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Abstract: The heat exchanger is widely applied to many axial piston machines, and its structure
significantly affects the heat transfer performance. Flow characteristic and heat transfer performance
in heat exchanger channels with different dimples geometries are numerically and experimentally
analyzed in this research work. The objective is to present details of flow field structure and heat
transfer mechanisms for the dimpled channel. The realizable k-ε turbulence model was employed
in the numerical simulations with the Re range from 3500 to 20,000. The temperature contour,
local streamlines, friction factor, and Nu were presented to illustrate the heat transfer enhancement
mechanisms. From this investigation, it is found that dimples cause downward flow, improve the
flow mixing and reattachment, interrupt the boundary layer and form periodic impingement flows
and then greatly improve the heat transfer. The heat transfer coefficient of hemispherical dimple
channels with the three kinds of dimple radius–depth ratios is the highest, and it is about 27.2%
higher than that of the traditional rhombus dimple channel. Comparing to the rhombus dimpled
channel, the lower flow friction performance of the hemispherical dimple channel depends on the
lower dimple radius–depth ratio. The hemispherical dimpled channel present better overall thermal
performance due to the strength and extent of the recirculation flow reduction.

Keywords: heat exchanger; dimple shape; heat transfer enhancement; flow characteristic; numeri-
cal investigation

1. Introduction

To meet the operation requirement of axial piston pump under high temperature
condition, it is necessary to improve the thermal efficiency design of pump shell. It is
urgent to develop more effective cooling strategy for pump shell [1]. For improving
the internal cooling performance of pump shell, several of heat transfer enhancement
techniques such as ribs, pins, and dimples have been widely adopted in heat exchangers
field in last decades. Among them, dimples can provide comparable enhanced heat transfer
capabilities of finned spoilers as eddy current generators, which promotes near-wall flow
areas and reduces pressure loss. The dimples are regarded as one of the most effective
structures for heat transfer enhancement in the industrial application because they have an
advantage in large convective heat transfer coefficient and high surface area-to-volume
ratio [2,3]. Thus, an insight into the flow dynamics, heat transfer and friction characteristics
in dimpled channels should be conducted.

Many researchers have investigated the effects of various dimples on the heat transfer
and friction characteristics of dimpled channels. The investigation pursued in [4] showed
that the dimple surface presents the highest performance of heat transfer enhancement and
the most favorable dimple geometric structures are optimized by using the performance
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evaluation plot of enhanced heat transfer techniques. Xie et al. [5] designed a high-efficient
enhanced heat transfer tube with both dimples and protrusions (ETDP) aiming to improve
heat transfer. The studies proved that the ETDP improved flow mixing and formed periodic
jet flows, which had advantages in enhancing heat transfer rate and performance evalua-
tion criteria. Wang et al. [6] studied the hydrodynamics and heat transfer characteristics
of dimpled tubes with different arrangements. They concluded that the Nusselt number
increases by 18.6–22.7% and the friction coefficient increases by 18.6–25.9% for the aligned
arrangement. Chang et al. [7] experimentally investigated the thermal performance of
hexagonal duct with dimpled wall. The results showed that Nusselt number and pres-
sure drop coefficient of each hexagon tube were the influence parameters of the dimple
structure design of the compact heat exchanger. Zheng et al. [8] numerically investigated
the enhanced heat transfer enhancement in the discrete double inclined ribs tube. The
results showed that the improvement of heat transfer in ribbed tube was higher about
1.8–3.6 times, and the friction coefficient was higher about 2.1–5.6 times than that of smooth
tube. Wei et al. [9] discussed the heat transfer enhancement in a dimple channel, and the
results demonstrated that the pressure drop of dimple channel was improved obviously
comparing with smooth microchannel.

