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Abstract: The vibration signal of rotating machinery fault is a periodic impact signal and the fault
characteristics appear periodically. The shift invariant K-SVD algorithm can solve this problem
effectively and is thus suitable for fault feature extraction of rotating machinery. With the over-
complete dictionary learned by the training samples, including thedifferent classes, shift invariant
sparse feature for the training as well as test samples can be formed through sparse codes and
employed as the input of classifier. A support vector machine (SVM) with optimized parameters
has been extensively used in intelligent diagnosis of machinery fault. Hence, in this study, a novel
fault diagnosis method of rolling bearings using shift invariant sparse feature and optimized SVM
is proposed. Firstly, dictionary learning by shift invariant K-SVD algorithm is conducted. Then,
shift invariant sparse feature is constructed with the learned over-complete dictionary. Finally,
optimized SVM is employed for classification of the shift invariant sparse feature corresponding
to different classes, hence, bearing fault diagnosis is achieved. With regard to the optimized SVM,
three methods including grid search, generic algorithm (GA), and particle swarm optimization (PSO)
are respectively carried out. The experiment results show that the shift invariant sparse feature
using shift invariant K-SVD can effectively distinguish the bearing vibration signals corresponding to
different running states. Moreover, optimized SVM can significantly improve the diagnosis precision.

Keywords: shift invariant K-SVD; support vector machine; dictionary learning; fault diagnosis;
rolling bearing

1. Introduction

Sparse representation has been widely employed in image, video, and speech signal
processing [1–3]. In recent years, a growing number of researchers utilize sparse represen-
tation to machinery fault diagnosis and performance degradation assessment [4]. Yu et al.
proposed a novel classification method based on group sparse representation for bearing
and gear fault diagnosis [5]. Peng et al. applied sparse representation to extract bearing
fault features [6]. Fan et al. put forward a transient feature extraction method using sparse
representation in wavelet basis [7].

For sparse representation, we can construct an over-complete dictionary through
predefined dictionary, which needs prior knowledge of the signals, and is therefore not
feasible in an engineering practice. The dictionary can also be formed by randomly
choosing some samples from the training samples if the number of training samples is
large enough. However, if the dataset is very large, this method does not work well,
therefore we need more effective dictionary learning algorithms, e.g., K-means singular
value decomposition (K-SVD) [8], method of optimal directions (MOD) [9], etc. K-SVD
algorithm was first proposed for processing images and has been extensively applied to
image processing [10–12]. In machinery fault diagnosis, K-SVD has also been employed.
Zhu put forward a cutting force denoising method for micro-milling condition monitoring
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with modified K-SVD [13]. Zeng et al. implemented group-based K-SVD denoising
algorithm for bearing fault diagnosis [14].

If the long signal has the same internal structure, namely a pattern that recurs peri-
odically, namely these internal structures will be translated to different positions in the
long signal, which is called shift invariant. In this case, the same dictionary atom, namely
the base function, can be used to express the internal pattern of the signal, regardless of
its moving position, while the shift invariant dictionary learning algorithm can solve this
problem. Some shift invariant dictionary learning algorithms have been put forward, e.g.,
shift invariant sparse coding [15], convolutional sparse representation [16], shift invariant
K-SVD [17], etc. In the fault vibration signal of rotating machinery, there exists periodic
recurrence impulses, hence, shift invariant dictionary learning algorithm is particularly
suitable to diagnose the fault of rotating machinery. Recently, these algorithms have been
used for mechanical fault diagnosis. Liu et al. used shift-invariant sparse coding for feature
extraction and achieved fault diagnosis of rolling bearings [18]. Feng et al. utilized shift
invariant K-SVD to acquire vibration patterns hidden in planetary gearbox signals with
strong background noise [19]. Tang et al. implemented shift invariant sparse coding to real-
ize bearing and gear fault detection [20]. Chen et al. combined shift invariant K-SVD with
the Wigner-Ville distribution and applied it to fault diagnosis of wind turbine bearings [21].
Ding put forward a fault diagnosis method based on convolution sparse coding and ap-
plied it to wheelset bearing in high-speed train [22]. Li et al. put forward a shift-invariant
manifold learning method to enhance the transient characteristics of bearing fault [23].
Ding et al. put forward a sparse feature extraction method using periodic convolution
sparse representation and applied it to machinery fault detection [24]. He et al. combined
convolutional sparse representation with bandwidth optimization and proposed a fault
detection method for wheelset bearing [25]. Zhou et al. put forward a new method for the
diagnosis of bearing fault using shift-invariant dictionary learning and hidden Markov
model [26]. In this paper, shift invariant K-SVD algorithm is conducted to generate sparse
feature of the vibration signals of rolling bearing.

