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Abstract: The paper at hand presents a novel and versatile method for tracking the pose of varying
products during their manufacturing procedure. By using modern Deep Neural Network techniques
based on Attention models, the most representative points to track an object can be automatically
identified using its drawing. Then, during manufacturing, the body of the product is processed
with Aluminum Oxide on those points, which is unobtrusive in the visible spectrum, but easily
distinguishable from infrared cameras. Our proposal allows for the inclusion of Artificial Intelligence
in Computer-Aided Manufacturing to assist the autonomous control of robotic handlers.

Keywords: deep learning; Computer-Aided Manufacturing; material processing; pose recognition

1. Introduction

During the last decade, significant effort has been given in facilitating contempo-
rary digital technologies into the manufacturing procedure to comply with the Industry
4.0 scheme through Vertical Networking, Horizontal Integration, Through-Engineering,
and early adaptation in Exponential Technologies [1,2]. Smart systems have been already
introduced into the manufacturing procedure to increase the flexibility and productivity
scale in different levels of infrastructure, such as remote control through the Internet of
Things (IoT) [3], predictive maintenance [4], failure recovery from non-expert person-
nel [5,6], low-volume or high-variance production [7], workload scheduling [8], and more.
With the means mentioned above, Computer-Aided Manufacturing (CAM) systems can be
significantly improved to increase their autonomy and provide real-time analysis of their
subjects using Artificial Intelligence (AI).

One of the most promising technologies that can be adopted in an Industry 4.0
ecosystem refers to the processing of visual data from low-cost camera sensors. During the
last two decades, computer vision has reported tremendous achievements in automation
and manufacturing, spanning from landmark/keypoint detection and extraction [9,10],
to exploration [11] and novelty detection [12]. Combined with the cognitive capabilities of
AI and Deep Learning (DL), such technologies enable smart systems to better interpret and
interact with their environment. Thus, modern automation can perform complex tasks,
while also handling unexpected events.

Pose estimation and tracking have been a challenging task that has provoked thought
for many researchers. Accurately identifying the position and orientation of an object
allows autonomous machines (e.g., robotic manipulators in a production line) to grasp
and adequately handle it without compromising their integrity. Traditionally, the whole
3D figure of an item is estimated by using depth visual sensors, such as stereo or RGB-
D cameras [13–15]. More recently, though, in order to provide cost-efficient solutions,
the related literature has been focused on identifying an object’s pose through single
image instances, which can be acquired by monocular sensors [16]. This is achieved by
either using Structure from Motion techniques via frames captured during different time
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instances [17,18], or through DL methods [9,19–22], which can identify the full pose or
representative local points of a given object.

In this paper, we present a solution for improving the operation of a smart assembly
line, which requires the detection and tracking of products during manufacturing (e.g., [23]).
Our proposal refers to an AI-enabled tool for generating representative tracking points
to capture the position of different products and close the control loop of CAM systems.
Instead of relying on fiducial [24] or other markers that affect an object’s appearance, our
conceptualization refers to the application of highly infrared (IR) reflective materials, such
as Aluminum or Magnesium Oxide, to strategically selected by the AI [25] regions of
each product. Such materials can be easily perceived by an IR camera sensor without
significantly interfering with the final form of the product, facilitating the tracking and
handling procedures of a modern production line with multiple robotic manipulators.
Within the scope of this work, we consider the use of Aluminum Oxide, which constitutes
a low-cost solution with high reflectivity on the IR spectrum [26]. Our approach realizes
the identification of points within a pre-processing step without explicitly requiring the
online deployment of the DL architecture during the manufacturing procedure. This allows
the Aluminum Oxide markings to be planned beforehand and incorporated in the design
procedure, as well as the use of direct methods for retrieving the pose of each object based
on well-established 3D geometry techniques.