However, some other researchers also found that the traditional hemispherical dim-
ple could meet the enhanced heat transfer level of the channel, and increased about
1.5–2.0 times of the heat reduction compared with smooth channel [10]. Afanasyev et al. [11]
studied experimentally the friction and heat transfer on the surface of a spherical cavity
system formed by turbulent streamlining, and their results showed that the shape of the
heating surface had no obvious influence on the fluid dynamics of the flow, and the heat
transfer enhancement is as high as 30–40%. Bunker and Donnellan [12] measured the heat
transfer and friction coefficients of fully developed turbulent flow in a circular tube with
six different dimple geometries. Coy and Danczyk [13] experimentally studied the heat
transfer enhancement of spherical dimples on the tube wall. Compared to the smooth
channel, the heat transfer enhancement effect of the spherical dimple array with the con-
cave depth diameter ratio of about 50% was better. Rao et al. [14] studied the overall
average heat transfer enhancement of the spherical dimple channel is 1.5–1.7 times than
that of the fully developed flow in the smooth channel. Turnow et al. [15] numerically
studied the mechanism of turbulent heat transfer enhancement in a spherical dimple. They
reported that the dimpled channel provided the maximum thermal- hydraulic performance
if the best ratio of depth to diameter of channel was chosen to 0.26. In Ref. [16], LES and
URANS methods was used to vortex mechanism of heat transfer enhancement in a channel
with spherical and oval dimples. It was concluded that a formation of vortex structures
provided heat transfer enhancement on dimpled surfaces but increased pressure loss. The
heat transfer could be significantly increased by rounding the dimple edge and use of oval
dimples. Xie et al. [17] analyzed the flow characteristics and heat transfer performance
for a rectangular channel surfaces with internal-protruded dimples. The investigation
concluded that the internal-protruded dimple structures suppressed recirculation flows in
the upstream parts of the dimples. Small-scale recirculation flows were mainly distributed
around the internal protrusions. Shchukin et al. [18] experimentally studied the effect
of external factors on the heat transfer enhancement of the spherical dimples. Leontieva
et al. [19] experimentally investigated the heat transfer and the hydraulic drag in a plane
surface with spherical dimple, and determined the Reynolds number dependence of the
drag, heat transfer and thermal efficiency.

Many experimental and theoretical studies also studied the heat transfer mechanism
and flow pattern of non-spherical dimples. Zhou et al. [20] experimentally and numerically
investigated the influence of dimple shape on heat transfer enhancement. The result
showed that the teardrop dimple provided the highest thermal efficiency among the
four dimples. Isaev et al. [21,22] numerically investigated tornado-like enhancement
of heat transfer for low-velocity motion of air in a rectangular channel with cavities.
Kim et al. [23] investigated three-dimensional Reynolds-averaged Navier–Stokes analysis
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of cooling channel with inclined elliptic dimples and optimized geometric parameters of
inclined elliptical dimples aiming to improve heat transfer enhancement. Yoon et al. [24]
analyzed the thermal–hydraulic properties of the tear-drop dimples and the traditional
dimples. It was confirmed that the thermal performance of tear-drop dimples is higher
than that of the traditional dimples. Park and Ligrani [25] developed a new turbulence
model to analyze the heat transfer and flow characteristics of seven kinds of dimple shapes.
Ge et al. [26] studied the flows in a channel with a cosine-shaped dimple on the lower wall.
They concluded that the enhancement of the pressure drag was induced by high pressure on
the rear part of the cavity because the separation region in the cavity of the dimple became
larger with an increase of Reynolds number. Lan et al. [27] applied dimple/protrusion
technology to design a new rectangular channel and provided heat transfer enhancement
at low pressure condition. Haque et al. [28] represented a 3-D numerical investigation of
forced convection heat transfer over circular and oval tube banks with longitudinal vortex
generators (LVGs) for flow through a fin-and-tube heat exchanger. From the above, only a
few researchers paid attention to the parametric design of dimple structure to improve the
heat transfer performance of dimple channel. The understanding of heat transfer and flow
characteristics in the channel with traditional dimple shapes was still very limited.

From the literature, the geometry and spacing of dimple has a significant effect on
hydraulic and thermal performance in the channel flow. Dimples of different geometrical
shape are used on the surface for heat transfer enhancement. In spite of various works elu-
cidating the impact of adding a single or number of dimples to a system in literature, there
is not sufficient data regarding the study of a group of interacting dimples, more specifi-
cally at high Reynolds numbers. Especially, the rhombus and hemispherical geometries of
dimples on the heat transfer surface is found fewer in literature.

In order to fill this gap, the main objective of this study is to provide a numerical
investigation of thermal hydraulic performance for the dimpled channel with two different
dimple geometries at Reynolds number ranged from 3500 to 20,000. Then, appropriate
geometry of dimple pattern is chosen, which has highest thermal hydraulic performance,
which can be attempted for cooling of a dimpled channel. The remainder of this study
is organized as follows. A realizable k-ε turbulence model is employed in the numerical
simulations developed in Section 2. The grid independence study using turbulence model
is conducted for each case In Section 3. The experimental apparatus used to measure
the fluid temperature of the heat exchanger with different dimple shapes in Section 4. In
Section 5, Flow field structure and heat transfer mechanisms of the dimpled channel are
investigated under the single phase condition. The influence of radius–depth ratio on the
flow and heat transfer characteristics for all different dimpled channels is investigated
based on numerical and experimental results. The thermal enhancement factor of dimpled
channels also has been discussed. Generally, this study may provide some theoretical
guidelines and suggestions in the potential application of the dimpled channel.

