensors, and actuators. The model allowed to imitate a set of
cyberattacks to a reference SCADA system, albeit not showed high productivity.

Alves et al. [19] for cybersecurity protective measures tests applied modularity princi-
ples to the design and construction of a digital model of a SCADA system. They imple-
mented every SCADA element (server, workstation, PLC, sensor, et cetera) as a separate
software module that allows model scaling in a wide range.

This way the design and deployment of digital twins of cyberphysical systems is an
essential and expanding technology. However, it is necessary to understand and take into
account the boundaries of digital models. Let us discuss some use cases for the digital twin
and draw out the possible limitations and ways to mitigate the limitations.

First, with a digital model, one hardly (if ever) can obtain any data about the real
system’s productivity. The system productivity depends on specific models of installed
computers and controllers, network capacity, and many other conditions. A virtual model
allows getting just some productivity estimates like algorithm performance.

Second, any specific manufacturer’s hardware and equipment have their features and
restrictions; some internal details of equipment functioning are proprietary information
and trade secrets, so they cannot be implemented entirely in a virtual model. It means the
virtual model will use some “average,” “neutral” models of the equipment, which also will
not allow getting an accurate model.

Timing is a central architectural concern of a CPS [13], so it is essential to guarantee a
transparent mapping of the dynamics of a real cyberphysical system and the digital model.
Lee and Seshia [20], in chapter 1 of their book, describe the problem in detail.

The time-dependent dynamic properties of physical objects are usually described
by systems of differential equations (equations of motion, equations of heat conduction,
equation of electrodynamics), where time is a variable. Thus, a physical object’s digital
model is a solution to a system of differential equations describing its behavior. The process
of solving math problems usually does not require real-time computation. The model’s
digital component can receive the results of calculations performed in advance, and the
virtual model will approximate them.

Digital twins usually implement software models of sensors and controllers: they
can use either software emulation (many manufacturers provide emulators) of software
models of state machines or black boxes. Note that a program thread’s CPU time is not real
physical time because a computer represents a time stream by incrementing a hardware-
dependent counter. Thus, the device digital model’s temporal properties may differ from
the properties of the real device. We summarize these considerations in Table 2.

Table 2. The principles of CPS digital twin design.

Physical Object Controllers/Sensors Software

Type of model analytical (equations) emulation; black-box software
models —

Representation of time an abstraction: an argument
of the equations

tick counter (hardware
dependent)

tick counter (hardware
dependent)

Implementation within a
digital twin

the equations are solved
separately; the twin uses the
results and can approximate

them

a piece of software running on
a real or virtual computer

a piece of software running on
a real or virtual computer

Technologies numerical simulation, clusters,
supercomputers emulation, simulation virtualization, cloud

computing
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Maintaining a uniform timeline is essential for I&C systems. On the other hand, cloud
systems with many virtual machines have multiple context switching events between
processes inside the computer and between virtual machines inside the host. This raises
another important problem—the problem of synchronizing components in the digital
model. Currently, the issue of synchronizing the system of virtual machines has not been
studied in detail, but the problem is recognized. Thus, VMware [21] says that differences
between virtual and real machines “can still sometimes cause timekeeping inaccuracies
and other problems in software running in a virtual machine.” Therefore, there is always a
risk that the necessary synchronization accuracy would never be achieved in the digital
model of the CPS.

One of the promising functions of digital twins is developing cyber defense methods
and testing the system’s resistance to cyber threats. Here cybersecurity is a set of actions
and measures (controls) to prevent, detect and respond to malicious actions against the
system. Indeed, a digital twin makes it possible to carry out any tests without risk of
real system damaging, and it is easy enough to return a digital model to its original state
even after the destruction of the digital twin because of a cyberattack. Some elements of
a physical infrastructure could become an attack starting point (for example, an intruder
gets physical access to a server); the attack goal could be reducing the system availability
as in case of a denial-of-service attack (DoS-attack).

