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Abstract: Sensitive geometric errors of a machine tool have significant influence on machining
accuracy, and it is important to identify them. Complex modeling and analysis must be carried
out to identify the sensitive geometric errors of a five-axis machine tool by using the traditional
method. Once the configuration structure of the machine tools is reconstructed, repetitive error
modeling and analysis are required, and the identification cycle of sensitive geometric errors is long.
Therefore, this paper proposes a high-efficient calculation method for sensitive position-dependent
geometric error (PDGEs) identification of a five-axis reconfigurable machine tool. According to the
results of sensitive geometric errors of the RTTTR-type and TTTRR-type five-axis machine tools,
the mapping expressions between sensitive PDGEs and the configuration structure of machine
tools was established. In this method, sensitive PDGEs can be calculated directly according to
the mapping expression, which eliminates the process of error modeling and analysis. Taking a
RTTTR-type five-axis machine tool as an example, the sensitive PDGEs were calculated according to
the presented mapping expressions without error modeling and analysis. A series of analysis points
in the machining area were selected to compare the machining errors before and after sensitive PDGE
compensation. The results show that this calculation method is accurate.

Keywords: sensitive geometric errors identification; reconfigurable machine tool; position-dependent
geometric errors; high-efficient calculation method

1. Introduction

Five-axis computer numeric controlled (CNC) machine tools play a leading role in
the complex surface manufacturing of high-end parts, and precision is one of the key
indexes to evaluate its performance. The main errors that affect the machining accuracy
of machine tools include geometric errors, thermal errors, and cutting force errors. In
particular, geometric errors account for more than 50% of the total errors [1], which have
considerable influence on the machining accuracy, and therefore, deserve more attention.
It is of great significance to recognize and control the sensitive geometric errors through
precision design and error compensation.

The reconfigurable machine tool was first proposed by Professor Koren in the Univer-
sity of Michigan [2]. By changing the structure module of the machine tool, the transfor-
mation and replacement of products and machine tools were realized. In order to adapt
to the challenge of economic benefit and processing efficiency brought by the change of
processing demand, customized and flexible services of reconfigurable machine tools are
provided. Many scholars have carried out a lot of work on the design of reconfigurable
machine tools, optimization of configuration, and reconfigurable research of the numerical
control system [3,4]. The machine tool can be automatically reconfigured to a different
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structure by adding, deleting, or changing the machine tool modules when the processing
requirements change [5].

After the reconstruction of a five-axis machine tool, the same parts are reorganized
into different structures. Change in action direction of the sensitive geometric errors leads
to a change in machining accuracy of a machine tool. It is necessary to analyze the sensitive
geometric errors of the reconstructed machine tool for high-efficient precision design and
error compensation. If the sensitive geometric errors can be calculated quickly according
to the machine tool structure, design and optimization of the structure of a reconfigurable
machine tool can be conducted to avoid or to reduce the influence of sensitive geometric
errors. In this way, the cost for accuracy improvement of the reconstructed machine tool
can be significantly reduced. In the existing literature, complex error modeling and analysis
are usually implemented for each machine tool structure to identify the sensitive geometric
errors, which are unable to satisfy the rapid response requirements. Therefore, an efficient
algorithm is urgently needed to identify sensitive geometric errors directly according to
the configuration of a machine tool.

Sensitivity error analysis of machine tools can be used to determine the most critical
errors on machine accuracy. The sensitivity error analysis methods of machine tools
are usually divided into local sensitivity analysis (LSA) and global sensitivity analysis
(GSA) [6]. Both of them are based on spatial geometric error modeling. LSA emphasizes
the impact of a single parameter and can only judge the sensitivity of one processing
point at a time. Fan et al. established the sensitivity model of a machine tool based on
the first-order sensitivity analysis method [7]. Li et al. used the LSA method to analyze
the error sensitivity of the spatial accuracy [8]. Chen et al. established an error model
of an RTTTR-type five-axis machine tool based on the MBS method. The error values
were uniformly set as determinate values, and the LSA method was used to analyze the
sensitivity of the error [9]. CHENG et al. established the sensitivity matrix of a four-axis
precision machine tool based on the matrix differential method and used the LSA method
to identify the key geometric errors of the machine tool [10]. Yao et al. analyzed the local
sensitivity of the errors based on the multiple linear regression method [11].

GSA considers the coupling relationship, which can determine the influence intensity
of each error term and strength of interaction among various error terms. Cheng et al. used
the Sobol global sensitivity analysis method to determine the critical geometric errors of
machine tools [12]. Guo et al. used the first-order sensitivity analysis method to identify the
sensitivity error of the five-axis machine tool and conducted a global sensitivity analysis of
the machine tool based on an extend Fourier amplitude sensitivity test (EFAST) method [13].
Cheng et al. conducted a global sensitivity analysis of the error of a five-axis machine tool
based on the EFAST method [14]. Cheng et al. conducted a global sensitivity analysis of
machine tool errors based on the product of exponential (POE) screw theory and the Morris
sensitivity analysis method [15]. Fu et al. established the error sensitivity matrix for each
axis based on POE theory and evaluated the influence degree of each axis on the errors [16].
Xia et al. used the Morris global sensitivity analysis method to quantify the error sensitivity
and identified the key errors and sensitive parts of the five-axis gear grinding machine [17].
Guo et al. modeled the error of a five-axis machine tool based on the MBS method and
analyzed the sensitivity of the error model [18]. Li et al. considered the position and
attitude errors of the tool and improved the traditional sensitivity analysis method by
simplifying the output number of error sensitivity [19]. Zhang et al. used the multiplicative
dimensional reduction method (M-DRM) to analyze the sensitivity of machine tools [20].
Zou et al. used the Sobol global sensitivity analysis method to analyze the error sensitivity
of the three-axis diamond lathe [21]. Fan et al. developed a quantitative interval sensitivity
analysis method (QISA) to calculate the sensitivity of geometric errors [22]. Li et al. defined
a new machine tool error sensitivity analysis method by expressing the tool path and
path error on a tool coordinate system [23]. Li et al. simplified the expression form
of the machine tool error sensitivity index and proposed a new index to express error
fluctuations [24].
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At present, GSA is widely used in error sensitivity analysis. Among various methods,
the Morris global sensitivity analysis is mainly used to analyze the impact of input parame-
ters on output parameters when input parameters change in the global scope. The five-axis
machine tool has a large number of PDGEs, and there is a coupling relationship between
the error terms. The Morris global sensitivity analysis method, based on variable discrete
and random sampling, can effectively analyze the sensitivity of the PDGEs of five-axis
machine tools.