2. Model and Numerical Method
2.1. Geometrical Model

The thermal performance of the channel with dimples are studied in the present study.
Figure 1 shows the geometrical structure of the dimpled channel. The model for this study
is a rhombus channel with an array of dimples. The length (a) and width (b) of rectangular
channel are 120 mm and 20 mm, respectively. The radius (rp) of hemispherical dimple is
3 mm and the width (L) of rhombus dimple is 3 mm. The radius–depth ratios (rp/h) of
hemispherical dimples are defined as rp/h = 0.1, 0.2, 0.3, 0.4. Similarly, the length–depth
ratios (L/h) of triangle dimples are adopted for this study as L/h = 0.1, 0.2, 0.3, 0.4. The
distance (s) between each other dimples is 8 mm.
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where F is body force; μ is oil viscosity; i, j, and w are direction of coordinate, respectively. 
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where cp is specific heat; λ is thermal conductivity; τ is time. 
The functions of turbulent kinetic energy and turbulent energy dissipation rate are 
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Figure 1. Computational domain of a channel with different dimples.

2.2. Mathematical Model and Governing Equations

The fluid field in channel is regarded as a three-dimensional turbulence, and it is
assumed that the fluid is incompressible and has a constant property. Governing equations
of continuity, momentum, and energy are solved to prediction flow characteristics and heat
transfer performances. The realizable k-ε turbulence model is adopted in this study to close
the governing equations. The associated governing equations of as follows [29]:

Continuity equation:
∂
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(ρvi) = 0 (1)

where p is fluid pressure; vi is fluid velocity; ρ is fluid property; x is direction of coordinate.
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where F is body force; µ is oil viscosity; i, j, and w are direction of coordinate, respectively.
Energy equation:
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where cp is specific heat; λ is thermal conductivity; τ is time.
The functions of turbulent kinetic energy and turbulent energy dissipation rate are

written as [30]
Turbulence kinetic energy:

∂(ρεvi)

∂xi
=

∂

∂xj
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µ +

µt

σk

)
∂k
∂xj

]
+ Gk − βε (4)

where µt is turbulent viscosity ratio; σk is turbulent kinetic energy; k is turbulent kinetic
energy ratio; Gk is turbulent viscosity; ε is dissipation rate.

Specific dissipation rate (ε) equation:
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where Gk can be explained as follows:

Gk = −vivj
∂vi
∂vj

=
µt

ρ

(
∂vi
∂vj

+
∂vj

∂vi

)
∂vi
∂vj

(6)

G1 = max
[

0.43,
µt

µt + 5

]
, G2 = 1.0, σk = 1.0, σε = 1.2, µt = ρCµ

k2

ε
(7)

where Cµ is constant value.

2.3. Boundary Conditions

Figure 2 shows the flow computational domain of a dimpled channel. The dimples
are evenly located on the slipper surface.
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Therefore, the periodic boundary condition can be expressed as [19]

vx(x, y, 0) = v(x, y, a), vy(x, y, 0) = v(x, y, a), vz(x, y, 0) =
mtest

mout
w(x, y, a) (8)

k(x, y, 0) = k(x, y, a), ε(x, y, 0) = ε(x, y, a) (9)

T(x, y, 0) = T(x, y, a)− Q
Cpmout

(10)

T = Tw = 320K (11)

where mtest is mass flow rate; Tw is wall temperature; Q is total heat absorbed by heat
transfer fluid; mout is outlet mass flow rate.

2.4. Data Reduction

The Reynolds number of fluid in a dimpled channel can be written as

Re =
ρvd
µ

(12)

where d is diameter of channel; Re is Reynolds number.
The convective heat transfer coefficient between fluid and channel wall is calculated

as [31]

h =

.
Q

A(Tw − Tave)
(13)

where h is convective heat transfer coefficient; A is flow area; Tave is average fluid tempera-
ture;

.
Q is heat transfer rate.
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The mean temperature difference between the cooling wall and the heat flow is
defined as

∆Tm =
(Tw − Tin)− (Tw − Tout)

ln
(

Tw−Tin
Tw−Tout

) (14)

where ∆Tm is the mean temperature difference; Tout is outlet temperature; Tin is inlet
temperature.

The Nusselt number and friction factor in the dimpled channel can be written as [32]

Nµ =
hde

λ
(15)

f =
∆p(

L
d

)(
ρ

µ2

2

) (16)

where L is channel length; de is equivalent diameter of channel; f is friction factor; ∆p
pressure difference between inlet and outlet.