Considerations of the previous paragraph show that digital twins can be used to find
the vulnerability points in a cyberphysical system, divide the system into the cybersecurity
levels, investigate cyberattack propagation paths, and estimate the attack consequences.
However, they are not suitable for researching cyberattacks’ temporal characteristic and
studying the cyberattacks on the physical infrastructure (physical access to servers, bridges,
et cetera).

The limitations described above can be partially removed for a model in which virtual
components interact with some real parts. For example, you can include several real sensors
and PLCs in the model. The sensors will transmit their output to the virtual environment;
the physical process model will compute the inputs to the PLC and transfer the signals
to the standard PLC interfaces. This kind of partial integration will allow us to check the
timing of some control signals and simplify the commissioning process.

The principle of combining real and model components in modeling is known as
Hardware-in-the-Loop simulation. In our opinion, there is a consensus in the industry (see,
for example, papers [22,23]) when HiL simulation uses a computer as a virtual represen-
tation of the object model and real controllers or field devices. So, HiL usually is related
to Levels 0–1 (Production Process, Sensing and Actuation) of IEC 62264-3 standard [24].
There are two specific features of the proposed digital twin approach. The first one that
an I&C system spans across levels 1–3 (Sensing and Actuation; Monitoring, Supervision
and Control; Manufacturing Operations and Control) and the digital twin may include real
components at all levels. The second one that real components are not only hardware but
else software modules.

To highlight this feature, this configuration of the digital twin is called a heterogeneous
digital twin in the framework of this work. A heterogeneous digital model can facilitate
the process of integrating components into a single system because the complexity and
labor intensity of creating and maintaining/updating a heterogeneous virtual model is
much less than that of a full-scale test complex.

The scenarios of digital twin applications also depend on the modeled system’s
lifecycle stage. Table 3 shows the possible scenarios depending on the lifecycle stage.
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Table 3. The I&C lifecycle stages and corresponding scenarios of using the digital twin.

Lifecycle Stage Application of the Digital Twin

System requirements specification

1. Generate and check a consistent set of I&C system requirements
2. Build a top-down structural representation of the system architecture. The
mathematical structures are used to model relations between I&C system components
3. Facilitate the top to down design using classification mathematical methods

System specification

1. The I&C system architecture is partitioned into some interconnected
subsystems and components, which are combined into logical zones. That
arrangement shall comply with safety and security classification
2. Model relations between I&C subsystem and components

System detailed design and implementation

1. Elaborate the possible data communication paths
2. Develop scenarios for physical and logical access to I&C assets
3. Identify interfaces between I&C system and plant devices
4. Generate preliminary data used for risk assessment
5. Identify logical boundaries of system components

System integration 1. Check that normal information path not conflicted with safety and
security requirements

System validation 1. Generate test cases used for system validation

System installation 1. Generate deployment scenarios and check installation procedures
2. Train the personal

Operation and maintenance

1. Check the modification effect on functionality, performance, and safety before
applying modification to the I&C system
2. Model system upgrade effects on performance and safety
3. Perform the tests of system upgrade before the deployment
4. Investigate security and safety incidents or identified vulnerabilities and
weakness and recommend corrective actions

Retirement activities 1. Generate the I&C system retirement scenarios

5. Digital Twin Architecture and Configuration Management

So far, we have not considered the hierarchical structure of an I&C system, its lifecycle,
and the problem of the synchronization keeping between a digital twin and the real object.
A digital twin developer should consider that the digital twin will co-evolve with the real
I&C system during the lifecycle from a very high-level abstract representation to a very
detailed representation. Moreover, almost all real systems have subsystems, and the sub-
systems, in turn, include further subdivisions, etc. The system requirements usually follow
the hierarchical structure of the system itself. To consider the digital twin requirements
of a hierarchical system, it is necessary to coordinate the requirements between different
architecture levels of the twin.

