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Abstract: A row-following system based on machine vision for a picking robot was designed in
our previous study. However, the visual perception could not provide reliable information during
headland turning according to the test results. A complete navigation system for a picking robot
working in an orchard needs to support accurate row following and headland turning. To fill this
gap, a headland turning method for an autonomous picking robot was developed in this paper.
Three steps were executed during headland turning. First, row end was detected based on machine
vision. Second, the deviation was further reduced before turning using the designed fast posture
adjustment algorithm based on satellite information. Third, a curve path tracking controller was
developed for turning control. During the MATLAB simulation and experimental test, different
controllers were developed and compared with the designed method. The results show that the
designed turning method enabled the robot to converge to the path more quickly and remain on
the path with lower radial errors, which eventually led to reductions in time, space, and deviation
during headland turning.

Keywords: row end detection; turning control; headland; picking robot

1. Introduction

Bananas are one of the main economic fruits in South China with large planting fields.
However, the process of picking fruits is still principally manually implemented, which
leads to issues such as high labor intensity, high costs, and low efficiency [1,2]. To free
the farmers from heavy work, reduce repetitive operations, and avoid the harm caused
by certain operations, there is a great need for fruit-picking robots [3,4]. A fruit-picking
robot is a type of robot that is designed to move through an entire field and pick fruits on
its own [5–13]. In our previous study, a row-following system based on machine vision
for a banana-picking robot was developed. However, during the headland turning test,
it was found that the visual navigation system could not accurately guide the robot to
turn and enter the next row due to the unreliable perceptual information provided by
the camera near the headland. To fill this gap and achieve a fully automated picking
robot, the headland turning method should be studied and developed. Moreover, the
optimization of headland turning control can reduce time, space, and fuel consumption
during headland turning and, in turn, improve the overall field efficiency of agricultural
field equipment [14–17].

A major challenge in improving headland turning navigation is the generation of a
feasible turning trajectory based on route planning and motion planning, which numerical
studies have mainly focused on [18]. In early studies, the main criteria, such as the
minimum turning radius, the maximum lateral acceleration, and steering speed, were
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adopted using the Spline function, Bezier curve, etc., to generate the turning paths [19].
Recently, studies have been directed towards computing the turning paths based on
numerical optimization. Tu et al. developed kinematic models of the tractor and the
tractor-implement systems and formulated headland turning time-optimal problems by
incorporating the models and operational constraints. Different types of turning were
tested by simulation based on the MATLAB TOMLAB/SNOPT toolbox [20]. Evans et al.
developed a mathematical model for computing the route with the minimum in-field non-
working time for a single harvester in irregularly shaped fields utilizing a headland field
pattern. A genetic algorithm was used for solving the optimization problem. The results
showed that the optimized travel path reduced the non-working travel between 13.8 and
31.5% [21]. Vahdanjoo et al. designed a coverage-planning algorithm for capacitated field
operations in agricultural fields. By applying the meta-heuristic algorithm, the optimal
traversal sequence of fieldwork tracks under the criterion of minimizing the non-working
traveled distance during the headland turnings was found. Moreover, a simulation model
was designed to generate the traveled distance of the operation [22]. One of the major
disadvantages of the numerical optimization method is the high computational time,
which is the key factor in real-time applications. The other drawback of this method is the
uncertainty of the solution convergence.

Another challenge in headland turning is the motion control, as turning is often con-
sidered as curve path tracking. Approaches to path tracking control include backstepping
predictive control, fuzzy neural control, sliding mode control, etc. [23]. However, stud-
ies of control algorithms for headland turning have not adequately addressed the issue.
Wang et al. proposed an adaptive turning algorithm for a four-wheel robot tractor in
the headland. Both the slide movement of the robot and the steering rate were used for
estimating the turning radius in real-time. Moreover, after each turn, the vehicle model
was tuned based on the results to optimize the controller [24]. An intuitive and simple
method based on geometry has also been considered and adopted in headland turning
control. Huang et al. developed a headland turning controller based on the pure pursuit
algorithm for a rice transplanter. Paddy field test results indicated that by determining the
appropriate parameters of the model, the transplanter could succeed in turning accurately
and repeatedly at the headland [25]. Recently, Yin et al. developed a steering control
algorithm for a rice transplanter. A compound fuzzy PID (proportional-integral-derivative)
controller was designed to adjust the real-time data of the PID parameters for automatic
steering control. The experimental results showed that the maximum lateral and heading
deviations of headland turning were 11.5 cm and 5 degrees, respectively [26].