In this study, the governing equations of continuity, momentum and energy are
discretized by the finite volume method, and all the governing equations are solved using
ANSYS 14.5. The pressure velocity coupling problem is solved by simple algorithm, and
the pressure equation is solved by the second order discrete scheme. At the same time,
the second-order upwind discrete scheme is used to solve momentum, turbulent kinetic
energy and turbulent dissipation rate. The grid should have a y+ value around or less than
1.0. Thus, the realizable k-ε turbulence model with enhanced wall functions can employed
in the simulation for prediction of flow characteristics and heat transfer performances. The
convergence criteria for the root mean square residuals of all variables are 10−6. To further
ensure that a converged state has been obtained, the temperature and mass flow rate are
monitored at the heated plate and channel outlet, respectively.

3. Grid Independence Study

To choose an appropriate grid number which can keep a balance between computa-
tional economy and prediction accuracy, the grid independence study using turbulence
model is conducted for each case. For all cases, the hexahedral mesh is mesh the model
because of its high quality. The grid near the boundary is refined because much more
details about fluid field are needed, especially the details in the boundary layer. Grid
structure is shown in Figure 3. Except that the algorithm applied in numerical method has
effect on the accuracy of results, the accuracy is influenced by grid. Therefore, the grid
independence is carried out to confirm that numerical results are free from the influence of
grid and number of grids met the calculation accuracy requirements.
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In order to capture the solution in viscous sub-layer near the wall, fine mesh is adopted
for the near-wall region to satisfy (y+ ≈ 1) at the adjacent wall of near-wall regions, which
is applicable with enhanced wall treatment for the studied range of Reynolds numbers. For
capturing the boundary layer and satisfying the value of YPlus (y+ ≈ 1), grid parameters
are used for the axisymmetric model as follows: First layer thickness (4y1 = 0.00215 mm),
growth rate (GR = 1.02), and number of division(n = 120) as shown in Figure 4.
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Figure 5 shows the effects of mesh sizes on the distribution of the Nusselt number and
pressure difference through a dimpled channel. We conduct to the mesh independency
test for hemispherical dimpled channel at Re = 12,000, and analyze the effect of five
different grid densities of the channel on Nusselt value and pressure difference. The five
configurations have grid layout with approximately 4682, 5325, 9634, 20,488, and 28,320
cells, respectively. When the grid number increases from 9634 to 28,320, the Nusselt number
decreases from 322.4 to 323.13, and the pressure difference increases from 2227.6 Pa to
2218.6 Pa. It is clearly visible that after 20,488 further increasing the grid number causes
negligible variations in local Nusselt number and pressure difference values on the dimpled
channel region.
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The grid independence validation is carried out using the dimple hexahedral mesh.
Table 1 gives comparison in average Nusselt number and pressure difference as well as
its difference among four mesh sizes. It can be seen that Nusselt number and pressure
difference change by 0.017% and 0.094% from gird size of 4682 to 28,320, respectively.
Consequently, the mesh size of 20,488 is adopted for the simulation of case. Simultaneously,
the mesh sizes employed for other cases are ranging from 4682 to 28,320.

Table 1. The effect of mesh sizes on the Nusselt number and pressure difference.

Grid Number ∆p ∆p-Difference, % Nµ
Nµ-Difference,

%

4682 2271 2.361 323.13 1.725
5325 2246 1.235 322.9 1.652
9634 2227.6 0.406 322.49 1.523

20,488 2222.1 0.017 320.35 0.094
28,320 2218.61 Reference 317.65 Reference

4. Experimental Apparatus

In order to the heat transfer performance of heat exchanger with hemispherical dim-
ples, a test rig was set up and utilized at Wenzhou university, as shown in Figure 6. Cooling
water is used as working fluid outside the tube bundle. The experimental device is mainly
composed of a cooling water circulation system and a pump-motor control system. The
system is insulated with 5 cm silicate to reduce heat loss. In the oil passage circulation
system, hydraulic oil is pulled by a variable speed motor, and this method can maintain
the inlet oil temperature of test section at approximately 60 ◦C in all the experiments. Then,
the hot oil flows through the heat exchanger. The heat of the hot oil is transferred to the
cooling water in the tube bundle. Finally, the cooler oil returns to the pump after passing
through an oil flow stable section. In the cooling water circulation system, the 12 KW water
cooler is connected with the water tank to keep the inlet water temperature of the heat
exchanger at 35 ◦C. The cooling water is driven by the pump and circulates between the
water tank and the heat exchanger and maintains a stable value of 2 m3/h. The cooling
water is evenly distributed on the tube bundle, and the heat of hydraulic oil is absorbed by
the cooling water.
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The experimental data includes oil temperature, water temperature, pipe wall temper-
ature, oil pressure difference, oil volume flow rate, and water mass flow rate. All data is
obtained by Agilent collector and transmitted to the computer. The test parameters and
instruments are shown in Table 2. In the current heat transfer experiments, the tempera-
ture measurement method is very important because it directly affects the calculation of
convective heat transfer coefficient of heat exchanger channel.