Although both LSA and GSA are effective methods for sensitive geometric error
identification, they need error modeling and analysis process based on HTM, which has a
low response speed when structure is reconfigured. Therefore, this paper tries to find a
new way to calculate the sensitive geometric errors according to the machine tool structure
without error modeling and analysis. The mapping expressions between the sensitive
geometric errors and the machine tool structure are established and organized.

According to the different structural configurations of the five-axis machine tools, the
sensitive PDGEs were analyzed by using the traditional error modeling method. Through
the systematic analysis for different structures of RTTTR and TTTRR-type five-axis machine
tools, the mapping expression between the sensitive PDGEs and the configuration of
machine tools was established. Additionally, a high-efficient calculation method of sensitive
PDGEs was proposed according to the mapping expressions without error modeling and
analysis. The proposed method can directly identify sensitive PDGEs according to the
configuration structure of the machine tool without requiring theoretical modeling and
sensitivity analysis, which is suitable for quick error analysis of a machine tool.

The following sections are divided into four parts to display the contents of this
article. Section 2 introduces the theoretical basis of the high-efficient calculation method.
In Section 3, the high-efficient calculation method of sensitive PDGEs is introduced. In
Section 4, the related simulation is described. Section 5 summarizes the results of this paper.

2. Theoretical Basis of the High-Efficient Calculation Method

This section introduces the theoretical basis of the high-efficient calculation method.
Based on the traditional analysis method in this section, the RTTTR and TTTRR-type
five-axis machine tools with different structures were analyzed. Through the systematic
analysis for different structures of machine tools, eventually the mapping expressions
between the sensitive PDGEs and the configuration of machine tools was established.

2.1. Morris Global Sensitivity Analysis Method

There have been a total of 36 PDGEs of the five-axis reconfigurable machine tool. The
motion axes of a five-axis machine tool consist of X, Y, Z, A, B or X, Y, Z, A, C and so on.
The names and geometric meanings of error are shown in Table 1.

Table 1. Definition of PDGEs.

The Name of the
Linear Error Term The Geometric Meaning of the Error Term The Name of the Angular Error Term The Geometric Meaning

of the Error Term

∆x(X) Positioning error of the X axis in the x direction ∆α(X) Rolling error of X axis in x direction
∆y(X) Straightness error of X axis in y direction ∆β(X) X axis angular error in y direction
∆z(X) Straightness error of X axis in z direction ∆γ(X) X axis angular error in z direction
∆x(Y) Straightness error of Y axis in x direction ∆α(Y) Y axis angular error in x direction
∆y(Y) Positioning error of Y axis in y direction ∆β(Y) Rolling error of Y axis in y direction
∆z(Y) Straightness error of Y axis in z direction ∆γ(Y) Y axis angular error in z direction
∆x(Z) Straightness error of Z axis in x direction ∆α(Z) Z axis angular error in x direction
∆y(Z) Straightness error of Z axis in y direction ∆β(Z) Z axis angular error in y direction
∆z(Z) Positioning error of Z axis in z direction ∆γ(Z) Rolling error of Z axis in z direction
∆x(A) Positioning error of the A axis in the x direction ∆α(A) Rolling error of A axis in x direction
∆y(A) Straightness error of A axis in y direction ∆β(A) A axis angular error in y direction
∆z(A) Straightness error of A axis in z direction ∆γ(A) A axis angular error in z direction
∆x(B) Straightness error of B axis in x direction ∆α(B) B axis angular error in x direction
∆y(B) Positioning error of B axis in y direction ∆β(B) Rolling error of B axis in y direction
∆z(B) Straightness error of B axis in z direction ∆γ(B) B axis angular error in z direction
∆x(C) Straightness error of C axis in x direction ∆α(C) C axis angular error in x direction
∆y(C) Straightness error of C axis in y direction ∆β(C) C axis angular error in y direction
∆z(C) Positioning error of C axis in z direction ∆γ(C) Rolling error of C axis in z direction
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This section takes the RTTTR-type five-axis machine tool as an example, as seen in
Figure 1. Sub-coordinate system on each axis of the machine tool was established. Based
on MBS theory [25,26] and HTM, the geometric error model of the five-axis machine tool
was established. The Morris global sensitivity analysis method [27] was used to analyze
sensitive PDGEs of the machine tool.
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Figure 1. RTTTR-type five-axis machine tool structure diagram. 
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Figure 1. RTTTR-type five-axis machine tool structure diagram.

The cutting point coordinate in the tool coordinate system is set as
[

0 0 0 1
]T.

The machine tool is divided into two chains according to the topological relation. The
workpiece chain is bed-X-C-workpiece, and the tool chain is bed-Y-Z-A-tool. Supposing
that the ideal position transformation matrix between adjacent body i and j is Tijp, among
them, i ∈ (F, X, Y, Z, A, C) and j ∈ (X, Y, Z, A, C), the F, X, Y, Z, A and C represent bed,
X axis, Y axis, Z axis, A axis, and C axis, respectively. The position error transformation
matrix between adjacent body i and j is ∆Tijp. The ideal motion transformation matrix of
adjacent body is Tijs. The motion error transformation matrix of adjacent body is ∆Tijs.
Then, the ideal forming matrix of the machine tool is shown in Equation (1), and the actual
forming matrix of the machine tool is shown in Equation (2). The comprehensive error
matrix of the machine tool can be given as Equation (3).