The objective of this paper is mainly focused on the sensor-based detection of row
exits and turning control, which have not been addressed adequately in the literature.
Moreover, an additional fast posture adjustment algorithm was designed and added to the
start and end of the turning procedures in order to decrease the deviation occurring after
row following and headland turning. The main contributions are as follows:

1. A complete method for an agricultural robot turning at the headland was developed.
2. The preview distance, which has a significant effect on the performance of fast posture

adjustment, was studied and its optimal range was also determined by test.
3. A simulation and experimental tests of the designed method were carried out, and

it was compared with different methods in terms of different aspects, such as space,
turning time, and deviation.

The remainder of this paper is divided as follows: Section 2 contains the details of the
headland turning algorithms. Section 3 details the simulation and experimental test results
and provides the discussion. Finally, Section 4 states the conclusions of this study.

2. Materials and Methods
2.1. System Architecture

A picking robot mainly consists of three parts: a recognition system, a picking system,
and a moving system. The moving system is composed of a robot chassis, dual-antenna
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GNSS (Global Navigation Satellite System), industrial computer, microcontroller, and
speed sensor. RS232 is used to realize data communication between a top-level navigation
decision system and a low-level execution system. Real-time images are captured by a
camera and processed by an industrial computer to guide the robot in following tree rows
and detecting headlands. Once a headland is detected by the vision system, the robot
automatically executes a posture adjustment and turns at the headland based on the GNSS
information. The banana-picking robot is presented in Figure 1.
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Figure 1. Banana-picking robot.

2.2. Headland Detection Based on Vision

The first step is performed using machine vision to detect the approach of the robot
to a headland. Figure 2a,b show the original and processed image in the middle of the
navigation of the tree rows, while Figure 2c,d show the corresponding images when the
robot was close to the end of the tree rows. Image binarization and noise reduction were
carried out in advance. The purple rectangular areas represent the tree rows detected in the
ROI (Region of Interest). It can be observed that as the robot continued to drive towards
the end of the row, the area of the tree row detected in the ROI would gradually decrease.
Based on the above analysis, this study took the areas of the tree row detected in the ROI
as the headland detection criterion. The areas of the tree row in the binary image were
calculated in every frame, and the detection criterion is shown as Equation (1):

1
2

Nl

∑
i=0

(xiyi+1 − yixi+1) +
1
2

Nr

∑
j=0

(
xjyj+1 − yjxj+1

)
≤ η (1)

where Nl and Nr are the total number of pixels in the left and right tree row regions of
the ROI. (xi, yi) and

(
xj, yj

)
represent the coordinates of pixel i and pixel j in the left and

right tree row regions, respectively. η is the detection threshold, which was set according
to the camera’s field of view and the width and height of the tree rows. When η was set
low, the detection range would decrease, and the robot needed to drive close enough to
the end of the tree rows to implement switching to the next step of navigation. During our
experimental test, η was set to enable the robot to automatically switch to the next step in
advance, at about 2 m relative to the last row.



Machines 2021, 9, 103 4 of 15

Machines 2021, 9, x FOR PEER REVIEW 3 of 15 
 

 

A picking robot mainly consists of three parts: a recognition system, a picking system, 

and a moving system. The moving system is composed of a robot chassis, dual-antenna 

GNSS (Global Navigation Satellite System), industrial computer, microcontroller, and 

speed sensor. RS232 is used to realize data communication between a top-level navigation 

decision system and a low-level execution system. Real-time images are captured by a 

camera and processed by an industrial computer to guide the robot in following tree rows 

and detecting headlands. Once a headland is detected by the vision system, the robot au-

tomatically executes a posture adjustment and turns at the headland based on the GNSS 

information. The banana-picking robot is presented in Figure 1. 

 

Figure 1. Banana-picking robot. 