Table 2. Tested parameters and instruments.

Measured
Parameters Instruments Brand Error Measuring

Range

Oil temperature RTD PT100 ±0.05%FS 0–200 ◦C
Tube wall and water

temperature Thermocouple OMEGA ±0.05%FS 0–200 ◦C

Pressure difference Differential pressure
transmitter ABB ±0.04%FS 0–1000 Pa

Oil volume flow rate Volumetric
flowmeter ABB ±0.2%FS 0–2000 m3/h

Water mass flow
rate

Electromagnetic
flow meter ABB ±0.25%FS 0–4 m3/h

In this study, the temperature measurements can be written as

Φ =
Q

A0∆Tm
× 100% (17)

where Φ is temperature measurement; A0 is initial heating area.
The heat exchange between fluids is calculated as follows

Qh = mhCp ph(Thi − Tho) (18)

Qc = mhCp ph(Tci − Tco) (19)

where Qh is oil heat exchange rate; Qc is water heat exchange rate; mh is heat fluid mass; ph
is heat fluid density; Thi is oil inlet temperature; Tho is oil outlet temperature; Tci is inlet
temperature of cold water; Tco is outlet temperature of cold water.

Table 3 expresses the experimental uncertainty as a percent deviation for each operat-
ing variable. In this experiment, the percent deviation can be calculated as follows:

ψ =
x− xav

xav
× 100% (20)

where x is measurement; xav is mean of a set of measurements; ψ is deviation.

Table 3. Experimental uncertainties expressed by average deviation.

Parameters Deviation

Tin 3.9 K
Tout 1.5 K
Tci 3.6 K
Tco 1.5 K

∆Tm 3.7 K
Pressure drop 25 bar

Table 4 shows a typical example of heat load values for both fluids. In this table, Reh
and Rec are the Reynolds numbers of hydraulic oil and water, respectively. The results
show that the maximum heat exchange rate difference between hydraulic oil and water
is 6.7%, and the minimum difference is 1.1%. There are include two main reasons. One
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reason is the heat dissipation of the insulation layer. The other reason is the experimental
measurement error.

Table 4. Comparison of heat exchange rate of hydraulic oil and water in heat exchanger.

Reh Rec Qh (W) Qc (W) Difference (%)

7500 2720 1287.5 1201.3 6.7
3920 1906.2 1879.5 1.4

10,500 2720 2518.3 2447.8 2.8
3920 3176.8 3125.9 1.6
5213 3765.2 3723.8 1.1
7836 4782.1 4676.9 2.2

15,000 3920 3931.5 3829.3 2.6
5213 5375.7 5273.6 1.9
7836 5872.3 5737.2 2.3

10,980 6473.4 6330.9 2.2
17,500 2720 3495.2 3388.7 2.7

5213 5162.4 5037.5 2.4

For the validation of the proposed model, the results for dimpled channel were
determined using the proposed model and compared with the current experimental results.
Figure 7 presents the comparison of the oil temperature along the x-direction in the dimpled
channel obtained by the proposed model with the results determined experimentally. In
Figure 7a, the trend of the numerical result for channel with hemispherical dimple is seen
to be in line with the outcomes of the experimental test. The maximum and minimum
absolute deviations of the numerical results from the experimental ones are 0.37% and
0.27%, respectively. In Figure 7a, for channel with rhombus dimple, the maximum and
minimum absolute deviations between the numerical results and the experimental results
are 0.43% and 0.03%, respectively. Thus, a good agreement has been achieved between the
numerical simulation and the experimental data and the proposed numerical model can
be used to predict the experimental results with reasonable accuracy and can therefore be
used to analyze the other cases.
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5. Results and Discussion
5.1. Validation with Empirical Equations

The averaged Nusselt number and friction factor of a smooth channel are chosen as
the reference values for comparing the flow and thermal performance of the dimpled plates.
The Nusselt number are calculated by Gnielinski empirical correlation. The criteria of heat
transfer can be verified by the Nusselt number [33]. Therefore, the Nusselt number and
Darcy friction coefficient for developed fluid region are defined as follows

Nµ0 =

(
f0
8

)
(Re− 1000)Pr

[
1 +

(
d
L

) 2
3
]

1 + 12.7
√

f0
8

(
Pr

2
3 − 1

) (21)

where Nu0 is averaged Nusselt number in the fully developed fluid region; f 0 is Darcy
friction factor in the corresponding fully developed fluid region; Pr is Prandtl number.