2. Proposed Approach

A DL network is proposed to automatically identify representative points to be pro-
cessed with Aluminum Oxide (e.g., injections, paint, coating [27–30]) based on the architec-
ture presented in [25]. An open source implementation of the used network can be found
in the publicly available repository https://tinyurl.com/githubAttention, accessed on 25
May 2021. In this work, the DenseNet [31] model is used, according to which the extracted
information from previous layers is accumulated in the following ones by propagating
their respective feature maps. With the view to reduce the computational complexity of
the original design, standard convolutional layers are substituted by depthwise separable
ones [32]. Specifically, the model’s stem consists of Dense Blocks with Inverted Residuals
and Mish activation function [33]. Moreover, for sub-sampling feature maps, an anti-
aliasing Blur Pooling filter is introduced, allowing the use of different kernel sizes [34].
The network’s main building block, shown in Figure 1, consists of an Attention-Augmented
Inverted Residual Block constructed around a standard residual one. Such a mechanism
aggregates the similarity between profound query characteristics, and thus, multiple sub-
spaces and spatial positions can be monitored by using a series of attention blocks. Finally,
downsampling between Dense Blocks is achieved by a Transition Layer with pointwise
convolutions to reduce the feature maps’ depth, Blur Pooling, and batch normalization.
The network’s output corresponds to a set of k coordinates, each denoting a specific point
on an object. Besides its competitive performance, this network is appealing for a dynamic
pose detection system due to its single-stage end-to-end architecture and its capability to
regress the representative points’ coordinates within a pre-processing step; before the items
reach the production stage.

https://tinyurl.com/githubAttention
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Figure 1. The structure of an Attention-Augmented Inverted Residual Block (with copyright permis-
sion from [25]).

Our approach refers to training the above network with a dataset of known manufac-
turing objects using their respective Computer-Aided Design (CAD) models. Consequently,
the same network can automatically indicate representative tracking points for other
products with different shapes. Our conceptualizing is based on the notion that the DL ar-
chitecture has been trained to detect the most appropriate points from the learning objects,
and it can transfer this knowledge to unknown items, as well. Given that CAD learning
models can be transformed with respect to any desired viewing angle, the trained network
will be able to identify the required amount of tracking points from multiple views. Thus,
Aluminum Oxide can be placed accordingly to different objects’ sides, allowing an IR
camera to accurately identify their position.

More specifically, the proposed concept assumes a basic setup, such as the one pre-
sented in Figure 2, including a single or multiple IR camera sensors mounted on the ceiling,
according to the production line’s size that needs to be monitored. Using an IR source of
lighting aimed at such a line, Aluminum Oxide points strongly reflect the light, and they
are captured by the sensor. This allows for their detection and tracking on every frame of
the respective video stream. Finally, the above 2D image points are associated with the
known 3D object’s mess (given from its CAD model), and the Perspective-n-Point (PnP)
algorithm [35] is applied to estimate the relative 6-degrees-of-freedom transformation
between the camera and each product. By assuming n = 3 for the PnP algorithm, four
different solutions are obtained, which can be sorted out by a fourth point association.
The P3P algorithm, applied on the simplistic setup presented in Figure 3 among the camera
center P0 and three 3D points Pi, i ∈ {1, 2, 3}, adheres to the following equation system:

Y2 + Z2 −YZp− b2 = 0

Z2 + X2 − XZq− c2 = 0

X2 + Y2 − XYr− a2 = 0

, (1)

where: 
X = |P0 − P1|2
Y = |P0 − P2|2
Z = |P0 − P3|2

,


p = 2 cos∠P2P0P3

q = 2 cos∠P1P0P3

r = 2 cos∠P1P0P2

,


a = |P1 − P2|2
b = |P2 − P3|2
c = |P1 − P3|2

. (2)

In the above, p, q, and r can be computed based on the 2D image point correspondences with
the world’s points Pi, while a, b, and c are known from the given CAD model. Furthermore,
the notation |...|2 denotes the L2-norm. By solving the equation system (1), we can obtain
X, Y, and Z, which correspond to the depth information of the reference world points.
Then, given the intrinsic camera parameters, the 3D points’ coordinates are computed (P′i )
with respect to the IR sensor’s frame of reference. Finally, the relative rotation (R) and
translation (T) between the camera and the product are recovered by solving:

P′i = RPi + T, i ∈ {1, 2, 3}. (3)
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Considering that the IR sensor’s position is known and fixed, each object’s pose on the
production line can be accurately retrieved and transformed on a global frame of reference.
Please note that in the above procedure, one-to-one associations between the images’ 2D
and the products’ 3D points need to be known. There are several approaches for obtaining
this information (e.g., [9,36]); however, an efficient scheme is presented in [37], where a
brute force searching strategy was constructed by inspecting every possible combination
and permutation among 3 point detections. The resulting solutions of the P3P algorithm
can then be sorted out based on the re-projection error from the rest of the detected 2D
points. At first glance, such an approach may seem computationally intensive; however,
one needs to consider that the number of image points is low (k = 50 for our case) and that
each regressed coordinate set is associated with a specific point of an object determined in
the training samples.