After feature extraction, the intelligent machinery fault diagnosis is the problem of
classification, which belongs to the problem of pattern recognition. Thus, the pattern
recognition methods can be used, e.g., support vector machine (SVM) [27–31], artificial
neural network (ANN) [32], deep learning [33], etc. Compared with neural network,
SVM [34] utilizes structural risk minimization, and can thus avoid over-fitting, local
minimization, and low convergence speed. Besides, SVM is more effective for training
samples with a small number and high dimension. When the data cannot be linearly
discriminated, a kernel function which can translate the data to high dimensional feature
space is always utilized in SVM, where the radial basis function (RBF) kernel is the most
broadly employed. The discrimination ability of SVM is greatly affected by the parameters
including kernel function parameter and penalization factor, hence it is very essential to
conduct the optimization of the parameters by means of intelligent evolutionary algorithms,
e.g., particle swarm optimization (PSO) [35] and generic algorithm (GA) [36,37]. For
machinery fault diagnosis, SVM with optimized parameters has been widely used. Lu
et al. applied an adaptive feature extraction method and optimized SVM based on PSO
to drivetrain gearbox fault diagnosis [29]. Wang et al. utilized SVM based on GA to
realize bearing fault diagnosis [30]. Three methods including grid search, GA, and PSO are
respectively conducted to optimize SVM in this paper.

In this study, a novel method using shift invariant sparse feature and optimized SVM is
put forward to realize bearing fault diagnosis. First of all, shift invariant K-SVD is adopted
to learn an over-complete dictionary, whose training samples come from the vibration
signals of rolling bearings at different running states. After that, the shift invariant sparse
feature is constructed through sparse codes solved by the learned dictionary, which can
be used as the input of SVM. In the end, optimized SVM using three different methods is
implemented to distinguish different running states of rolling bearings including normal
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state, the fault of inner race, outer race and rolling element, hence intelligent fault diagnosis
of rolling bearings can be achieved.

The remaining part of the paper includes: Section 2 introduces feature extraction
method with shift invariant K-SVD. In Section 3, the pattern recognition method using
optimized SVM is demonstrated. Then, the proposed bearing fault diagnosis model is
presented in Section 4. Subsequently in Section 5, the experiment of rolling bearing fault is
conducted to validate the effectiveness of the proposed method. At last, in Section 6, the
conclusion is acquired.

2. Feature Extraction Using Shift Invariant K-SVD Algorithm

With regard to periodic impact signals, the same fault mode appears repeatedly at
different times, which shows shift invariant characteristics. However, when using the
K-SVD dictionary learning method, the learned dictionary will demonstrate that multiple
different basis functions belong to the same fault feature mode, which just correspond to the
different impact positions, that is, the K-SVD algorithm does not consider the shift invariant
characteristics in the periodic impact signals, while the shift invariant K-SVD algorithm
(SI-KSVD) [16] can effectively solve this problem, in which each fault mode, namely
basis function, can appear at any moment and a translation of the same basis function
is conducted to represent the periodically recurring signal characteristics. Although the
fault characteristics may be submerged in strong noise and interference, the characteristic
of periodic recurrence makes the shift-invariant K-SVD algorithm easier to converge to
these recurring characteristic patterns. Therefore, a shift-invariant K-SVD algorithm is very
suitable to extract the feature of periodic impact signals and thus a sparse feature based on
shift invariant K-SVD algorithm can be formed.

In summary, for the feature extraction method using shift invariant K-SVD, there are
two stages: dictionary learning and sparse coefficients solving. Firstly, dictionary learning
using shift-invariant K-SVD is carried out to obtain a redundant dictionary. Afterwards,
sparse codes can be solved, and the discriminative sparse feature is constructed based on
the sparse codes.