The results based on CFD of friction factor is evaluated with empirical correlations
to validate numerical results with experimental results. Thus, the Darcy friction factor
proposed by Filonenko is used to evaluate flow resistance, as defined in Equation (22):

f0 = (1.82lgRe− 1.64)−2 (22)

The numerical results of Nusselt number are compared with experimental results
in Figure 8. The numerical results are in good agreement with empirical equations. The
deviation of Gnielinski equation is all within 5% and the maximum value is about 3.7%.
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Figure 9 shows the comparison between the numerical friction factor and empirical
correlations. Obviously, the numerical results and the existing correlation have the variation
trend and the difference value is very small. The average discrepancy of friction factor with
Filonenko is within 5%. The results show that the numerical results are in good agreement
with the maximum uncertainty of friction coefficient experimental results.
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5.2. Flow Characteristics

To analyze the fluid flow and heat transfer characteristics in hemispherical and rhom-
bus dimples channels, it is necessary to compare the calculation results with the result of
reference [34]. Figure 10 shows the effect of Reynolds numbers on the Nusselt number
of the dimpled channel with different dimple shapes. As Reynolds number increase, the
Nusselt number of all channels increases. The Nusselt number of hemispherical dimple
channel varies from 50 to 278, which is 1.16 times than that of a rhombus dimpled channel.
Comparing to the hemispherical dimple channel, the Nusselt number of rhombus dimple
channel decreased by 14.4%. Therefore, the channel with hemispherical dimples shows the
highest Nusselt numbers among the two studied dimple shapes.
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Figure 11 presents the effect of Reynolds numbers on the Nusselt number enhancement
of the dimpled channel with different dimple shapes. The Nusselt number enhancement
of the hemispherical dimple channel is about 1.2–1.62, which agrees well with the ex-



Machines 2021, 9, 72 13 of 22

perimental data. The Nusselt number enhancement of the rhombus dimple channel is
about 0.9–1.17, which is similar to the experimental values of the dimpled channel flow.
For two kinds of dimpled channels, when the Reynolds number is more than 11,598, the
heat transfer enhancement of dimpled channels seem to be independent of the Reynolds
number. In the case of low Reynolds number at 5028, all the dimpled channels show
significantly lower heat transfer enhancement, which is mainly due to the lower level of
turbulent mixing induced by the dimples. When the Reynolds number is set to 5028, the
heat transfer enhancement performance of rhombus dimple is 20.9% lower than that of
hemispherical dimple, and such a rhombus dimple structure should be avoided for low
Reynolds numbers.
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Figure 12 shows the local Nusselt number distribution on the surface of dimpled
channel under different Reynolds number. In this cases, the Reynolds numbers are chosen
to 3000 and 20,000. The local Nusselt number can be defined as the local heat flow, the
local temperature of the end wall and the local volume average temperature formed by
the fluid flow. This result is consistent with the Nusselt number calculation based on the
mean temperature difference, as shown in Equation (14) [35]. Due to the flow separation,
all the dimples show a low heat transfer rate in the upstream half of the dimpled wall. As
shown in Figure 12a, the convective heat transfer is distinctively enhanced in the front and
back edge of the dimpled wall. The channel with hemispherical dimples shows the higher
local heat transfer enhancement than that of the channel with rhombus dimples. This is
because the straight slope of the upstream dimpled wall can effectively reduce the low
heat transfer area. A more steeply curved wall in the upstream half of the hemispherical
dimples could change the vortex structure to asymmetrical distribution in the dimples,
which is consistent with the findings from Turnow et al. [16]. In Figure 12b, with the
Reynolds numbers increase, the low heat transfer area in both dimple channels become
smaller. This result could be because the heat transfer enhancement of the dimpled channel
is significantly lower at a lower Reynolds number of 3000. Due to the effect of heat flow in
inlet and outlet ports, there is high heat transfer performance of fluid flow at the leading
edge of the concave channel, and then it drops rapidly.
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Figure 13 shows the CFD results of the Nusselt number along the flow direction of
different dimpled channels. The Nusselt number of fluid flow in the hemispherical dimpled
channel is higher about 19.2% than that of rhombus dimpled channel. It also implies that
the thermal entrance effect has greater influence on the heat transfer development of
hemispherical channel. The heat transfer rate of hemispherical channel is higher than the
rhombus channel.
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Figure 14 shows the streamlines in a near-wall channel with different dimple shapes
at the Reynolds number of 20,000. There is flow adhesion phenomenon near the leading
edge of the dimpled channels. This will cause turbulent mixing in the near wall flow,
which may eventually lead to heat transfer enhancement. Especially, the hemispherical
dimples may obviously produce a larger high vortex region in the near-wall flow region
than that of the rhombus dimples. For Rhombus dimples, the steep walls of inlet and outlet
zones lead to flow separation, resulting in lower heat transfer performance. The surface
streamlines of different channels can be used to compare the difference between the heat
transfer enhancement zones on the dimpled surfaces.
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5.3. Heat Transfer