Let us illustrate this reasoning with an example of a system having one nesting level.
In the case of hierarchical systems with more levels, we may use an inductive approach.

The subsystems’ structure is not developed yet at the early design stage, but the set
of subsystems is identified, and the relations between them are already known. One can
present the system as a graph with components as vertices A and with edges representing
the binary relation of directed dependence between components in the system operation
frame. The subsystem has some assigned properties.

The developers of a digital twin face some questions. Suppose a property is assigned to
the subsystem, and during the system development, the subsystem developers implement
the property in a specific way. Then, how do we make the digital twin co-evolve correctly
with the system prototype?

Let us consider two graphs. The left one, G(X, E), takes into consideration the struc-
ture of subsystems, and the second one, J(Y, H), describes the high-level abstraction or
top-level system structure (see Figure 2). J must be evidently a result of graph contraction
G: J = F(G) that is not a one-to-one mapping.
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The problem solution becomes simple if the digital twin is initially designed as
a system of nested containers. Every container serves as a framework for lower-level
components and puts some additional constraint from upper-level requirements onto the
container elements.

The second problem we need to pay special attention to is synchronization between
the digital twin and the real I&C system and the configuration management. Indeed, the
digital twin designer must maintain the equivalence between the digital model and the
real I&C system (see Figure 3). However, below (see Section 6), it will be shown that the
full equivalence might be unachievable in practice. Nevertheless, two co-evolving systems
must synchronize their configurations for the equivalent sets.
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model is shown as a set B1; the model components that have not counterparts in the real system are shown as sets A1, A2, A3.

Let us say a few words about our understanding of the equivalent configurations.
Software Engineering Body of Knowledge (SWEBOK) [25] defines configuration as “a
collection of specific versions of hardware, firmware, or software items combined according
to specific build procedures to serve a particular purpose.” We will simplify this definition
for the modeling and say that configuration is a set of backbone components (hardware
and software) currently installed in the system. It means that some key components
must be identified at the model design stage, and the synchronization procedure for the
maintenance of the equivalence of those key components must be implemented over the
lifecycle stages.

For example, if the CPU model is supposed to be the configuration element, then the
digital twin must emulate the same CPU which is used in the real I&C system. On the
other hand, a model designer may consider the difference of two executable programs
insignificant and take into account only the differences in configuration files of these
programs. Below, we will show an example of a configuration description for a real
use case.
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6. The Realization of the Composite Heterogeneous Digital Twin for Instrumentation
and Control System of the Nuclear Power Plant

Basing on the proposed approach of the heterogeneous digital twin, we designed and
built a heterogeneous digital model of the upper-level control system (ULCS) of the I&C
system of a nuclear power plant [11]. The ULCS offers the integration functionality for
various parts of the I&C system and ensures the interaction of all other systems of the
I&C NPP system. The ULCS represents a modern digital networked distributed control
system. The main functions of the ULCS are monitoring and control of the NPP state.
The functions include safety-related functions and auxiliary functions; the last are self-
diagnostic, archiving plant-state data in the database, and providing time synchronization
for other components of the I&C system. The ULCS system provides the human–machine
interface with the plant equipment and contains about thirty workstations in a typical
configuration. An essential characteristic of the system is its functioning in real-time
while providing a human-machine interface with a human operator. To increase the
systems’ reliability, design measures have been taken to provide the system redundancy
(communication lines and computing nodes are backed up).

The system has a modular architecture that allows increasing the number of operator’s
workplaces and processed information. In a basic configuration for NPP, the total volume
of the managed database is about 106 signals, with a performance of about several thousand
signals per second.

The ULCS consists (see Figure 4) of servers, active and passive network equipment,
workstations, auxiliary equipment of the cabinets (uninterruptible power sources, printers,
et cetera). The information is transferred over Ethernet networks; all key nodes and data
paths are redundant and work in parallel, providing hot-spare redundancy. The ULCP
software works under the industrial Linux-based operating system LICS OS [26]. Precise
time sources provide a unified time scale within the system.
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Figure 4. The outline of the upper-level control system of an NPP ULCS.