2.2. Headland Detection Based on Vision 

The first step is performed using machine vision to detect the approach of the robot 

to a headland. Figure 2a,b show the original and processed image in the middle of the 

navigation of the tree rows, while Figure 2c,d show the corresponding images when the 

robot was close to the end of the tree rows. Image binarization and noise reduction were 

carried out in advance. The purple rectangular areas represent the tree rows detected in 

the ROI (Region of Interest). It can be observed that as the robot continued to drive to-

wards the end of the row, the area of the tree row detected in the ROI would gradually 

decrease. Based on the above analysis, this study took the areas of the tree row detected in the 

ROI as the headland detection criterion. The areas of the tree row in the binary image were 

calculated in every frame, and the detection criterion is shown as Equation (1): 

  

(a) (b) 

Machines 2021, 9, x FOR PEER REVIEW 4 of 15 
 

 

  

(c) (d) 

Figure 2. Row end detection based on machine vision. (a) Original image in the middle of the row; (b) binary image in the middle of 

the row; (c) original image at the end of the row; (d) binary image at the end of the row. 

1

2
∑(𝑥𝑖𝑦𝑖+1 − 𝑦𝑖𝑥𝑖+1) +

1

2

𝑁𝑙

𝑖=0

∑(𝑥𝑗𝑦𝑗+1 − 𝑦𝑗𝑥𝑗+1) ≤ 𝜂

𝑁𝑟

𝑗=0

 (1) 

where 𝑁𝑙 and 𝑁𝑟 are the total number of pixels in the left and right tree row regions of 

the ROI. (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) represent the coordinates of pixel i and pixel j in the left and 

right tree row regions, respectively. 𝜂 is the detection threshold, which was set according 

to the camera’s field of view and the width and height of the tree rows. When 𝜂 was set 

low, the detection range would decrease, and the robot needed to drive close enough to 

the end of the tree rows to implement switching to the next step of navigation. During our 

experimental test, 𝜂 was set to enable the robot to automatically switch to the next step 

in advance, at about 2 m relative to the last row. 

2.3. Posture Adjustment Based on GNSS 

From Section 2.2, it was found that the camera could not provide reliable navigation 

near the headland. Therefore, there is a great need for another sensing device to accom-

plish the navigation before starting headland turning. GNSS provides absolute posture 

measurements and has been widely used for many agricultural tasks [27]. Therefore, pos-

ture adjustment based on GNSS was designed in this step. Moreover, to imitate the way 

in which humans drive, a preview point on the ground was also generated and used for 

designing the posture adjustment algorithm. According to the preview information, the 

robot could then be controlled in advance to avoid a large deviation before headland turn-

ing. Four modules were included in the posture adjustment algorithm: preview point gen-

eration, lateral deviation calculation, a PI (proportional-integral) controller, and a robot 

kinematic model. As Figure 3 shows, the preview point (𝑥𝐺 , 𝑦𝐺) with a look-ahead dis-

tance l was first generated based on the current robot posture measured by GNSS. The 

preview point lateral deviation ∆𝑙 was then calculated and converted into a robot differ-

ential-drive ∆𝑣 using the PI control algorithm. Finally, the left and right driving signals 

were calculated based on the robot kinematic model to control the actuator. 
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2.3. Posture Adjustment Based on GNSS

From Section 2.2, it was found that the camera could not provide reliable navigation
near the headland. Therefore, there is a great need for another sensing device to accomplish
the navigation before starting headland turning. GNSS provides absolute posture mea-
surements and has been widely used for many agricultural tasks [27]. Therefore, posture
adjustment based on GNSS was designed in this step. Moreover, to imitate the way in
which humans drive, a preview point on the ground was also generated and used for
designing the posture adjustment algorithm. According to the preview information, the
robot could then be controlled in advance to avoid a large deviation before headland
turning. Four modules were included in the posture adjustment algorithm: preview point
generation, lateral deviation calculation, a PI (proportional-integral) controller, and a robot
kinematic model. As Figure 3 shows, the preview point (xG, yG) with a look-ahead distance
l was first generated based on the current robot posture measured by GNSS. The preview
point lateral deviation ∆l was then calculated and converted into a robot differential-drive
∆v using the PI control algorithm. Finally, the left and right driving signals were calculated
based on the robot kinematic model to control the actuator.
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Figure 3. Schematic diagram of robot posture adjustment.