Figure 15 shows the effect of Reynolds number on heat transfer enhancement factor
(Nu/Nu0) in different dimpled channels. With the Reynolds number increase, the heat
transfer enhancement factor decreases. When the Reynolds number is less than 5000,
the decline rate of heat transfer enhancement factor is higher and becomes lower for
Re = 5000–20,000. When the radius depth ratio of hemispherical dimpled channel increases
from 0.1 to 0.3, the heat transfer enhancement factor increases in the case of same Reynolds
number. The reason is attribute to the flow area in the hemispherical concave channel,
which is directly proportional to the radius depth. With the increase of radius depth, the
low temperature fluid can cover more heating area and improve the heat transfer effectively.
Comparing to rhombus dimpled channel, the improvement of heat transfer enhancement
factor in the hemispherical dimpled channel is about 6.5–13.5%. The phenomenon can
be explained that rhombus dimpled channel destroys the thermal boundary layer and
enhances heat transfer due to high flow turbulence and mixing.

Figure 16 shows the effect of Reynolds number on friction factor increment (f /f 0)
in different dimpled channels. For hemispherical dimpled channel, the friction factor
increment decreases with the increasing of Reynolds number. When the Reynolds number
is more than 10,000, there is small variation in the friction factor increment. For the same
Reynolds number, the friction factor increment does increase monotonously as radius–
depth ratio (rp/h) increase. The friction factor increases with the increasing of the length–
depth ratio (L/h). If the Reynolds number is set to 15,000, the heat transfer enhancement
factor for hemispherical dimpled channel is higher about 5% than that of rhombus dimple.
The results can be explained that the viscous sublayer decreases with increasing of Re as
mentioned for dimpled channel with hemispherical shape study.
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Figure 17 shows the CFD results of the fluid temperature in the different dimpled
channel for Re = 10,000. It can be seen that the two kinds of dimpled channel exist different
heat transfer performance due to the thermal entrancement effect of fluid. There is a large
area of low heat transfer area in the leading edge of the hemispherical dimple, and the heat
transfer in the rear edge of the dimple is also very strong due to the flow separation. The
heat transfer distribution of rhombus dimple is similar to that of hemispherical dimple,
but the low heat transfer area is larger than that of hemispherical dimple, which is the
reason why the overall heat transfer performance of rhombus dimple is lower than that
of hemispherical dimple. In addition, hemispherical dimple has the smallest area of low
heat transfer area, but the Nusselt number is more uniform. In practical, the hemispherical
dimple shows more uniform temperature distribution of the heat transfer structure, which
reduces the thermal stress and increases the service life.
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5.4. Thermal Performance Evaluation

In this study, considering the penalty effect caused by friction loss, we can evaluate
the heat transfer performance of different dimpled channels. According to the Ref [36], the
main parameters include f 1/3Re, (Nu/Nu0)/(f /f 0) and Nutotal/Nu0. The above motioned
parameters are proportional to the pumping power and are used to evaluate the overall
thermal performance. The increased heat transfer area of dimples and the vortex flow
generated by dimples near the wall promote enhanced heat transfer, so it needs to be
evaluated with Nutotal. The total heat transfer rate includes the heat transfer contribution
of the dimple surface and flat surface as the total heat transfer rate. Therefore, the total
Nusselt number is defined by

Nµtotal = Nµ0
Awet

Abase
(23)

where Nutotal is total Nusselt number; Awet is total wetted heat area; Abase is base heating area.
Figure 18 shows comparison of numerical and experimental results in term of the

heat transfer enhancement of fluid flow in different dimpled channels. The heat transfer
enhancement of spherical dimple channel is about 1.25–1.42, which agrees well with the
experimental result reported by Coy et al. [13]. The Nusselt number enhancement of
rhombus dimple is about 1.0–1.2, which is close to the heat transfer enhancement values
of the dimpled channel flow. For two kinds of the dimpled channels, when the f Re3

is more than 5000, the heat transfer enhancement value seems to be independent of the
parameter f 1/3Re. When the parameter f 1/3Re is set to 5000, all the dimpled channels show
appreciably lower heat transfer enhancement. This phenomenon can be explained that the
lower level turbulent mixing is caused by the dimples. The hemispherical dimples show
the lowest thermal performance, which is about 11.6% higher than the rhombus dimples.