2.1. Shift Invariant K-SVD Algorithm

For a long signal x ∈ Rp×1, assuming that there are a total of K basis functions
dk ∈ Rq×1(q� p), each basis function corresponds to a characteristic pattern and the
over-complete dictionary D is constructed by translating a series of basis functions dk in
the time domain. The goal of shift invariant K-SVD is to obtain several basis functions
through dictionary learning based on a long signal x, thereby forming a total over-complete
dictionary D, whose objective function is [17]:

〈d, s〉 = argmin
d,s
‖x−∑

k
∑
τ

sk,τTτdk‖
2

2

s.t. ‖s‖0 ≤ T , (1)

where Tτ is the shift operator that translates the basis function dk to time τ and extends
it to obtain a dictionary atom with the same length as the original long signal, where
the basis function dk in this atom starts at time τ and all the rest is set to 0. For each
basis function dk of length q, it can be translated up to time p − q + 1 and thus forming
a total of p − q + 1 dictionary atoms and the total over-complete dictionary D contains
K × (p − q + 1) dictionary atoms. sk,τ is the sparse coefficient with respect to the dictionary
atom after basis function dk is translated to time τ and extended. s is the sparse coefficient
vector of the long signal x and T is the sparsity prior.

Similar to the two-step iterative process of the K-SVD dictionary learning algorithm,
the shift invariant K-SVD algorithm is also a two-step iterative algorithm, which includes
the sparse coefficient solving stage and the dictionary updating stage. During the sparse
coefficient solving stage, each basis function is fixed. Due to excessive atoms of the over-
complete dictionary, the calculation is very time-consuming. Using the fast matching
pursuit algorithm [38] can greatly improve the computing efficiency. During the dictionary
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update stage, each basis function is updated in sequence. When the basis function dk is
updated, other basis functions remain fixed and the sparse coefficients of the dictionary
atoms corresponding to the basis function dk are also updated.

In the dictionary update stage, for a given basis function or feature pattern dκ , let
the activation part in the corresponding coefficients be obtained in the first step of sparse
decomposition stage, namely the set of non-zero elements be σκ = {τ|sκ,τ 6= 0}, defining
the signal x̂κ with no contribution from other basis functions dk(k 6= κ), as shown below:

x̂κ = r + ∑
τ

sκ,τTτdκ , (2)

where r is the residual signal. From Equation (1), the optimal basis function can be updated
by the following equation:〈

dopt
κ , sopt

κ

〉
= argmin

d,s
‖x̂κ − ∑

τ∈σκ

sτTτd‖2

2

s.t. ‖d‖2 = 1, (3)

The above equation can be expressed:

‖x̂κ − ∑
τ∈σκ

sτTτd‖2

2

= ∑
τ∈σκ

‖T∗τ x̂κ − sτd‖2
2 + constant, (4)

where T∗τ is the operator corresponding to Tτ , which can extract a segment with the same
length q as the basis function dκ from the long signal and the segment starts at time τ.

Using only the activation information corresponding to the basis function dκ in the first
sparse decomposition stage, i.e., the set of non-zero coefficients σκ , the sparse coefficient
and the new basis functions can be simultaneously updated. By Equation (4), the matrix
formed by the basis function dκ and the segment T∗τ x̂κ corresponding to σκ can be obtained
and then the singular value decomposition can be performed on it. After the singular
value decomposition, the largest singular value is retained, which means that the first
principal component can be selected to obtain the best basis function and corresponding
sparse coefficients:

dκ ← argmax ∑
τ∈σκ

〈d, T∗τ x̂κ〉2, s.t. ‖d‖2 = 1 (5)

(sκ,τ)τ∈σκ
← argmin‖x̂κ − ∑

τ∈σκ

sτTτd‖2

2

(6)

The flow of shift invariant K-SVD algorithm is as follows:
(1) Given the long signal x and the length q and number K of basis functions. The

initial basis functions are formed by randomly truncating segments with length q from the
long signal x and then normalizing the segments. Set the number of iterations t = 1 and
tolerance error ε;

(2) Solving the sparse coefficient stage. The fast-matching pursuit algorithm is con-
ducted to obtain the sparse coefficient s corresponding to the long signal;

(3) Basis function update stage. Each basis function is updated in turn and assuming
that when updated to the k-th basis function dκ , defining the set of sparse coefficients σk
activated by the basis function dκ , thus the basis function dκand the corresponding sparse
coefficient (sk,τ)τ∈σk

can be updated through Equations (5) and (6);
(4) Let t = t + 1 and judge whether the iteration is terminated. If the ratio of the

reconstruction error ‖x−∑
k

∑
τ

sk,τTτdk‖2

2
of the two adjacent iterations is less than ε, the

iteration is terminated, otherwise steps (2)–(4) are repeated.
If there are multiple long signals xi(i = 1, 2, . . . , N) forming a training set X, shift