2.3.1. Kinematics Model

A tracked mobile robot could be simplified as a wheeled robot with differential
drive [28]. As Figure 4 shows, the current robot posture is defined as (x, y, θ) in the world
frame {Ow, Xw, Yw}, while the robot vehicle frame is defined as {Or, Xr, Yr}. The kinematic
model in the robot frame is given by Equation (2):[

v
ω

]
=

[
R
2

R
2

− R
L

R
L

][
vl
vr

]
(2)

where R is the radius of the wheels, and L is the distance between the left and right wheels.
v is the robot linear velocity along Xr. vl/vr is the left/right wheel angular velocity, and ω
is defined as the robot heading rate. The kinematic model in the global frame is given by
Equation (3): 

.
x
.
y
.
θ

 =

 cosθ 0
sinθ 0

0 1

[ v
ω

]
(3)
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Equation (4) can be derived from Equation (2) as follows:[
vl
vr

]
=

[
1
R − L

2R
1
R

L
2R

][
v
ω

]
(4)

2.3.2. Preview Point Generation

As Figure 5 shows, {W} represents the world frame. The origin of frame {M} locates
at the center of the primary antenna, while the origin of frame {G} locates at the preview
point P on the ground in the robot’s moving direction. (xM, yM, zM) is the coordinates of
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the primary antenna in the world frame measured by GNSS, and (xP, yP, zP) is defined as
the coordinates of the preview point. {G} is different from {M} only by a translation.
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Based on the theory of spatial descriptions and transformations, the coordinates of P
can be obtained through Equation (5): xP

yP
zP

 =

 xM
yM
zM

+ W
MRXYZ

(
θr, θp, θy

)
·

 b
a + l

h

 (5)

where b, h, a + l represents the distance from the preview point to the primary an-
tenna. θr, θp and θy are the roll, pitch, and yaw angles measured by GNSS, respectively.
W
MRXYZ

(
θr, θp, θy

)
is a rotation matrix that describes the orientation of the frame {M} with

respect to frame {W}.

2.3.3. Posture Adjustment Controller Design

According to the differential drive robot kinematics, by changing the speed of two
wheels, the robot is able to spin in place, move in a straight line, or follow a predefined
trajectory. In our study, differential drive ∆v(t) was designed as the output, and the lateral
error of the preview point ∆l was designed as the input of the controller. The control law is
presented as Equation (6):

∆v(t) = kp∆l(t) + ki

t∫
0

∆l(τ)dτ (6)

where kp and ki are the proportional and integral gain. From Equations (2) to (6), the
expected linear velocity of the left and right track vlexp(t), vrexp(t) could be calculated as
follows: [

vlexp(t)
vrexp(t)

]
=

1
2

[
2 −1 −1
2 1 1

] v(t)
kp∆l(t)

ki
∫ t

0 ∆l(τ)dτ

 (7)

where v(t) is the robot’s moving velocity. Once the calculated expected value exceeds the
maximum value of the motor velocity vl_max, a new linear velocity is then recalculated
using Equation (8):
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vi_new =


viexp −

(
max

(
vlexp, vrexp

)
− vi_max

)
i f max

(
vlexp, vrexp

)
> vi_max

viexp −
(

min
(

vlexp, vrexp

)
+ vi_max

)
i f max

(
vlexp, vrexp

)
< −vi_max

viexp

(i = l or r) (8)

2.4. Headland Turning Control Method

In closed-loop motion control applications, it is common to use a feedback controller,
such as the PID, to generate the control output. During headland turning, the robot often
has to track the curve path with a large curvature. To reduce the error more quickly and
keep it smaller, rather than relying on a single PID alone, another feedback controller
based on preview point heading errors was designed. Figure 6 presents the designed
controller structure. The radial deviation ∆e of the robot center relative to the reference
path was inputted into feedback-loop-1, while the preview point heading deviation ∆α
was inputted into feedback-loop-2. The outputs of the two loops were then summed as the
final steering command.
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Figure 6. Turning controller structure diagram.

Figure 7 displays the geometry details of the designed headland turning controller.
The robot is tracking a curve path on a flat surface in the case of turning left. The curve
path tracking algorithm is described as follows:

The current robot posture (xr(t), yr(t), θr(t)) in the world coordinate system is lo-
cated based on GNSS.