Pideal = (TFXpTFXsTXCpTXCs)
−1TFYpTFYsTYZpTYZsTZApTZAs

[
0 0 0 1

]T (1)

Pactual = (TFXp∆TFXpTFXxs∆TFXsTXCp∆TXCpTXCs∆TXCs)
−1TFYp∆TFYpTFYs∆TFYsTYZp∆TYZpTYZs∆TYZs

TZAp∆TZApTZAs∆TZAs
[

0 0 0 1
]T (2)

E = Pactual − Pideal =
[

Ex Ey Ez 0
]T (3)

The Morris global sensitivity analysis method can effectively sort and evaluate the
influence of model parameters; it has good applicability for models with many analysis
parameters. Based on the experimental design of the one-time change method, only one
model parameter is changed for each sampling, and the influence of each model parameter
is calculated in turn so as to realize the evaluation of the sensitivity of the model parameters.
The specific form is as follows.

EEi =
y(x1, . . . , xi1, . . . , xn)− y(x1, . . . , xi1 + ∆, . . . , xn)

∆
(4)

In Equation (4), EEi is the influence effect of the ith input parameter, y is the out-
put function, x is the input parameter, and ∆ is the variation of the input parameter
∆ = 1/(q− 1), q is the number of samples for each error term. The number of cyclic sam-
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pling is set to SN, and the influence effect of each input parameter is calculated in turn. In
this way, the SN effects of each input parameter can be obtained.

µi =
1

SN

SN
∑

j=1
EEij

σi =

√
1

SN

SN
∑

j=1
(EEij − µi)

2
(5)

As shown in Equation (5), the mean µi and standard deviation σi of each effect were
calculated, respectively. Where µi reflects the influence of each input parameter on the
output function; the greater the value, the greater the influence. σi reflects the coupling
strength between each input parameter and other parameters; the larger the value, the
higher the coupling strength.

The 30 PDGEs of the five-axis machine tool shown in Figure 1 were used as input
parameters, and the comprehensive error model in Equation (3) was taken as output
function by using the Morris method. The range of linear errors in PDGEs was set as [0, 15]
µm and for angular errors was set as [0, 0.015] deg. One-hundred and twenty (SN) cycles
of sampling were conducted in the working area to obtain the mean value µi and standard
deviation σi, so as to identify the sensitive PDGEs of the machine tool.

The sensitivity results are shown in Figure 2a–c. Serial numbers 1–6 represent the
PDGEs of X axis (∆x(X), ∆y(X), ∆z(X), ∆α(X), ∆β(X), and ∆γ(X)), serial numbers 7–12
represent the PDGEs of Y axis(∆x(Y), ∆y(Y), ∆z(Y), ∆α(Y), ∆β(Y), and ∆γ(Y)), serial
numbers 13–18 represent the PDGEs of Z axis (∆x(Z), ∆y(Z), ∆z(Z), ∆α(Z), ∆β(Z), and
∆γ(Z)), serial numbers 19–24 represent the PDGEs of A axis (∆x(A), ∆y(A), ∆z(A), ∆α(A),
∆β(A), and ∆γ(A)) and serial numbers 25–30 represent the PDGEs of C axis (∆x(C), ∆y(C),
∆z(C), ∆α(C), ∆β(C), and ∆γ(C)), respectively. The red point represents the mean value
µi of the influence effect of each error term and reflects the sensitivity of each error term.
The blue point σi represents the coupling strength between each error term and other error
terms. In this way, the sensitive PDGEs of the machine tool in three coordinate directions
can be obtained.

2.2. Discovery of Mapping Relationships

Based on the error modeling and sensitive PDGEs analysis method described in
Section 2.1, the sensitive PDGEs analyses of RTTTR and TTTRR-type five-axis reconfig-
urable machine tools with different structures were carried out, respectively. After com-
paring the analysis results of sensitive PDGEs with the structure of the machine tool, it is
found that there is a mapping relationship between the sensitive PDGEs of the machine
tool and the configuration of each axis of the machine tool. Some of these relationships are
described below.

Case 1: The linear positioning errors of the translational axis corresponding to the
identification direction are always sensitive PDGEs [14,24]. Examples are described as
follows: in x direction, sensitive linear PDGEs of translational axes are ∆x(X), ∆x(Y), and
∆x(Z). In y direction, sensitive linear PDGEs of translational axes are ∆y(X), ∆y(Y), and
∆y(Z). In z direction, sensitive linear PDGEs of translational axes are ∆z(X), ∆z(Y), and
∆z(Z). The definition of each error term is shown in Table 1.

Case 2: If the translational axis belongs to the workpiece chain, the axis has two
sensitive angular PDGEs in each identification direction. The examples are as follows:
assuming that Y axis belongs to workpiece chain, in x direction, the sensitive angular
PDGEs of Y axis are ∆β(Y) and ∆γ(Y); in y direction, the sensitive angular PDGEs of Y
axis are ∆α(Y) and ∆γ(Y); in z direction, the sensitive angular PDGEs of Y axis are ∆α(Y)
and ∆β(Y).

There are other relationships besides those mentioned above. In order to facilitate the
identification, this paper presents these mapping relations in the form of mathematical
expressions in Section 3. Combined with these mapping expressions, the sensitive PDGEs
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of the machine tool can be directly obtained through simple calculations.
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Figure 2. The sensitivity index of the RTTTR-type machine tool.

3. Mapping Expressions

This section describes the mapping expression between the sensitive PDGEs of the
five-axis machine tool and the machine tool structure. Based on this mapping expression,
the sensitive PDGEs of the five-axis reconfigurable machine tool can be quickly identified,
eliminating the process of error modeling and analysis.

The traditional process of sensitive geometric error analysis is shown in Figure 3a,
and the proposed method is shown in Figure 3b. It can be found that the identification
process of the sensitive geometric error of a single-structure five-axis machine tool is
inherently complicated. Once the structure of the machine tool is reorganized, complex
error modeling and analysis need to be performed again. In contrast with traditional
methods, the proposed method can not only quickly identify the sensitive PDGEs of
a specific five-axis machine tool but also quickly respond to the reorganized five-axis
machine tool.
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Before introducing the proposed method, the relevant symbols are defined and ex-
plained. This article uses lowercase italics when referring to directions, such as: x, y, and
z and when referring to axes, uses uppercase italics, such as X, Y, Z, A, B, and C. Other
related expressions are described in Sections 3.1–3.3, which describe the high-efficient
calculation methods for sensitive PDGEs identification of RTTTR and TTTRR-type five-axis
reconfigurable machine tools, respectively.