The ULCS digital twin is a kind of a composite digital twin that combines several
small (discrete) digital twins of the equipment and software of the ULCS. The digital twin
combines the computational, analytic models and hardware components and allows to
describe, diagnose, predict and simulate the states and behaviors of the ULCS.

The ULCS digital twin receives data from the supplementary software-based digi-
tal twins of the adjacent systems of the NPP. The supplementary digital twins include
both model-based sources of the data and some previously recorded data from the real
equipment dynamics.
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The auxiliary digital twins are used to simulate plant dynamics for normal and some
abnormal modes of the NPP operation, to predict and simulate the states and behavior of
the real ULCS depending on the plant data.

6.1. The Architecture of the ULCS Digital Twin

The ULCS digital twin includes some elements of the ULCS system’s real hardware
and about a hundred virtual components representing ULCS computers and network
devices (see Figure 5).
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The real hardware comprises a timeserver, a switch cabinet, a workstation cabinet
with an operator terminal, server cabinet.

A real timeserver acts as the time synchronization source via the Network Time
Protocol (NTP). Switch cabinet and server cabinet hardware elements are used to model the
behavior of server and workstation system units in the cabinet (for example, uninterruptible
power supply (UPS) control and monitoring). The workstation cabinet is identical to the
real operator’s terminal.

The virtual machines for every server and workstation physically run on a host
server under LICS OS and QEMU/KVM hypervisor [27,28]. The workstation physical
computer runs under LICS OS as well. The specifications of real and virtual components
are summarized in Tables 4 and 5.

The ULCS network-related properties simulation is an important part of the digital
twin realization because the ULCS is a distributed network control system.

The ULCS components interact with each other using TCP/IP and UDP/IP proto-
cols. As we discussed earlier, operational servers, workstations, and Ethernet networks
are redundant, and the model must reflect both logical and physical redundancy of the
system. Since the model is heterogeneous, it is assumed to interact with the real hardware
and software components via the network. The structure of the digital twin network is
equivalent to the structure of the ULCS network. Most of the network-related elements in
the digital twin are built on virtual components. Virtual switch software OpenVSwitch [31]
is a tool for network topology construction within the model. Thereby, every real switch is
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mapped to a virtual switch, and the commutation of virtual machines and virtual switches
within the virtual network corresponds to the ULCS network topology. VLAN assignment
within software switches allows modeling the physical separation of redundant Ethernet
channels. Thus, we model network redundancy where any single failure in the network
path does not break the system connectivity.

Table 4. Real computer parameters.

Parameter Host Server Workstation

CPU Intel Xeon Silver 2.2 GHz: 2 nodes, 40 logical CPUs Intel Core i7 2 GHz: 1 node, 8 logical CPUs
RAM 128 Gb 16 Gb

Storage 300 Gb disk drive
7 Tb disk array 500 Gb disk drive

Network interface card Ethernet, 100/1000 Mbit/s, 8 devices Ethernet, 100/1000 Mbit/s, 4 devices
Video controller insignificant for the model Intel HD530

Display insignificant for the model two displays working as a single logical screen,
display working mode: 1920 × 1080

Operation system LICS OS LICS OS
Hypervisor QEMU/KVM not used

Network emulation tools OpenVSwitch not used

Model control and deployment tools libvirt [29]
ansible [30] not used

Table 5. Parameters of virtual components.