invariant K-SVD can still be utilized to learn the basis functions. Firstly, shift invariant
K-SVD algorithm is employed for the first long signal x1, where the initial basis functions
D0 is constructed by randomly truncating segments from the long signals and then be
normalized. Through this learning, sparse coefficients s1 and corresponding basis functions
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D1 can be obtained. The basis functions D1 obtained through the shift invariant dictionary
learning is more capable of sparsely representing the signal sample x1 than the previous
initial basis functions, which means that D1 is closer to the nature of the signal x1. Then,
D1 is used as the initial basis functions and shift invariant K-SVD algorithm is applied to
the second long signal x2, thus sparse coefficients s2 and corresponding basis functions
D2 can be obtained. After that, D2 is used as the initial basis functions and shift invariant
K-SVD is applied to the third long signal x3.The above iterative process continues until the
last long signal xN and sparse coefficients sN and corresponding basis functions DN are
obtained. If the algorithm needs to continue, the basis functions DN is used as the initial
basis functions and shift invariant K-SVD algorithm is applied to the first long signal x1
and then the above iterative process is repeated in the order of the long signal. Whether the
algorithm stops or not generally depends on whether the basis functions D has stabilized,
which means that the relative error of two adjacent iterations of the basis functions D is less
than the tolerance error. Finally, the basis functions D are learned through the algorithm.

2.2. Shift Invariant Sparse Feature

After the shift invariant dictionary learning, K basis functions is obtained. Each
basis function di(i = 1, 2, . . . , K) is translated in the time domain and extended to the
length of the original long signal and then the sub-dictionary Di corresponding to the
basis function di can be acquired, which contains p-q+1 dictionary atoms. If there are L
classes of signals and each class contains multiple training samples that are long signals,
the shift invariant K-SVD algorithm is conducted for each class of samples and the K
basis functions are employed for the training samples of each class and thus LK sub-
dictionaries {Di|i = 1, 2, . . . , LK} can be obtained. Then, a whole redundant dictionary
D = [D1, D2, . . . , DLK] with LK sub-dictionaries can be formed by concatenating the sub-
dictionaries. For each signal sample, matching pursuit algorithm is applied based on
the over-complete dictionary D to solve the sparse coefficient s = [s1; s2; . . . , sLK] where
si(i = 1, 2, . . . , LK) corresponds to each sub-dictionary Di. Afterwards, the l1 norm, l2
norm or maximum absolute value Fi(i = 1, 2, . . . , LK) of the sparse coefficient vector
si corresponding to the sub-dictionary Diwith p − q + 1 dictionary atoms is computed
and thus LK-dimensional sparse feature F = [F1, F2, . . . , FLK] can be obtained for each
signal. Moreover, M(M ≥ 2) maximum absolute values Fi(i = 1, 2, . . . , LKM) of the
sparse coefficient vector si are also computed, which is denoted as M-Max and thus LKM-
dimensional sparse feature F = [F1, F2, . . . , FLKM] can be obtained for each signal. The
LK-dimensional or LKM-dimensional sparse feature is named shift invariant sparse feature.

From the perspective of sparse representation, the sub-dictionary with regard to
the class of the test sample is more adaptive to the test sample, i.e., the sub-dictionary
with regard to the class of the test sample is more likely to be activated to approximate
the test sample. Assuming that the class label of test sample yj is j(j = 1, 2, . . . , L), the
sub-dictionaries Di(i = K(j − 1) + 1, K(j − 1) + 2, . . . , Kj) corresponding to the class j
are more likely to be activated, i.e., solving the sparse coefficient using the whole over-
complete dictionary D and then the non-zero terms in the sparse coefficients corresponding
to the sub-dictionaries Di are most likely to appear in si(i = K(j − 1) + 1, K(j − 1) +
2, . . . , Kj), thus the l1 norm, l2 norm or M(M ≥ 1) maximum absolute values of the sparse
coefficient vector si corresponding to the sub-dictionaries Di are larger than the other
sub-dictionaries. Therefore, the shift invariant sparse feature corresponding to different
classes is distinguishable and can be employed as the input of classifier.

3. Classification with Optimized SVM

In this study, LIBSVM [39] is applied to the classification task including multiple

classes using one-against-one method. RBF kernel K(xi, xj) = e−g‖xi−xj‖2
is suitable to

conduct non-linear classification, where g denotes the width of RBF kernel. Moreover,
penalization factor c also has a large impact on SVM performance. Consequently, the
parameters (c, g) should be jointly optimized in order to get best SVM. In the following
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subsections, three different methods including grid search, GA, and PSO are respectively
carried out to optimize SVM.