The proposed method

Step 2. The proposed mapping 
expressions

Without error modeling 
and analysis

(a) (b)Traditional  method

Step 2. Geometric error modeling

Step 3. Sensitivity analysis(LSA 
method or GSA method)

Sensitive PDGEs

Yes

No

Need to perform error 
Modeling and Analysis

Step 1. Design of  machine tool 
structure

HTM

Whether the machine 
tool is reconstructed

Time-consuming

Step 1. Design of  machine tool 
structure

Whether the machine 
tool is reconstructed

Yes

No

Sensitive PDGEs

High-efficient

Fig. 3 Visio format 

 

 

Fig. 3 jpg format 

Figure 3. The process of identifying the sensitive geometric errors of the five-axis reconfigurable machine tool.

3.1. The Defined Symbols and Expressions

The new definition of mapping expressions of sensitive PDGEs identification is shown
as Equation (6).

Typ(i)Dir
Axis= ∆Cal(parm)(Axis) (6)

Where superscript Dir denotes the identification direction. Generally, the identification
directions of spatial positional errors of a machine tool are x, y, and z directions along
X-axis, Y-axis, and Z-axis, respectively. Axis denotes the motion axis of a machine tool,
Axis ∈ (X, Y, Z, A, B, C). i = 1, 2, 3, or 4, which is used to distinguish different identification
axes and different error types. Cal is the mapping algorithm; the type and direction of error
can be obtained by Cal calculating parm. The detailed meanings of the defined symbols are
described as follows:

(1) Typ(i)Dir
Axis represents the sensitive PDGEs of the motion axis (Axis) in the identification

direction (Dir). Typ(i) is the type of sensitive geometric error to be calculated and
is divided into the following four categories:Typ(1) represents the sensitive linear
PDGEs of the translational axis. Typ(2) represents the sensitive linear PDGEs of the
rotational axis. Typ(3) represents the sensitive angular PDGEs of the translational
axis. Typ(4) represents the sensitive angular PDGEs of rotational axis.

The sensitive PDGEs of each axis in each direction are identified in x, y, and z directions;
Dir is the direction of error identification, Dir ∈ (x, y, z).
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Axis indicates the motion axis that needs to be identified. Once Typ(i) is defined, the
selection range of the corresponding axis is also determined. If i = 1 or 3, Axis∈ (X, Y, Z).
If i = 2 or 4, Axis∈ (A, B, C).

For example, Typ(1)x
Y represents the sensitive linear PDGEs of the Y axis in x direc-

tion. Typ(2)z
A represents the sensitive linear PDGEs of the A axis in z direction. Typ(3)x

Y
represents the sensitive angular PDGEs of the Y axis in x direction. Typ(4)z

A represents the
sensitive angular PDGEs of the A axis in z direction.

(2) The defined mapping expressions ∆Cal(parm)(Axis) is used to calculate the error
items in Table 1, taking ∆x(X) for an example, where Cal(parm) = x and Axis = X.

In ∆Cal(parm)(Axis), Axis∈(X, Y, Z, A, B, C); parm∈(Dir, Axis, Toolvector), Toolvector
is the tool axis vector (usually in z direction); when calculating sensitive linear PDGEs,
Cal(parm)(x, y, z); when calculating the sensitive angular PDGEs, Cal(parm)∈(α, β, γ).
Taking X axis as an example, the calculation results of ∆Cal(parm)(X) are shown in
Appendix A. The calculation results of other axes (Y, Z, A, B, or C axis) can also be obtained
in this form.

In Appendix A, in order to facilitate understanding, the result of the Cal(parm) in
Cal(parm)(X) is marked with two underscores. Among them, Cal(parm) represents the
axial direction of parm; Cal(parm) represents the axial direction of the other two directions
excepting the direction of parm; Cal(parm1 + parm2) represents the axial direction of
the parm1 and parm2; Cal(parm1 + parm2) indicates the axial direction excepting parm1
and parm2.

(3) Combined with the relevant definitions in (1) and (2), the relevant calculation forms
of Equation (6) are illustrated with examples as follows:

If Equation (6) is Typ(1)z
X = ∆Cal(z)(X), then Typ(1)z

X = ∆z(X);
If Equation (6) is Typ(3)z

X = ∆Cal(z)(X), then Typ(3)z
X = ∆γ(X);

If Equation (6) is Typ(2)y
A = ∆Cal(y)(A), then Typ(2)y

A = {∆x(A), ∆z(A)};
If Equation (6) is Typ(4)y

A = ∆Cal(y)(A), then Typ(4)y
A = {∆α(A), ∆γ(A)}.

3.2. Calculation Method of RTTTR-Type Five-Axis Machine Tools

This section introduces the mapping expressions for sensitive PDGE identification of
the RTTTR-type five-axis reconfigurable machine tool. According to the configuration axis
information of the machine tool, combined with the basic calculation formula described in
Section 3.1, the sensitive PDGEs can be quickly obtained by a simple calculation.

This section takes the machine tool shown in Figure 1 as an example to illustrate the
proposed method. In Figure 1, the workpiece chain is: bed-X-C-workpiece, the tool chain is:
bed-Y-Z-A-tool. The rotational axis in the workpiece chain is marked as R1, the rotational
axis in the tool chain is marked as R2, the translational axis closest to the bed in the tool
chain is marked as TF, and the axis vector of tool is z direction.