Along the reference path, the nearest point A (xa(t), ya(t)) relative to the robot center
is found and the distance is calculated as the input of feedback-loop-1:

∆e(t) = ±
√
(xa(t)− xr(t))

2 + (ya(t)− yr(t))
2 (9)

where the sign of ∆e is defined based on which side the robot is on. In our study, for the
case of left headland turning, ∆e > 0.
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Starting from point A, the preview point G
(

xg(t), yg(t)
)

is found using the preview
distance l. The expected heading is then calculated according to point G and the adjacent
point J

(
xj(t), yj(t)

)
. Given the robot current heading θr(t), the input of the feedback-loop-2

∆α is then calculated by Equation (10):

∆α(t) = arctan

(
yj(t)− yg(t)
xj(t)− xg(t)

)
− θr(t) (10)

Based on the kinematics model, ∆v(t), as the output of the designed controller, can
then be calculated:

∆v(t) =

k f b_p1∆e(t) + k f b_i1

t∫
0

∆e(τ)dτ

+

k f b_p2∆α(t) + k f b_i2

t∫
0

∆α(τ)dτ

 (11)

where k f b_p1, k f b_i1, k f b_p2, and k f b_i2 are the feedback-loop-1 and feedback-loop-2 gains.

3. Results and Discussion
3.1. Posture Adjustment Experiment

During the test, the robot velocity was set to 0.5 m/s, and the update rates of the
GNSS system were set to 20 Hz. For the initial tuning of the controller, the look-ahead
distance was fixed at 3 m, and the Ziegler Nichols method was adopted, in which only
the proportional gain was given and increased until sustained oscillations occurred. The
desired gain values could then be calculated and further tuned. In our test, it was found
that satisfactory gains were kp = 0.3, ki = 0.03. The influence on the tracking performance
of changing the look-ahead distance was also studied. A total of five test runs with different
look-ahead distances were executed in the same starting position. The posture adjustment
performances were recorded, as shown in Figure 8.
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Figure 8. Posture adjustment performance. (a) Lateral errors; (b) heading errors.

During the test, the lateral errors and heading errors were controlled, on average,
below 0.03 m and 0.4 degrees, respectively. Figure 8 also shows that there was a reasonable
range of the preview distance, which enabled the robot to smoothly regain the path with
less oscillation while maintaining low deviation. By trial and error, the reasonable range
was found to be 2–3 m. Furthermore, some of the lateral error trajectories are presented in
Figure 9, which clearly shows that, with 18–22 cm initial lateral errors, after driving 2–3 m,
the posture adjustment algorithm could control the deviation within 5 cm.
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3.2. Headland Turning Experiment
3.2.1. Simulation

For comparison, a Pure Pursuit controller, a feedback controller based on robot center
radial errors, a feedback controller based on preview point heading errors, and the designed
controller presented in this paper were implemented and tested using the same reference
path in simulation. A semicircular arc with a radius of 1 m was generated as the reference
path. The initial posture deviation was set with 0.3 m lateral errors and 15 degree heading
errors. The robot velocity was set to 0.3 m/s. Figures 10 and 11 show the radial errors and
robot trajectories of each controller during the turning.
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As shown in Figure 11, feedback controller 1 was designed based on the radial errors,
while feedback controller 2 was designed based on the preview point heading errors.
It was found that feedback controller 1 had the worst performance. By contrast, the
other three controllers that used the preview information and took corrective action in
advance achieved better performance. However, it should also be noted that the feedback
controller 2 relied only on the preview heading information and could not effectively
eliminate the radial deviation during the whole headland turning, resulting in a 0.12 m
deviation at the end of the headland turning process. In contrast to feedback controller 1
and feedback controller 2, the designed controller had a good capability of reducing both
the preview heading deviation and the radial errors at the same time. Pure Pursuit is a
popular algorithm based on geometry for robot path tracking, which has been widely used
in mobile robot path tracking [29]. Even though the Pure Pursuit controller performed well
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during the simulation, it was nonetheless found that the designed controller enabled the
robot to converge to the path more quickly and remain on the path with lower radial errors
than Pure Pursuit. After finishing the headland turning, the radial deviation was −0.027 m
for the Pure Pursuit controller and 0.006 m for the designed controller.

3.2.2. Experimental Test

The path planning included two straight lines for the posture adjustment and a
semicircle arc with a radius of 1 m for the headland turning, which was created using the
Dubins algorithm. The whole headland turning process consists of three parts. First, after
finishing headland detection, the robot switches to the posture-adjusting mode. Second, the
robot executes curve path tracking based on the designed controller. During the actual test,
to avoid turning more due to momentum, after the yaw angles reached 165 degrees, the
robot automatically switched to the third part in advance. In this part, the robot executed
the posture adjustment based on the next straight line reference path. During the test,
the robot moved on the flat land and surface soils were naturally hard and dense. After
finishing headland detection, the speed was reduced from 0.5 m/s to 0.2 m/s.