The whole process of optimized SVM is as follows: firstly, linear normalization to
[0, 1] is conducted on both the training set and test set; then, based on the training set, cross
validation using the different parameters (c, g) is carried out and the best parameters that
own the highest cross validation accuracy can be achieved, which is regarded as the best
SVM model that corresponds to the training set; at last, the test set is predicted with the
best SVM model.

3.1. Grid Search

The parameters (c, g) are given with an interval in grid form and all of the parameters
are calculated to search the highest cross validation accuracy.

3.2. Genetic Algorithm

Genetic algorithm (GA) imitates the genetic and evolutionary process of organisms in
nature [36], which operates on the coding of the decision variables and takes the objective
function as search information while using the information of all points. Hence, GA owns
excellent global search ability. The shortcomings of GA are that the local search ability is
weak and the result is easily affected by the parameters.

GA consists of the following steps: population initialization, individual evaluation,
selection operation, cross operation, mutation operation, and the decision of stopping
criterion. In this study, the fitness value of GA is cross validation accuracy of SVM using
the training set. With regard to the selection operation, it is to select relatively good
individuals from the current population and copy them to the next population. Firstly,
the total fitness of all individuals in the population is computed, then the relative fitness
of each individual is computed as the individual selection probability, and finally the
roulette method is employed to select new individuals. For the cross operation, the
crossover operator is applied to the population, and two chromosomes are randomly
selected for crossover. Whether to perform the crossover operation or not is determined by
the crossover probability. The crossover position is randomly selected and the crossover
position of the two chromosomes is the same. With respect to the mutation operation, the
mutation operator is applied to the population, and a chromosome is randomly selected
for mutation. Whether to perform the mutation operation or not is determined by the
mutation probability. The position of the mutation is randomly selected, i.e., which gene is
selected for mutation. After the mutation is completed the feasibility of the chromosome
is tested.

3.3. Particle Swarm Optimization

PSO is also an evolutionary algorithm [35]. Compared with genetic algorithm, there
are no crossover and mutation operations in PSO and the particles are only updated
through internal velocity and thus PSO is easier to realize. However, when dealing with a
complex problem with a high dimension, PSO always suffers premature convergence and
the convergence performance is poor and thus the optimal solution cannot be guaranteed.

Suppose there are N particles in the particle swarm and the ith particle is pi =
(pi1, pi2, . . . , piK), (where K represents the parameter numbers that should be optimized, in
this study K = 2), whose velocity is expressed by vi = (vi1, vi2, . . . , viK). The fitness value
of the ith particle is the cross-validation accuracy of SVM based on pi. In the iteration
process, the best value of the ith particle that indicates the local best is represented by pbesti,
while the best particle that indicates the global best is represented by gbest. Firstly, the
initialization of the particles is implemented by a random number in the specified range.
For the kth iteration, the ith particle and its velocity are renewed as follows [35]:

vij(k + 1) = wv·vij(k) + c1r1(pbestij(k)− pij(k)) + c2r2(gbestj(k)− pij(k)), (7)

pij(k + 1) = pij(k) + wp·vij(k + 1), (8)
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where wv and wp are elastic coefficients for velocity update and particle update, respectively.
c1 and c2 are acceleration coefficients, which represents the local and global search ability,
respectively. r1 and r2 are random numbers uniformly distributed in [0, 1].

Each iteration indicates one generation, and the termination of iterations is determined
by the maximum generations. When the iterations end, the global best value is obtained
which signifies the best cross validation accuracy.

4. Bearing Fault Diagnosis Method Using Shift Invariant Sparse Feature and
Optimized SVM

In this paper, a fault diagnosis method for rolling bearing using shift invariant sparse
feature and optimized SVM is proposed. There are a total of five stages in the proposed
method: dictionary learning with shift invariant K-SVD, sparse feature extraction, optimiza-
tion of SVM, best SVM training and fault diagnosis. Figure 1 describes the whole process
of the proposed method, and the description with regard to each stage is introduced in
detail as follows:
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Figure 1. Diagram of the proposed method.

(1) Dictionary learning with shift invariant K-SVD. Using the training set, an over-
complete dictionary is obtained with shift invariant K-SVD.

(2) Sparse feature extraction. Using the learned over-complete dictionary, sparse
feature of all samples can be constructed as shown in Section 2.2, which can be employed
as the input of SVM.