3.2.1. Sensitive Linear PDGEs for Translational Axes

If the sensitive linear PDGEs of translational axes are identified, i = 1, Axis ∈ (X, Y, Z)
can be obtained according to Section 3.1. Where Dir ∈ (x, y, z), then the mapping expres-
sion is given as:

Typ(1)Dir
Axis= ∆Cal(Dir)(Axis) (7)

According to Equation (7), take the X axis as an example:
If sensitivity PDGE in x direction is identified, then Typ(1)x

X = ∆Cal(x)(X) = ∆x(X)
can be obtained;

If sensitivity PDGE in y direction is identified, then Typ(1)y
X = ∆Cal(y)(X) = ∆y(X)

can be obtained;
If sensitivity PDGE in z direction is identified, then Typ(1)z

X = ∆Cal(z)(X) = ∆z(X)
can be obtained. In the same way, the sensitive linear PDGEs of the Y axis and Z axis can
be calculated.
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3.2.2. Sensitive Linear PDGEs for Rotational Axes

If the sensitive linear PDGEs of rotational axes are identified, i = 2, Axis ∈ (A, B, C) can
be obtained according to Section 3.1. Where Dir ∈ (x, y, z), then the mapping expression is
given as: {

if :Cal(Dir) = Cal(Axis), then : Typ(2)Dir
Axis = ∆Cal(Axis)(Axis)

if :Cal(Dir) 6= Cal(Axis), then : Typ(2)Dir
Axis = ∆Cal

(
Axis

)
(Axis)

(8)

According to Equation (8), take the A axis as an example:
If sensitivity PDGE in x direction is identified, Cal(x) = Cal(A) = (Cal(Dir) =

Cal(Axis)), then Typ(2)x
A = ∆Cal(A)(A) = ∆x(A) can be obtained;

If sensitivity PDGE in y direction is identified, Cal(y) 6=Cal(A)(Cal(Dir) 6=Cal(Axis)),
then Typ(2)y

A = ∆Cal
(

A
)
(A) = {∆y(A), ∆z(A)} can be obtained;

If sensitivity PDGE in z direction is identified, Cal(z) 6=Cal(A)(Cal(Dir) 6=Cal(Axis)),
then Typ(2)z

A = ∆Cal
(

A
)
(A) = {∆y(A), ∆z(A)} , can be obtained.

Therefore, the sensitive linear PDGEs of A axis in the x direction is ∆x(A), in the
y direction are ∆y(A) and ∆z(A), and in the z direction are ∆y(A) and ∆z(A). In the
same way, the sensitive linear PDGEs of the other rotational axis (C axis) in the x, y, and z
directions can be calculated.

3.2.3. Sensitive Angular PDGEs of Translational Axis

If the sensitive linear PDGEs of translational axes are identified, i = 3, Axis ∈ (X, Y, Z)
can be obtained according to Section 3.1. Where Dir ∈ (x, y, z), then the mapping expres-
sion is given as:

(1) When Axis belongs to the workpiece chain

Typ(3)Dir
Axis= ∆Cal

(
Dir
)
(Axis) (9)

(2) When Axis belongs to the tool chain
if : Cal(Dir) = Cal(R2), then : Typ(3)Dir

Axis = ∆Cal
(

R2
)
(Axis)

if : Cal(Dir) 6= Cal(R2), then : Typ(3)Dir
Axis = ∆Cal(R2)(Axis)

if : tool chain has 3 translational axes, andCal(TF) 6= Cal(R1 + R2),
then : Typ(3)Dir

Axis = ∆Cal
(

Dir
)
(TF)

(10)

According to Equation (9), take the X axis as an example (X axis belongs to the
workpiece chain):

If sensitivity PDGE in x direction is identified, then Typ(3)x
X = ∆Cal(x)(X) = {∆β(X),

∆γ(X)} can be obtained;
If sensitivity PDGE in y direction is identified, then Typ(3)y

X = ∆Cal(y)(X) = {∆α(X),
∆γ(X)} can be obtained;

If sensitivity PDGE in z direction is identified, then Typ(3)z
X = ∆Cal(z)(X) = {∆α(X),

∆β(X)} can be obtained.
Therefore, the sensitive angular PDGEs of X axis in the x direction are ∆β(X) and

∆γ(X); in the y direction are ∆α(X) and ∆γ(X); and in the z direction are ∆α(X) and
∆β(X).

According to Equation (10), take the Y axis as an example (Y axis belongs to the
tool chain):

If sensitivity PDGE in x direction is identified, Cal(x) = Cal(A)(Cal(Dir) = Cal(R2)),
then Typ(3)x

Y = ∆Cal
(

A
)
(Y) = {∆β(Y), ∆γ(Y)} can be obtained;

If sensitivity PDGE in y direction is identified, Cal(y) 6=Cal(A)(Cal(Dir) 6=Cal(R2)),
then Typ(3)y

Y = ∆Cal(A)(Y) = ∆α(Y) can be obtained;
If sensitivity PDGE in z direction is identified, Cal(z) 6=Cal(A)(Cal(Dir) 6=Cal(R2)),

then Typ(3)z
Y = ∆Cal(A)(Y) = ∆α(Y) can be obtained.
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Therefore, the sensitive angular PDGEs of Y axis in the x direction are ∆β(Y) and
∆γ(Y); in the y direction is ∆α(Y); and in the z direction is ∆α(Y). In the same way, the
sensitive angular PDGEs for the Z axis of the tool chain in the x, y, and z directions can
be calculated.

3.2.4. Sensitive Angular PDGEs of Rotational Axis

If the sensitive linear PDGEs of rotational axes are identified, i = 4, Axis ∈ (A, B, C) can
be obtained according to Section 3.1. Where Dir ∈ (x, y, z), then the mapping expression is
given as:

(1) When Axis = R1{
if : Cal(Dir) = Cal(R1), then :Typ(4)Dir

Axis = ∆Cal
(

R1
)
(R1)

if : Cal(Dir) 6= Cal(R1), then :Typ(4)Dir
Axis = ∆Cal(X + Y + Z)(R1)

(11)

(2) When Axis = R2{
if : Cal(Dir) = Cal(Toolvector), then :Typ(4)Dir

Axis = ∆Cal(R2)(R2)

if : Cal(Dir) 6= Cal(Toolvector), then :Typ(4)Dir
Axis = ∆Cal

(
Dir + Toolvector

)
(R2)

(12)

According to Equation (11), take the C axis as an example (C axis is marked as R1 axis):

• If sensitivity PDGE in x direction is identified, Cal(x) 6=Cal(C)(Cal(Dir) 6=Cal(R1)),
then Typ(4)x

C = ∆Cal(X + Y + Z)(C) = {∆α(C), ∆β(C), ∆γ(C)} can be obtained;
• If sensitivity PDGE in y direction is identified, Cal(y) 6=Cal(C)(Cal(Dir) 6=Cal(R1)),

then Typ(4)y
C = ∆Cal(X + Y + Z)(C) = {∆α(C), ∆β(C), ∆γ(C)} can be obtained;

• If sensitivity PDGE in z direction is identified, Cal(z) = Cal(C)(Cal(Dir) = Cal(R1)),
then Typ(4)z

C = ∆Cal
(
C
)
(C) = {∆α(C), ∆β(C)} can be obtained.