Parameter Virtual Server Virtual Workstation

CPU 4 virtual CPUs of x86_64 architecture 1–2 virtual CPUs of x86_64 architecture
System clock driver TSC clock TSC clock

RAM 4–6 Gb (depends on the machine role) 2–3 Gb (depends on the machine role)
Storage 100 Gb paravirtual disk drive 100 Gb disk drive (SATA emulation)

Network interface card 2–4 paravirtual Ethernet adapters 2–4 paravirtual Ethernet adapters
Video controller insignificant for the model dual head virtual QXL graphics adapter

Display insignificant for the model SPICE client allows sending video to hardware
displays via SPICE protocol

Operation system LICS OS LICS OS
Model configuration and deployment tools ansible [30] ansible [30]

To provide the connection between virtual machines and real equipment, the host OS
network stack is connected to the virtual switches so that the virtual machines can access
the external hardware via a real Ethernet network.

Figures 6 and 7 present an illustration of the described approach. Suppose we have a
server S1 belonging to one subsystem and two other computers, server S2 and workstation
W, belonging to another subsystem. All network traffic goes via two independent and
physically separated Ethernet networks named as main network and standby network.
Every subsystem also has its own set of Ethernet switches containing at least two devices:
one for the main network, the other for the standby network. Here in the figure, the boxes
SM1 and SM2 are the switches for the main network, the boxes SS1 and SS2 are the switches
for the standby network. The network traffic between the I&C system components passes
via Ethernet lines between the switches (bold lines on Figure 4).

Now let us show the implementation of the presented topology within the digital
model. Virtual machines VS1, VS2, VW correspond to the real machines S1, S2, W, vir-
tual switches VSM1, VSM2, VSS1, and VSS2 implemented as OpenVSwitch instances
correspond to the hardware Ethernet switches SM1, SM2, SS1, and SS2, respectively. The
switches of the main network are linked via trunk ports with the tag “VLAN10”, the
switches of the standby network are linked via trunk ports with the tag “VLAN20”.

The traffic to access ports (ports leading to terminal devices like a server or a work-
station) of the virtual switches is tagged with the corresponding VLAN label (VLAN10 or
VLAN20). This is the way we model the physical separation of two Ethernet networks.

To allow model interaction with external hardware (for example, with a real work-
station), we created an auxiliary virtual switch instance in the host server. This instance
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is linked with the model’s main network via trunk port with the tag “VLAN10” and
the standby model network via trunk port with the tag “VLAN20”. The real host Ether-
net adapters are connected with the corresponding access ports of the auxiliary virtual
switch (port tagged “VLAN10” for the main network, port tagged “VLAN20” for the
standby network.

The virtual machines and the real hardware communicate via TCP/IP and UDP/IP
network protocols like SNMP (Simple Network Management Protocol) through real Eth-
ernet networks. To work with the operator graphical environment, we pass the graphics
via Spice network protocol [32] to the real workstation. The Spice client software was also
installed onto the virtual machines.
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6.2. The Data Synchronization between the Digital Twin and the Real ULCS

To facilitate the configuration management process, during the digital twin design
and implementation we developed a structure of configuration description. Configuration
structure is based on the approach of the system of nested containers. The digital twin
configuration is the set of its components’ configurations (for example, servers and work-
stations). The configuration of every component may be unfolded further, generating a
configuration tree. An example of UML (unified modelling language) diagram representing
a configuration tree node is shown below in Figure 8.

Machines 2021, 9, x FOR PEER REVIEW 14 of 18 
 

 

<<entity>> ConfigNode

+Name: String {id}

+confDate: Date[1..*]
+confLabel: String[1..*]

+parent: Conf_node[0..1] 
+descendants: Conf_node[0..*]

ConfigItem

+location: String
+description: String

<<entity>> HwItem

+isActive(): Boolean

-activeStartTime: Date[0..*]
-activeEndTime: Date[0..*]

+activate():
+deactivate():

+showDifference(t1: Date, t2: 
Date): ConfigNode

<<enumeration>>

HwTypeList

UPS
Switch
CPU
Disk
(...)