(3) Optimization of SVM. Three methods including grid search, GA, and PSO are
respectively implemented to get the best (c, g), which has the best cross validation accuracy.

(4) SVM model training. Using the training set, the best SVM model can be learned
with the best c and g.

(5) Fault diagnosis. For the test set, the category label of each test sample is predicted
through the learned SVM model, therefore fault diagnosis of rolling bearings is achieved.
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5. Experiment and Analysis
5.1. Description of the Experiment

The proposed scheme based on shift invariant sparse feature and optimized SVM is
verified by the experiment of rolling bearings fault through artificial processing. Figure 2
shows the test rig [26]. An AC motor drives the shaft through coupling and the shaft is
supported by rolling bearings (GB203) at 720 rpm. The vibration signals are acquired by
data acquisition system (NI PXI-1042), where the acceleration sensor (Kistler 8791A250) is
located on the bracket that is fixed on the rolling bearing and the sampling rate is 25.6 kHz.
The electro-discharge machining is carried out on the surface of the outer race, inner race,
and rolling element of the rolling bearings, and three different classes of fault containing
the fault of outer race (ORF), inner race (IRF) and rolling element (REF) are obtained,
respectively. Consequently, including the normal state there are a total of four states.
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Figure 2. The test rig.

With respect to the data set, there are a total of 120 samples containing four running
states, with 30 samples in each state and each sample containing 20,480 points. Figure 3
describes the vibration signals of the rolling bearings corresponding to the four states. With
regard to each sample, truncation is conducted to acquire 10 time series with 2048 points,
so 1200 samples in four states can be obtained and each state has 300 samples.
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Figure 3. Vibration signals corresponding to different running statuses: (a) Normal; (b) inner race
fault; (c) rolling element fault; (d) outer race fault.

The training set is formed by randomly selecting 150 samples from the 300 samples
corresponding to different states, while the test set is constructed by the remaining samples.
Hence, the training and test set both containing 600 samples are respectively generated.
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5.2. Feature Extraction with Shift Invariant Sparse Feature

Firstly, based on each class of training samples shift invariant K-SVD algorithm for
multiple training samples is carried out to learn the dictionary corresponding to each class.
The basis function length is 256 points and the basis function number is 4. When using
matching pursuit algorithm for sparse decomposition, the sparsity prior T should be set.
Theoretically, the sparsity prior T should be given as the quotient of the original signal
length divided by the length of the basis function, but in order to allow correction of the
sparse decomposition error, the sparsity can be set to 1.2 times the quotient [19], namely
1.2 × 2048/256 ≈ 10. In addition, the basis function number is generally set to greater
than 2. If the basis function number is too large, the calculation amount is greatly increased
and most basis functions will converge to noise. Conversely, in case there are too few basis
functions, the fault feature components are hard to extract. In this paper, 4 basis functions
are selected and the influence of different numbers of basis functions on the classification
results is discussed in the next section.

The learned four basis functions corresponding to each class is demonstrated in
Figure 4. From the figure, it can be found that the basis functions belonging to different
classes are significantly different.
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Figure 4. The learned basis functions corresponding to four running states: (a1–a4) normal;
(b1–b4) inner race fault; (c1–c4) rolling element fault; (d1–d4) outer race fault.

After basis functions with regard to each class have been learned, the sub-dictionaries
for each class can be formed, and thus the over-complete dictionary can be constructed
by concatenating the sub-dictionaries. Using the over-complete dictionary, the sparse
coefficients of all samples are calculated with the sparsity prior 10 and the sparse coefficients
of four test samples with respect to four classes are demonstrated in Figure 5. As shown in
the figure, each sample is more likely to be activated by the atoms corresponding to the
category of the sample. Then, the shift invariant sparse feature can be computed based on
the sparse codes and l1 norm, l2 norm or M-Max. Hence, 16-dimensional (l1 norm, l2 norm
and Max), 32-dimensional (M = 2), or 48-dimensional (M = 3) feature vector is respectively
acquired with regard to each sample.

Through the shift invariant K-SVD algorithm, matching pursuit algorithm and l1
norm, the shift invariant sparse feature can be obtained. The test sample randomly selected
for four different states and the sum of shift invariant sparse feature of test samples from
the same state are demonstrated in Figures 6 and 7, respectively, where the sub-dictionary
no. 1~4, 5~8, 9~12, 13~16 denotes normal, the fault of inner race, rolling element and outer
race, respectively.
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Figure 5. Shift invariant sparse coefficients with respect to different running statuses: (a) normal;
(b) inner race fault; (c) rolling element fault; (d) outer race fault.
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Figure 6. Shift invariant sparse feature of a test sample with respect to different running statuses:
(a) normal; (b) inner race fault; (c) rolling element fault; (d) outer race fault.
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Figure 7. Sum of shift invariant sparse feature of all test samples with respect to different running
statuses: (a) normal; (b) inner race fault; (c) rolling element fault; (d) outer race fault.