Figure 2. An indicative setup of the proposed concept for product tracking through an IR camera.
The item is processed with an IR reflective material on points proposed by the Attention model [25].
Using the 3D-to-2D point associations, the relative rotation (R) and transformation (T) between the
sensor and an item can be retrieved, allowing accurate pose estimation and effective manipulation in
a production line.

Figure 3. Schematic representation of the P3P problem.

3. Preliminary Results

A representative example of the obtained results is depicted in Figure 4. The network
can automatically produce the heat-map of the products’ most profound tracking points
through the feature maps of the Attention-Augmented Inverted Residual Block. The pre-
sented outcome is obtained using the network provided in [25], which was originally
trained on the PANOPTIC [38] dataset. More specifically, 165,000 learning subjects were
used under the Stochastic Gradient Descent optimizer with a triangular policy of Cyclical
Learning Rate [39]. The proposed DL architecture identifies regions of increased saliency
on a novel object outside the training space, highlighting its versatility and generalization
properties. With the view to further evaluate our proposed framework’s performance, we
conducted an additional round of experiments to measure the network’s robustness for
detecting salient points through repeatability. To that end, we applied a series of trans-
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formations (including rotation, translation, and affine) on the item depicted in Figure 4,
resulting in 300 different instances. Then, we deployed the Attention model on each of
them and measured the detected points’ repeatability using the Intersection over Union
(IoU) metric. The obtained results are presented in Table 1 and indicate that most points
can be effectively re-detected over multiple viewing angles. Please note that the network
was set to detect the most prominent k = 50 points from each image.

Figure 4. A representative example of applying our DL network on a novel object. Despite training
the model on different items, the architecture can produce valid tracking points. (Left): Feature
map of the Attention-Augmented Inverted Residual Block. (Right): Tracking points based on the
produced output coordinates.

Table 1. Intersection over Union (IoU) for different number image transformations measuring the
detected point’s repeatability.

Number of transformed instances 50 100 150 200 250 300

IoU (%) among the detected points 91% 91% 87% 83% 80% 75%

It is worth noting that in real-world applications, the learning process needs to be
implemented over CAD samples from the specific production line’s targeted manufacturing
products; however, such a learning sample is expected to be small. To that end, datasets
such as the ABC [40] one can be used within a pre-training step to transfer-learn the
general characteristics (e.g., geometry and appearance) of production items and restrain
over-fitting.

Furthermore, the lightweight nature of the network, totaling only 1.9M mixed-precision
parameters [41], offers a real-time performance of approximately 20 ms per frame when de-
ployed on a Titan Xp GPU. In comparison, a hardware-accelerated version of hand-crafted
keypoints, which do not incorporate any learned qualities for proper pose tracking, has
been reported in [42] to be computed at 11 ms per input sample. This real-time performance
allows for the detection of points to be refined with Aluminum Oxide even during the
manufacturing procedure; however, one can assign this process to earlier stages, such as
the products’ design.

4. Conclusions

Our approach proposes the application of a state-of-the-art deep network on the man-
ufacturing procedures. Realizing the identification of points for product pose tracking as a
highly dynamical system, we evaluate our technique in terms of repeatability, establishing
its robustness against different viewing angles. This is due to the rich information con-
tained within the DL model’s multi-layer structure, its ability to describe highly correlated
input-output variables, and the use of high-dimensional learning data. Such a framework
paves the way to increase a manufacturing facility’s level of automation, leading to more ef-
fective control in modern industrial environments and remote inspection of the production
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line within an IoT paradigm. As part of our future, we plan to evaluate a complete system
based on our proposal to showcase fully solidified results in an industrial environment.
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