Therefore, the sensitive angular PDGEs of C axis in the x direction are ∆α(C), ∆β(C),
and ∆γ(C); in the y direction are ∆α(C), ∆β(C), and ∆γ(C); and in the z direction are
∆α(C) and ∆β(C).

According to Equation (12), take the A axis as an example (A axis is marked as R2 axis):

• If sensitivity PDGE in x direction is identified, Cal(x) 6=Cal(Toolvector)(Cal(Dir)
6=Cal(Toolvector), then Typ(4)x

A = ∆Cal(x + z)(A) = ∆β(A) can be obtained;
• If sensitivity PDGE in y direction is identified, Cal(y) 6=Cal(Toolvector)(Cal(Dir)

6=Cal(Toolvector)), then Typ(4)y
A = ∆Cal(y + z)(A) = ∆α(A) can be obtained;

• If sensitivity PDGE in z direction is identified, Cal(z) = Cal(Toolvector)(Cal(Dir) =
Cal(Toolvector)), then Typ(4)z

A = ∆Cal(A)(A) = ∆α(A) can be obtained.

Therefore, the sensitive angular PDGEs of A axis in the x direction is ∆β(A); in the y
direction is ∆α(A); and in the z direction is ∆α(A).

In summary, all the sensitive geometric errors in the x, y, and z directions are shown
in Table 2.

Table 2. Sensitive PDGEs in all directions.

Error Direction Sensitive PDGEs

x ∆x(X), ∆x(Y), ∆x(Z), ∆x(A), ∆x(C), ∆y(C), ∆β(X), ∆γ(X), ∆β(Y), ∆γ(Y), ∆β(Z), ∆γ(Z), ∆α(C), ∆β(C), ∆γ(C), ∆β(A)

y ∆y(X), ∆y(Y), ∆y(Z), ∆y(A), ∆z(A), ∆x(C), ∆y(C), ∆α(X), ∆γ(X), ∆α(Y), ∆α(Z),
∆α(C), ∆β(C), ∆γ(C), ∆α(A)

z ∆z(X), ∆z(Y), ∆z(Z), ∆y(A), ∆z(A), ∆z(C), ∆α(X), ∆β(X), ∆α(Y), ∆α(Z), ∆α(C), ∆β(C), ∆α(A)

3.3. Calculation Method of TTTRR-Type five-Axis Machine Tools

This section introduces the mapping expression for sensitive PDGEs of the TTTRR-
type five-axis reconfigurable machine tool. According to this mapping expression, sensitive
PDGEs can be quickly calculated without error modeling and analysis.
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The rotational axis closest to the tool is marked as R1, the rotational axis farther from
the tool is marked as R2, and the axis vector of tool is z direction. The meaning of the
symbols in the mapping expression is the same as in Section 3.2; the specific mapping
expression is as follows.

3.3.1. Sensitive Linear PDGEs of Translational Axis

If the sensitive linear PDGEs of translational axes are identified, i = 1, Axis ∈ (X, Y, Z)
can be obtained according to Section 3.1. Where Dir ∈ (x, y, z), then the mapping expres-
sion is shown as Equation (7).

3.3.2. Sensitive Linear PDGEs of Rotational Axes

If the sensitive linear PDGEs of rotational axes are identified, i = 2, Axis ∈ (A, B, C) can
be obtained according to Section 3.1. Where Dir ∈ (x, y, z), then the mapping expression is
given as:

(1) When Axis = R1{
if : Cal(Dir) = Cal(R2), then : Typ(2)Dir

Axis = ∆Cal
(

R1
)
(R1)

if : Cal(Dir) 6= Cal(R2), then : Typ(2)Dir
Axis = ∆Cal(X + Y + Z)(R1)

(13)

(2) When Axis = R2{
if : Cal(Dir) = Cal(R2), then : Typ(2)Dir

Axis = ∆Cal(R2)(R2)

if : Cal(Dir) 6= Cal(R2), then : Typ(2)Dir
Axis = ∆Cal

(
R2
)
(R2)

(14)

3.3.3. Sensitive Angular PDGEs of Translational Axis

If the sensitive linear PDGEs of rotational axes are identified, i = 3, Axis ∈ (X, Y, Z) can
be obtained according to Section 3.1. Where Dir ∈ (x, y, z), then the mapping expression is
given as:

Typ(3)Dir
Axis= ∆Cal

(
Dir
)
(Axis) (15)

3.3.4. Sensitive Angular PDGEs of Rotational Axis

If the sensitive linear PDGEs of rotational axes are identified, i = 4, Axis ∈ (A, B, C) can
be obtained according to Section 3.1. Where Dir ∈ (x, y, z), then the mapping expression is
given as:

(1) When Axis = R1{
if : Cal(Dir) = Cal(R2), then : Typ(4)Dir

Axis = ∆Cal(R1)(R1)

if : Cal(Dir) 6= Cal(R2), then : Typ(4)Dir
Axis = ∆Cal

(
Toolvector

)
(R1)

(16)

(2) When Axis = R2{
if : Cal(Dir) = Cal(R2), then : Typ(4)Dir

Axis = ∆Cal(R1)(R2)

if : Cal(Dir) 6= Cal(R2), then : Typ(4)Dir
Axis = ∆Cal(X + Y + Z)(R2)

(17)

3.4. Summary of Mapping Expressions

Using the proposed method to compare with the existing literature [19,24], the results
of the literature analysis are consistent with the sensitive PDGEs identified by this method.
Tables 3 and 4 present a summary of the calculation methods for RTTTR and TTTRR-type
five-axis machine tool sensitive PDGEs. Based on these method, sensitive PDGES can be
quickly calculated, and it provides guidance for accurate design and error traceability of
machine tools.