From the above two figures, we can find that for the test samples, the sub-dictionaries
corresponding to the class of the samples are more likely to be activated, whose values are
significantly larger than other sub-dictionaries, which reveals that shift invariant K-SVD
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can enable the signals of the same class to produce similar sparse feature, hence the shift
invariant sparse feature is discriminative and can be employed as the input feature vector
of the classifier.

5.3. Fault Diagnosis Using Shift Invariant Sparse Feature

After the feature of the training set and test set was extracted, SVM was utilized for
classification. Firstly, standard SVM, which means that (c, g) are not optimized but specified
instead, was employed. Then, the influence of the parameter sets of shift invariant sparse
feature was analyzed. In the end, the optimization of SVM was carried out.

5.3.1. Diagnosis Result with Standard SVM

With regard to standard SVM, (c, g) are both set to 1. Based on the same learned
over-complete dictionary, different methods for generating sparse feature, there are a total
of five feature extraction methods using different sparse feature, including maximum
absolute values, 2 maximum absolute values, 3 maximum absolute values, l1 norm and
l2 norm, which are denoted as Max, 2-Max, 3-Max, L1, and L2, respectively, whose classi-
fication results are demonstrated in Table 1. Figure 8 respectively describes the detailed
classification results corresponding to four classes.

Table 1. The diagnosis results using different feature and standard SVM (%).

Max 2-Max 3-Max L1 L2

89.7 90.0 90.3 93.3 93.0
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Figure 8. Diagnosis results in detail.

Table 1 indicates that the different methods to construct sparse features have great
impact on diagnosis result, in which the sparse feature using L1 (l1 norm) achieves the
highest accuracy and thus l1 norm is utilized in the subsequent classification task using
optimized SVM. The accuracy of the feature extraction method based on Max (Maximum
absolute values) is the lowest, which is due to that the Max method ignores a lot of
important sparse feature information in the sparse codes. However, with the increase of
M, the accuracy is improved. Figure 8 shows that on the whole, the rolling element fault
acquired the worst result, which signifies that rolling element fault is very complicated and
harder to recognize. For normal and outer race fault, the method based on L1 (l1 norm)
outperforms all the other methods.

5.3.2. Influence of Parameter Set of Shift Invariant Sparse Feature

With the feature extraction method based on L1 (l1 norm) and standard SVM, which
means (c, g) are both set to 1, the influence of the parameter set of shift invariant sparse
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feature was discussed. In shift invariant K-SVD algorithm, the number of base functions
K for each class has a great influence on the whole fault diagnosis method so different K
varying from {2, 3, . . . , 10} was respectively conducted.

For different K, the dictionary size increased rapidly as K increases, whose classifica-
tion results and dictionary training time are illustrated in Figures 9 and 10, respectively.
The average sparse coding time for one sample using different K is shown in Figure 11.
Figure 9 shows that in general the diagnosis accuracy grows with the increasing number
of base functions K, yet becomes steady when dictionary size reaches a relatively large
value. Nevertheless, Figures 10 and 11 show that the dictionary training time rises quickly
if dictionary size is increased and then the time of sparse coding for the training samples
and test samples also grows quickly. Therefore, a proper value of K should be selected in
addition to considering the diagnosis precision, the computing, and memory consumption
must also be taken into account comprehensively. In this paper, K is set to 4.
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Figure 9. The classification result of shift invariant sparse feature with different K.
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5.3.3. Diagnosis Results Using Optimized SVM