+type: HwTypeList {type->notEmpty()}

-properties: Hash[0..*]
+getItemProperties():

+id: String {id}

NodeProp

+startConfLabel: String

-properties: NodeProp[0..*]

+endConfLabel: String[0..1]
itemID: String

<<entity>> SwItem

+type: SwTypwList {type->notEmpty()}

+name String

<<enumeration>>

SwTypeList

System
Application
Firmware

(...)
Package

1

id

*itemID

+showDifference(lablel1: String, 
label2: String): ConfigNode

1

*

-memberName  
Figure 8. Example of UML representation of configuration node for a digital twin. 

The developed structure is backed by a bi-directional synchronization technique built 
upon ansible [30] software. It allows solving the problems of identical configuration 
maintenance in the digital twin and the real ULCS, digital twin cloning in a cloud-based 
environment, software deployment preparation. 

However, the model operation process showed some peculiarities in the heterogene-
ous model design that result from the not full equivalence of a digital twin and the real 
object. 

For example, in the beginning, the computer hardware emulated by the hypervisor 
(like controllers, network adapters) was chosen to be maximally close to the real one. 
However, the performance of software emulation of the devices did not satisfy the needs 
of the I&C system, and the model showed poor network throughput. So, we had to switch 
over to paravirtual devices (for the description of software emulated and paravirtual de-
vices see, e.g., papers [33,34]) and give up the idea of maximal similarity between the em-
ulated and real hardware. 

6.3. The Timekeeping in the Digital Twin 
Virtualization is a key technology used in the presented ULCS digital twin. We en-

countered some difficulties in the provision of a timekeeping mechanism between the 
components of the digital twin. 

The real I&C system uses NTP protocol [35] for the timekeeping, so the digital twin 
follows this approach. We found few research papers and guides for timekeeping in the 

Figure 8. Example of UML representation of configuration node for a digital twin.

The developed structure is backed by a bi-directional synchronization technique
built upon ansible [30] software. It allows solving the problems of identical configuration
maintenance in the digital twin and the real ULCS, digital twin cloning in a cloud-based
environment, software deployment preparation.

However, the model operation process showed some peculiarities in the heterogeneous
model design that result from the not full equivalence of a digital twin and the real object.

For example, in the beginning, the computer hardware emulated by the hypervisor
(like controllers, network adapters) was chosen to be maximally close to the real one.
However, the performance of software emulation of the devices did not satisfy the needs
of the I&C system, and the model showed poor network throughput. So, we had to switch
over to paravirtual devices (for the description of software emulated and paravirtual
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devices see, e.g., papers [33,34]) and give up the idea of maximal similarity between the
emulated and real hardware.

6.3. The Timekeeping in the Digital Twin

Virtualization is a key technology used in the presented ULCS digital twin. We
encountered some difficulties in the provision of a timekeeping mechanism between the
components of the digital twin.

The real I&C system uses NTP protocol [35] for the timekeeping, so the digital twin
follows this approach. We found few research papers and guides for timekeeping in the
virtual environment, and they only give general advice without real use-case analysis (see,
for example, [21] and [36]).

The implementation of recommended settings [37] brought a problem. Under low
load, the system after the initial synchronization period stays in the synchronized state, but
under heavy load, clock offsets vary within a large interval that, in our case, achieves up to
hundreds of milliseconds (see the left picture in Figure 9). The offset increases, achieves
a threshold value, and then, according to the NTP protocol specification, is set to zero
forcibly. The analysis of the problem led us to the task of clock driver choice.
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Note that the time offset on the left part of Figure 9 is non-negative. It means the
virtual machine system clock keeps behind the timeserver clock. In that case, we used the
paravirtual clock driver “kvm-clock”, the default clock driver for QEMU/KVM hypervisor.
We suppose that simultaneously working virtual machines block one to another the access
to the hypervisor clock and skip the required interrupts. In our opinion, the usage of the
paravirtual clock driver in this case created a bottleneck.