Machines 2021, 9, 84 12 of 16

Table 3. Mapping expressions of RTTTR-type five-axis machine tool.

Sensitive Linear PDGEs Sensitive Angular PDGEs

Translational axis in the workpiece chain Typ(1)Dir
Axis= ∆Cal(Dir)(Axis) Typ(3)Dir

Axis= ∆Cal
(

Dir
)
(Axis)

Translational axis in the tool chain Typ(1)Dir
Axis= ∆Cal(Dir)(Axis)



if : Cal(Dir) = Cal(R2),
then : Typ(3)Dir

Axis = ∆Cal
(

R2
)
(Axis)

if : Cal(Dir) 6= Cal(R2),
then : Typ(3)Dir

Axis = ∆Cal(R2)(Axis)
if : tool chain has 3 translational axes,
andCal(TF) 6= Cal(R1 + R2),
then : Typ(3)Dir

Axis = ∆Cal
(

Dir
)
(TF)

Rotational axis in the workpiece chain


if :Cal(Dir) = Cal(Axis),
then : Typ(2)Dir

Axis = ∆Cal(Axis)(Axis)
if :Cal(Dir) 6= Cal(Axis),
then : Typ(2)Dir

Axis = ∆Cal
(

Axis
)
(Axis)


if : Cal(Dir) = Cal(R1),
then :Typ(4)Dir

Axis = ∆Cal
(

R1
)
(R1)

if : Cal(Dir) 6= Cal(R1),
then :Typ(4)Dir

Axis = ∆Cal(X + Y + Z)(R1)

Rotational axis in the tool chain


if :Cal(Dir) = Cal(Axis),
then : Typ(2)Dir

Axis = ∆Cal(Axis)(Axis)
if :Cal(Dir) 6= Cal(Axis),
then : Typ(2)Dir

Axis = ∆Cal
(

Axis
)
(Axis)


if : Cal(Dir) = Cal(Toolvector),
then :Typ(4)Dir

Axis = ∆Cal(R2)(R2)
if : Cal(Dir) 6= Cal(Toolvector),
then :Typ(4)Dir

Axis = ∆Cal
(

Dir + Toolvector
)
(R2)

Table 4. Mapping expressions of TTTRR-type five-axis machine tool.

Sensitive Linear PDGEs Sensitive Angular PDGEs

Translational axis in the workpiece chain Typ(1)Dir
Axis= ∆Cal(Dir)(Axis) Typ(3)Dir

Axis= ∆Cal
(

Dir
)
(Axis)

Translational axis in the tool chain Typ(1)Dir
Axis= ∆Cal(Dir)(Axis) Typ(3)Dir

Axis= ∆Cal
(

Dir
)
(Axis)

Rotational axis in the tool chain

When Axis = R1:
if : Cal(Dir) = Cal(R2),
then : Typ(2)Dir

Axis = ∆Cal
(

R1
)
(R1)

if : Cal(Dir) 6= Cal(R2),′

then : Typ(2)Dir
Axis = ∆Cal(X + Y + Z)(R1)

When Axis = R2:
if : Cal(Dir) = Cal(R2),
then : Typ(2)Dir

Axis = ∆Cal(R2)(R2)
if : Cal(Dir) 6= Cal(R2),
then : Typ(2)Dir

Axis = ∆Cal
(

R2
)
(R2)

When Axis = R1:
if : Cal(Dir) = Cal(R2),
then : Typ(4)Dir

Axis = ∆Cal(R1)(R1)
if : Cal(Dir) 6= Cal(R2),
then : Typ(4)Dir

Axis = ∆Cal
(

Toolvector
)
(R1)

When Axis = R2:
if : Cal(Dir) = Cal(R2),
then : Typ(4)Dir

Axis = ∆Cal(R1)(R2)
if : Cal(Dir) 6= Cal(R2),
then : Typ(4)Dir

Axis = ∆Cal(X + Y + Z)(R2)

4. Simulation Analysis

The impeller is a typical part in five-axis machining. In order to verify the accuracy
and effectiveness of this calculation method, an impeller was simulated and analyzed. The
value of PDGEs were preset, the linear PDGEs were set as 0.01 mm × sin(0.5 × position),
and the angular PDGEs were set as 0.01 deg × sin(0.5× angle). The value range of PDGEs
was borrowed from literature [12,14,15,28].

VERICUT software was used to simulate the machining of the impeller, and the
machining errors before and after compensation were compared. Firstly, 100 analysis
points were selected on the surface of one side of the impeller model, as shown in Figure 4a.
Then, based on the sensitive geometric error analysis results in Table 2, the actual inverse
kinematics [28] were used to calculate the NC codes after compensation in each direction.

Taking the analysis results in x direction as an example, Figure 4b shows the impeller
processing diagram after compensating for the sensitive PDGEs. Figure 5 shows some
NC codes before and after compensating for the sensitive PDGEs in x direction. Figure 6a
shows the theoretical error and the machining error before and after compensating for the
sensitive PDGEs in x direction; the values in Figure 6 are the maximum machining error
before and after compensation. The machining error before and after compensation in the
y and z direction sensitive PDGEs are shown in Figure 6b,c, respectively.
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It can be found that the machining error after compensating for these sensitive PDGEs
is almost consistent with the theoretical error, which indicates that the machining accuracy
is mainly affected by these sensitive PDGEs. At the same time, the machining error
after compensation is significantly lower than that before processing, which indicates the
accuracy of the proposed method.

According to the proposed method, Matlab software was used to make related soft-
ware. As shown in Figure 7, the sensitivity index of each PDGE was calculated through the
function embedded in the software by inputting the topology of the machine tool, and the
sensitive PDGEs were displayed.
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5. Conclusions

A new high-efficient calculation method for sensitive PDGE identification in the five-
axis reconfigurable machine tool was proposed and verified in this paper. According to
machine tool configuration axis information, sensitive PDGEs of RTTTR and TTTRR-type
five-axis reconfigurable machine tools can be quickly identified according to the proposed
method without traditional HTM modeling and sensitivity analysis.