Figure 12 shows the performance in each part of the headland turning process. During
the test, it was found that the robot could detect the headland about 2 m in advance before
reaching the end of the final tree rows. In the first part, the average lateral error was
0.053 m, and the standard deviation was 0.08. In the second part, the radial error was
controlled within 0.45 m on average, and the maximum error was controlled within 0.8 m.
In the last part, with an initial lateral error of 0.47 m, the lateral error was controlled at 0.29
m on average. The turning accuracy, headland space, and turning time of the designed
controller were measured and compared with the feedback controller based on the radial
errors and feedback controller based on the preview point heading errors. The amount of
headland space for turning can be related to the distance of the height and width defined
in Figure 13 in the case of turning left. The comparison results are shown in Table 1 and
Figure 14. Overall, it was clearly found that the designed controller took less time and
required less space during the turn. Three of the robot trajectories during the test are shown
in Figure 15. In general, based on the headland turning method presented in this study,
the robot could automatically detect the headland 2 m away from the last row, execute
a posture adjustment based on GNSS, implement headland turning, and enter the next
tree row.

Machines 2021, 9, x FOR PEER REVIEW 11 of 15 
 

 

heading deviation and the radial errors at the same time. Pure Pursuit is a popular algo-

rithm based on geometry for robot path tracking, which has been widely used in mobile 

robot path tracking [29]. Even though the Pure Pursuit controller performed well during 

the simulation, it was nonetheless found that the designed controller enabled the robot to 

converge to the path more quickly and remain on the path with lower radial errors than 

Pure Pursuit. After finishing the headland turning, the radial deviation was −0.027 m for 

the Pure Pursuit controller and 0.006 m for the designed controller. 

3.2.2. Experimental Test 

The path planning included two straight lines for the posture adjustment and a sem-

icircle arc with a radius of 1 m for the headland turning, which was created using the 

Dubins algorithm. The whole headland turning process consists of three parts. First, after 

finishing headland detection, the robot switches to the posture-adjusting mode. Second, 

the robot executes curve path tracking based on the designed controller. During the actual 

test, to avoid turning more due to momentum, after the yaw angles reached 165 degrees, 

the robot automatically switched to the third part in advance. In this part, the robot exe-

cuted the posture adjustment based on the next straight line reference path. During the 

test, the robot moved on the flat land and surface soils were naturally hard and dense. 

After finishing headland detection, the speed was reduced from 0.5 m/s to 0.2 m/s. 

Figure 12 shows the performance in each part of the headland turning process. Dur-

ing the test, it was found that the robot could detect the headland about 2 m in advance 

before reaching the end of the final tree rows. In the first part, the average lateral error 

was 0.053 m, and the standard deviation was 0.08. In the second part, the radial error was 

controlled within 0.45 m on average, and the maximum error was controlled within 0.8 

m. In the last part, with an initial lateral error of 0.47 m, the lateral error was controlled at 

0.29 m on average. The turning accuracy, headland space, and turning time of the de-

signed controller were measured and compared with the feedback controller based on the 

radial errors and feedback controller based on the preview point heading errors. The 

amount of headland space for turning can be related to the distance of the height and 

width defined in Figure 13 in the case of turning left. The comparison results are shown 

in Table 1 and Figure 14. Overall, it was clearly found that the designed controller took 

less time and required less space during the turn. Three of the robot trajectories during 

the test are shown in Figure 15. In general, based on the headland turning method pre-

sented in this study, the robot could automatically detect the headland 2 m away from the 

last row, execute a posture adjustment based on GNSS, implement headland turning, and 

enter the next tree row. 

  

(a) (b) 

Figure 12. Cont.



Machines 2021, 9, 103 12 of 15
Machines 2021, 9, x FOR PEER REVIEW 12 of 15 
 

 

 

(c) 

Figure 12. Performance in the headland turning experiment. (a) First part; (b) second part; (c) third part. 

 

Figure 13. Performance measures relating to the space required for headland turning (in the case 

of a left turn). 