So, we switched to another clock driver, emulated TSC (time step counter) clock. This
is an evenly increased processor register, a counter of CPU cycles. It is stable for modern
CPUs, does not depend on the CPU frequency’s dynamical changes, and is even unified
within a multiprocessor system. After the reconfiguration of virtual machines, we managed
to achieve the required time synchronization accuracy.

7. Results and Discussion

The design and accurate realization of a digital twin remains a challenging task. In the
paper, we consider instrumentation and control systems (I&C systems) as cyberphysical
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systems (CPS) of the Industry 4.0 concept and, in particular, deal with the problem of the
design of digital twins of CPS in application to I&C systems. The proposed heterogeneous
digital twin can facilitate accurate reproduction of the real I&C system properties. The
main advantages are the precise reproduction of time dynamics and interaction, the be-
havior of auxiliary devices, and network topology. We propose a heterogeneous digital
twin concept for an I&C system of levels 1–3 of IEC 62264-3 standard [22] (Sensing and
Actuation; Monitoring, Supervision and Control; Manufacturing Operations and Control).
The heterogeneous twin is similar to the hardware-in-the-loop digital twins. It consolidates
software and hardware components of different system levels and combines specific ana-
lytical software components of digital twin and the real software of the simulated system.
Compared with purely analytical models and full-scale testbeds, this type of digital twins
extends the list of their applications at various lifecycle stages.

Incidentally, the heterogeneous digital twins have fewer hardware units than the
full-scale testbeds, without the loss of accuracy in the modeling of system dynamical
characteristics. On the other hand, compared with a pure software model, the model
accuracy is better by incorporating real components.

System cybersecurity assessment is a relatively new scenario of digital twin applica-
tions. Digital twins of I&C systems can be used to identify vulnerability points, divide the
system into cybersecurity levels, investigate the propagation paths of attacks, and assess
the consequences of cyber-attacks.

The realization and application of a digital twin allow decreasing software quality
assurance costs because the digital twin is more available for the tests in various modes. We
got the successful practice of digital twin application for quality assurance. The experience
is based on the fact that a digital twin, being in many cases a rough copy of a real object,
changes test coverage in comparison to the real object. Particularly, it appears in the fact
that some of the errors that would most likely remain undetected during normal testing on
a real object are detected on a digital twin. Moreover, it is possible to clone more the digital
twin entity more than once and increase test coverage in this way.

We have demonstrated the heterogeneous digital model’s effectiveness in the course of
the development of the upper-level control system (ULCS) for a nuclear power plant. The
ULCS composite digital twin includes about one hundred virtual and real items (servers,
workstations, network equipment) and fully reproduces the real system properties, includ-
ing the redundancy in components and networks. The ULCS digital twin is used to validate
the system deployment during the commissioning, measure and analyze performance
characteristics of the ULCS, test some special modes that may be hard to conduct on the
real system due to cost or safety restrictions, and correct associated errors. Our experience
shows that the percent of errors related to the special modes is about 15%–20% from all
software errors detected at late software quality assurance stages.

In practice we conclude that a heterogeneous digital twin only reduces but not elim-
inates the modeling approach restrictions since it is difficult to achieve the complete
equivalence between a digital twin and the simulated system. The weak points of the
heterogeneous digital twin still are: graphical mode and HMI productivity in a virtual
environment, timekeeping issues, differences in general network throughput in virtual and
real components, and difficulties in achieving operational relevance between the digital
twin and the modeled real object in the presence of bugs and errors. This should be taken
into account when organizing the digital twin’s synchronization and the real system and
correlating the data obtained from the digital twin and the real object.

This work is the result of the creation of the ULCS NPP digital twin and its application
at the stage of development and deployment of a real system. We plan to continue working
with the digital twin at other stages of the ULCS lifecycle. The main focus will be on im-
proving the synchronization mechanisms of the digital twin and the real system, increasing
the accuracy of the models, first of all, in dynamical and temporal characteristics, and the
development of techniques that allow diagnostics and prognostics of the behavior of a real
system on a digital twin.
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