The simulation results show that the machining accuracy of the impeller is significantly
improved after compensating for sensitive PDGEs. According to the simulation results,
the proposed method is accurate. It can provide a reference for precision design and error
compensation of five-axis reconfigurable machine tools.

Based on the proposed calculation method, the barrier-free output of sensitive PDGEs
can be realized through the programming of related software. It can quickly respond
to the sensitive PDGEs identification in the reconstructed five-axis machine tool. Rapid
identification of sensitive PDGEs for five-axis reconfigurable machine tools is studied in
this paper. In future work, the calculation methods of other error sources of five-axis
reconfigurable machine tools are also worth further study.
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Appendix A

Linear PDGEs Angular PDGEs

∆Cal(parm)(X) ∆Cal(parm)(X) ∆Cal(parm)(X) ∆Cal(parm)(X)

∆Cal(x)(X)= ∆x(X) ∆Cal(x)(X)=
{

∆y(X) , ∆z(X)} ∆Cal(x)(X)= ∆α(X) ∆Cal(x)(X)=
{

∆β(X) , ∆γ(X)}
∆Cal(y)(X)= ∆y(X) ∆Cal(y)(X)=

{
∆x(X) , ∆z(X)} ∆Cal(y)(X)= ∆β(X) ∆Cal(y)(X)=

{
∆α(X) , ∆γ(X)}

∆Cal(z)(X)= ∆z(X) ∆Cal(z)(X)=
{

∆x(X) , ∆y(X)} ∆Cal(z)(X)= ∆γ(X) ∆Cal(z)(X)=
{

∆α(X) , ∆β(X)}

∆Cal(X)(X)= ∆x(X) ∆Cal
(
X
)
(X)=

{
∆y(X) , ∆z(X)} ∆Cal(X)(X)= ∆α(X) ∆Cal

(
X
)
(X)=

{
∆β(X) , ∆γ(X)}

∆Cal(Y)(X)= ∆y(X) ∆Cal
(
Y
)
(X)=

{
∆x(X) , ∆z(X)} ∆Cal(Y)(X)= ∆β(X) ∆Cal

(
Y
)
(X)=

{
∆α(X) , ∆γ(X)}

∆Cal(Z)(X)= ∆z(X) ∆Cal
(
Z
)
(X)=

{
∆x(X) , ∆y(X)} ∆Cal(Z)(X)= ∆γ(X) ∆Cal

(
Z
)
(X)=

{
∆α(X) , ∆β(X)}

∆Cal(x + y)(X)=
{

∆x(X) , ∆y(X)} ∆Cal(x + y)(X)= ∆z(X) ∆Cal(x + y)(X)=
{

∆α(X) , ∆β(X)} ∆Cal(x + y)(X)= ∆γ(X)

∆Cal(x + z)(X)=
{

∆x(X) , ∆z(X)} ∆Cal(x + z)(X)= ∆y(X) ∆Cal(x + z)(X)=
{

∆α(X) , ∆γ(X)} ∆Cal(x + z)(X)= ∆β(X)

∆Cal(y + z)(X)=
{

∆y(X) , ∆z(X)} ∆Cal(y + z)(X)= ∆x(X) ∆Cal(y + z)(X)=
{

∆β(X) , ∆γ(X)} ∆Cal(y + z)(X)= ∆α(X)

∆Cal(x + y + z)(X) ={
∆x(X) , ∆y(X), ∆z(X)}

∆Cal
(
X + Y

)
(X)= ∆z(X)

∆Cal(x + y + z)(X) ={
∆α(X) , ∆β(X), ∆γ(X)}

∆Cal
(
X + Y

)
(X)= ∆γ(X)

∆Cal(X + Y)(X)=
{

∆x(X) , ∆y(X)} ∆Cal
(
X + Z

)
(X)= ∆y(X) ∆Cal(X + Y)(X)=

{
∆α(X) , ∆β(X)} ∆Cal

(
X + Z

)
(X)= ∆β(X)

∆Cal(X + Z)(X)=
{

∆x(X) , ∆z(X)} ∆Cal
(
Y + Z

)
(X)= ∆x(X) ∆Cal(X + Z)(X)=

{
∆α(X) , ∆γ(X)} ∆Cal

(
Y + Z

)
(X)= ∆α(X)

∆Cal(Y + Z)(X)=
{

∆y(X) , ∆z(X)} ∆Cal
(

A
)
(X)=

{
∆y(X) ∆z(X)} ∆Cal(Y + Z)(X)=

{
∆β(X) , ∆γ(X)} ∆Cal

(
A
)
(X)=

{
∆β(X) , ∆γ(X)}

∆Cal(X + Y + Z)(X) =

∆x(X), ∆y(X), ∆z(X)}
∆Cal

(
B
)
(X)=

{
∆x(X) , ∆z(X)}

∆Cal(X + Y + Z)(X) ={
∆α(X) , ∆β(X), ∆γ(X)}

∆Cal
(

B
)
(X)=

{
∆α(X) , ∆γ(X)}

∆Cal(A)(X) = ∆x(X) ∆Cal
(
C
)
(X)=

{
∆x(X) , ∆y(X)} ∆Cal(A)(X) = ∆α(X) ∆Cal

(
C
)
(X)=

{
∆α(X) , ∆β(X)}

∆Cal(B)(X) = ∆y(X) ∆Cal(B)(X) = ∆β(X)

∆Cal(C)(X) = ∆z(X) ∆Cal(C)(X) = ∆γ(X)

∆Cal(A + B)(X)=
{

∆x(X) , ∆y(X)} ∆Cal(A + B)(X)=
{

∆α(X) , ∆β(X)}
∆Cal(A + C)(X)=

{
∆x(X) , ∆z(X)} ∆Cal(A + C)(X)=

{
∆α(X) , ∆γ(X)}

∆Cal(B + C)(X)=
{

∆y(X) , ∆z(X)} ∆Cal(B + C)(X)=
{

∆β(X) , ∆γ(X)}
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