Figure 19 shows the overall thermal performance of different dimpled channels consid-
ering the effect of the Reynolds number. Within the Reynolds number range of 3500–20,000,
the overall thermal performance of the different dimpled channels firstly increase and
then decrease with the Reynolds number. The numerical and experimental results show
that the overall thermal performance of the hemispherical dimpled channels are basically
the same trend when the Reynolds number increases from 3500 to 20,000. Especially, the
hemispherical dimpled channels show the highest overall thermal performance, which are
about 27.2% higher than the rhombus dimpled channels. The main reason can be explained
that the combination of heat transfer enhancement and flow friction reduction plays an
important role in overall thermal performance.
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Figure 19. The overall thermal performance of different dimpled channels considering the effect of
the Reynolds number.

Based on the analysis of existing performance evaluation standards, Fan [37] proposed
a performance evaluation chart to study the heat transfer characteristics by two main
parameter performance indexes, including the heat transfer enhancement rate and the
increment of friction coefficient. Figure 20 shows performance evaluation plot of different
dimpled channels. According to the same pumping power line and the same pressure drop
line, the quadrants with two coordinates greater than 1.0 are divided into three areas. As
shown in Figure 20, heat transfer enhancement ratio is larger than friction factor increase
ratio in Region 1. At the same pumping power, there exists the heat transfer enhancement
in Region 2, but the increase of friction coefficient is greater than that of heat transfer
enhancement at the same pressure drop. The heat transfer in Region 3 is actually depends
on identical pumping power. It can be seen that Region 1 shows the best performance in
heat transfer and energy saving, and the Region 4 is the worst. In particular, all data for
hemispherical depressions with Re = 20,000 is located in region 1, and the other data is
located in region 2.
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6. Conclusions

The flow and heat transfer characteristics of channels with different dimples geome-
tries are investigated in this study. The realizable k-ε turbulence model was employed in
the numerical simulations with the Re range from 3500 to 20,000. The flow structure and
heat transfer performance of different dimple channels with various dimple radius–depths
ratios have been investigated and compared with each other. The mainly conclusions can
be draw as follows:

(1) The Nusselt number enhancement of the hemispherical dimple channel increases
with the increasing of Reynolds number. The Nusselt number enhancement of a
hemispherical dimpled channel with higher radius–depth ratio is noticed to be more
than the rhombus dimpled channel.

(2) The flow friction performance depends on the dimple radius depth ratio of hemi-
spherical dimple channels. The friction coefficient increment of hemispherical dimple
channel increases with increasing of the dimple radius depth ratio, but it decreases
with the increase of Reynolds number.

(3) The fluid flows smoothly and easily on the hemispherical dimple surface, and the
hemispherical dimples can improve the flow mixing, interrupt the boundary layer and
forms periodic impinge flows, thus realized the enhancement of thermal–hydraulic
performance.

(4) The hemispherical dimpled channel present better overall thermal performance be-
cause the strength and extent of the recirculation flow is significant decreased com-
pared with the rhombus dimpled channel.
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Abbreviations

p Fluid pressure Pa
vi Fluid velocity m/s
ρ Fluid property kg/m3

F Body force N
cp Specific heat J/(kg·K)
λ Thermal conductivity W/(m·K)
τ Time ms
µ Oil viscosity Pa·s
i,j,w Direction of coordinate -
µt Turbulent viscosity ratio -
σk Turbulent kinetic energy K
k Turbulent kinetic energy ratio -
Gk Turbulent viscosity -
ε Dissipation rate -
mtest Mass flow rate measurement kg/s
Tw wall temperature ◦C
Q Total heat absorbed by heat transfer fluid J
mout Outlet mass flow rate kg/s
d Channel diameter mm
Re Reynold number -
Tin Inlet temperature ◦C
A Flow area m2

Tave Average fluid temperature ◦C
.

Q Heat transfer rate W
Tout Outlet temperature ◦C
qm Heat flux W/m2

4Tm Mean temperature difference ◦C
de Equivalent diameter of channel mm
L Channel length mm
f Friction factor -
4p Pressure difference between inlet and outlet Pa
Nu0 Nusselt number in the fully developed fluid region -
f 0 Darcy friction factor in the corresponding fully developed fluid region -
Pr Prandtl number -
Φ Temperature measurement ◦C
Qh Heat exchange rate of hydraulic oil W/(m2·K)
Qc Heat exchange rate of water W/(m2·K)
mh Heat fluid mass kg/s
ph Heat fluid density kg/m3

A0 Initial heating area m2

Thi Oil inlet temperature ◦C
Tho Oil exit temperature ◦C
Tci Inlet exit temperature of cold water ◦C
Tco Exit temperature of cold water ◦C
x Measurement -
xav Mean of a set of measurements -
ψ Deviation -
Nutotal Total Nusselt number -
Awet Total wetted heat area m2

Abase Base heating area m2
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