Table 1. Headland turning performance comparison. 

 Turning Time (s) Headland Heigh Max (m) Headland Width Max (m) 

Feedback 1 17.4 3.30 1.15 

Feedback 2 18.6 2.37 2.0 

Designed 13.0 1.83 1.65 

Feedback 1 was based on the radial errors. Feedback 2 was based on the preview heading errors. 

 

Figure 14. Deviation comparison during the experiment test. 

Figure 12. Performance in the headland turning experiment. (a) First part; (b) second part; (c) third part.

Machines 2021, 9, x FOR PEER REVIEW 12 of 15 
 

 

 

(c) 

Figure 12. Performance in the headland turning experiment. (a) First part; (b) second part; (c) third part. 

 

Figure 13. Performance measures relating to the space required for headland turning (in the case 

of a left turn). 

Table 1. Headland turning performance comparison. 

 Turning Time (s) Headland Heigh Max (m) Headland Width Max (m) 

Feedback 1 17.4 3.30 1.15 

Feedback 2 18.6 2.37 2.0 

Designed 13.0 1.83 1.65 

Feedback 1 was based on the radial errors. Feedback 2 was based on the preview heading errors. 

 

Figure 14. Deviation comparison during the experiment test. 

Figure 13. Performance measures relating to the space required for headland turning (in the case of a
left turn).

Table 1. Headland turning performance comparison.

Turning Time (s) Headland Heigh Max (m) Headland Width Max (m)

Feedback 1 17.4 3.30 1.15
Feedback 2 18.6 2.37 2.0
Designed 13.0 1.83 1.65

Feedback 1 was based on the radial errors. Feedback 2 was based on the preview heading errors.
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4. Conclusions

Based on our previous research, a complete headland turning method for a banana-
picking robot was developed. Since the camera cannot provide effective sensing infor-
mation when it is close to the headland, a more reliable dual-antenna GNSS system was
adopted for the robot posture adjustment and headland turning. Three steps were executed
during the headland turning. First, a headland detection method based on machine vison
was designed, which enabled the robot to automatically detect the headland about 2 m
away from the last row. Second, to reduce the deviation caused by the vision navigation
system before headland turning, a posture adjustment was executed based on the pre-
cise preview information provided by GNSS. The experimental results show that, with
a reasonable preview distance, the lateral deviation could be controlled within 0.03 m,
and the heading deviation could be controlled within 0.4 degrees during this step. Third,
a turning controller was developed for curve path tracking, which was designed based
on the preview point heading errors and robot center radial errors. For the turning con-
trol comparison, a Pure Pursuit controller, a feedback controller based on radial errors, a
feedback controller based on preview point heading errors, and the designed controller
were implemented and tested. The simulation results show that the designed controller
achieved the best performance among the controllers, with a radial deviation of 0.006
m after finishing headland turning. An experimental test was also conducted, and the
results show that the robot could automatically detect a headland about 2 m away from the
last row, execute a posture adjustment, implement headland turning, and enter the next
tree row.

In the future, a comparison with some other experimental studies should be done and
the following further research should also be conducted. The headland detection algorithm
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based on machine vision needs to be improved. Based on our test, it was found that once
the light intensity fluctuated or deep shadows occurred, the visual detection algorithm
needed to be readjusted to pick out important features consistently. Deep learning, which
has the potential to enable robots to learn to perform many complex visual perception
tasks, is worth studying and applying in this step. To enable robots to turn more precisely,
common path planning for headland patterns, such as the double round corner, the loop,
or switch-back turns, should be considered and tested. During the test, it was also found
that the preview distance and robot speed had a significant effect on the performance of
headland turning. Establishing a precise model that describes the relationship between
the optimal preview distance and speed should be researched. Furthermore, it was found
that there existed sliding effects when the robot moved on the land during the headland
turning. To reduce the effects, specific methods are applied: A tracked mobile robot has
been adopted since it has better maneuverability in rough terrain and higher friction in
turns due to its tracks and multiple points of contact with the surface. After finishing
headland detection, the speed of the robot was reduced from 0.5 m/s to 0.2 m/s; rather
than relying on a single PID alone, another feedback controller based on preview point
heading errors was designed. In future work, the sliding effects can be further incorporated
into an extended kinematics model to enhance the headland turning accuracy.
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