Using shift invariant sparse feature, optimized SVM with three methods including
grid search, GA and PSO were respectively conducted. For all the methods, the selection
ranges of (c, g) are restricted to 2−10 to 210 and 5-fold cross validation is used. As for grid
search, the logarithms of c and g based on 2 are stepped with the step size 1. With regard
to GA and PSO, the fitness represents the c ross-validation accuracy and the population
size is 20, the max generations are 100. The other parameters of GA including crossover
and mutation probability are set to 0.4 and 0.2, respectively, while the other parameters of
PSO are: wv = 1, wp = 1, c1 = 1.5 and c2 = 1.7. The result of the grid search is demonstrated
in Figure 12, while Figures 13 and 14 demonstrate the fitness curves of GA and PSO,
respectively. The figures show that the loops in the GA algorithm are terminated at the
50th generation and based on the training set, the best cross validation accuracies of the
three methods corresponding to the best (c, g) are relatively high.
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Using the best (c, g), the optimized SVM model is obtained based on the training
samples, which can be employed to acquire the category labels of the test set. For LIBSVM,
the default values of (c, g) are (1, 1/k) (k denotes data dimension). SVM with default
(c, g) was also conducted for comparison with optimized SVM. Table 2 demonstrates the
diagnosis results and computation time of different methods. The table indicates that
the proposed method based on the shift invariant sparse feature and optimized SVM can
effectively distinguish different operating conditions, thus the fault diagnosis of rolling
bearings is achieved. Under default parameters (c, g), the diagnosis precision is not
high, therefore different parameters of SVM have significant impact on the diagnosis
precision and it is necessary to conduct the process of parameter optimization. For the
three optimization methods, the PSO method acquires the highest accuracy. Moreover, the
computation times of GA and PSO are much longer than grid search so the efficiency of the
algorithms needs to be improved. Of course, the classification accuracies and computation
times of the optimization algorithms are affected by the parameters set of the algorithms
themselves. Generally speaking, when the dataset scale is small, using grid search is
sufficient to meet the demand, but if the dataset scale is too large it is better to use GA or
PSO algorithm.
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Table 2. The classification result with different parameters (%).

Default Grid Search GA PSO

Normal 97.3 98.7 98.0 98.0
IRF 94.7 96.7 97.3 96.7
REF 88.7 92.0 90.7 93.3
ORF 91.3 96.7 96.7 97.3

Average 93.0 96.0 95.7 96.3

Time/s 0.1976 57.3465 81.7135 112.4451

6. Conclusions

In this paper, a new fault diagnosis method for rolling bearing based on shift invariant
sparse feature and optimized SVM is proposed. The shift invariant sparse feature is applied
for extracting shift invariant features of the vibration signals of rolling bearings, which
presents the characteristics of periodic recurrence of fault impact. The experiment of rolling
bearing fault was carried out and through the analysis of experimental vibration signal,
it can be found out that shift invariant sparse feature based on shift invariant K-SVD is
very discriminative, which can effectively distinguish different states of rolling bearings.
For shift invariant sparse feature based on different methods, l1 norm achieves the highest
classification accuracy. The influence of the parameter in shift invariant sparse feature,
namely the number of basis functions is also discussed, which shows that the number of
basis functions should be set comprehensively considering the diagnosis precision, the
computing, and memory consumption. As for optimized SVM, the classification results
indicate that parameter optimization is very essential for SVM and optimized SVM using
the methods of grid search, GA, or PSO can dramatically improve the classification ability
of SVM. With respect to the three methods, although PSO owns the longest running time,
it obtains the highest classification accuracy. In future work, combining other effective shift
invariant dictionary learning methods to obtain superior sparse features of bearing fault
will be explored. For the optimized SVM, improved optimization methods based on GA or
PSO can be considered to further enhance the optimization ability.
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Notations

c penalization factor in SVM
c1 acceleration coefficient that represents the local search ability
c2 acceleration coefficient that represents the global search ability
dk the kth basis function
d basis function
D over-complete dictionary
F shift invariant sparse feature
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g the width of RBF kernel in SVM using RBF kernel
gbest the best particle that indicates the global best
j class label
K basis function number
L class number of signals
M the number of maximum absolute values
N population size in PSO
p the length of the long signal x
pbesti the best value of the ith particle that indicates the local best
pi the ith particle
q the length of the basis function
r residual signal
r1 random number uniformly distributed in [0, 1]
r2 random number uniformly distributed in [0, 1]
s sparse coefficient corresponding to the long signal

Sk,τ
the sparse coefficient corresponding to the dictionary atom after basis function dk is
translated to time τ and extended

t iteration number
T sparsity prior
Tτ shift operator

T∗τ
the operator corresponding to Tτ , which can extract a segment with the same length q as
the basis function dκ from the long signal and the segment starts at time τ

vi velocity of the ith particle
wv elastic coefficient for velocity update
wp elastic coefficient for particle update
x long signal
X training set
x̂κ the signal with no contribution from other basis functions dk(k 6= κ)

σκ the set of non-zero elements
ε tolerance error
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