
machines

Article

Robot Grasping System and Grasp Stability Prediction Based
on Flexible Tactile Sensor Array

Tong Li 1 , Xuguang Sun 2,3 , Xin Shu 2,3, Chunkai Wang 2,3, Yifan Wang 4, Gang Chen 1 and Ning Xue 2,3,*

����������
�������

Citation: Li, T.; Sun, X.; Shu, X.;

Wang, C.; Wang, Y.; Chen, G.; Xue, N.

Robot Grasping System and Grasp

Stability Prediction Based on Flexible

Tactile Sensor Array. Machines 2021, 9,

119. https://doi.org/10.3390/

machines9060119

Academic Editors: Dan Zhang and

Giuseppe Carbone

Received: 24 April 2021

Accepted: 6 June 2021

Published: 17 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Modern Post (School of Automation), Beijing University of Posts and Telecommunications,
Beijing 100876, China; tli@bupt.edu.cn (T.L.); chengang_zdh@bupt.edu.cn (G.C.)

2 State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy
of Sciences, Beijing 100190, China; sunxuguang16@mails.ucas.ac.cn (X.S.); shuxin16@mails.ucas.ac.cn (X.S.);
wangchunkai16@mails.ucas.ac.cn (C.W.)

3 School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of
Sciences (UCAS), Beijing 100190, China

4 School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China;
wangyifan@bupt.edu.cn

* Correspondence: xuening@mail.ie.ac.cn

Abstract: As an essential perceptual device, the tactile sensor can efficiently improve robot intelli-
gence by providing contact force perception to develop algorithms based on contact force feedback.
However, current tactile grasping technology lacks high-performance sensors and high-precision
grasping prediction models, which limits its broad application. Herein, an intelligent robot grasping
system that combines a highly sensitive tactile sensor array was constructed. A dataset that can reflect
the grasping contact force of various objects was set up by multiple grasping operation feedback
from a tactile sensor array. The stability state of each grasping operation was also recorded. On
this basis, grasp stability prediction models with good performance in grasp state judgment were
proposed. By feeding training data into different machine learning algorithms and comparing the
judgment results, the best grasp prediction model for different scenes can be obtained. The model
was validated to be efficient, and the judgment accuracy was over 98% in grasp stability prediction
with limited training data. Further, experiments prove that the real-time contact force input based
on the feedback of the tactile sensor array can periodically control robots to realize stable grasping
according to the real-time grasping state of the prediction model.

Keywords: robot grasping system; tactile sensor array; machine learning; grasp stability prediction

1. Introduction

In recent years, machine learning put forward decades ago has been growing rapidly
and has received substantial research interest with the popularity of artificial intelli-
gence [1–3]. Currently, machine learning is widely used in computer vision [4], language
processing [5–7], human-machine interfaces [8], and robots [9]. It is closely combined with
sensors that serve as information collection terminals in applications, including pattern
recognition [10,11] and wireless sensor networks [12]. However, machine learning methods
based on tactile information are rarely applied to actual scenarios compared to visual
and speech recognition. Tactile sensation is one of the major ways organisms perceive
the external environment. By combining sensor components that mimic human touch,
robots can acquire the ability of bionic grasping [13]. The perception of contact force is
an indispensable element for achieving the flexible and stable grasping of objects. When
picking up and moving target objects, especially fragile objects, sensitive contact force
feedback can reduce the possibility of dilapidation caused by excessive force and rapid
movement tendency of an object, such as a propensity toward sliding [14].

At present, the combination operation of grasp and touch of robot arm is still in in
its immaturity, which is manifested in two aspect [15]. On the one hand, the combination
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of pressure sensors and mechanical prosthetic hands or clamps has a low sensitivity. It
can only be used to grasp hard-to-break objects with a relatively large force to ensure the
stable completion of the grasping task [16]. On the other hand, the robot hands or clamps
used for grasping usually only consists of a tactile sensing section consisting of one or
several large-volume pressure sensors [17,18]. A small contact area between the object and
the sensor may cause an insufficient output value. Monolithic and low-density sensors
struggle to clearly distinguish between the contact area and the shape between the robot
hand and the object being clamped. Therefore, it increases the possibility of misjudgment in
unconventional grasping conditions. G. D. Maria et al. proposed a tactile sensor prototype
that can work as a torque sensor to estimate the geometry of the contact with a stiff external
object for robotic applications [19]. However, the low sensitivity of this sensor does not
allow it to sense contact with small mass or fragile objects, implying that the device is not
suitable for applications where robots grasp soft or fragile objects. Pang et al. designed a
three-dimensional flexible robot skin made from a piezoresistive nanocomposite to enhance
the security performance of a collaborative robot [20]. The robot arm equipped with the
robot skin can efficiently approach natural and secure human–robot interactions. However,
the spatial resolution and the sensitivity of the sensor array are not enough to achieve
effective collision detection for sharp objects. In our previous work [21], a flexible tactile
electronic skin sensor with high precision and spatial resolution was presented for 3D
contact force detection. Herein, we constructed a robot grasping system to achieve high
accuracy grasping operation for multi-class objects.

Based on the analysis above, the effective combination of the robot arm and the high
sensitivity and high spatial resolution of the tactile sensor is the hardware foundation for a
flexible and precise grasping operation. Due to the low sensitivity and low spatial resolution
of the touch sensor, current grasping systems judge the grasping in a simple manner. The
next grasping operation step is determined by judging the relative relationship between
the sensor output and the threshold, which is arbitrary and not reliable enough [22,23].
An efficient method can be devoted to intelligent and precise grasping state judgment via
benefiting from the high precision and spatial resolution tactile sensor array. Some scholars
divided the grasping state into three states: holding state, sliding state and rotation state.
Heyneman [24] concentrated on the slip classification on eight kinds of texture plates by
using tactile sensors and proposed a method that can accurately identify slip location.
Su [25] also achieved slip detection using a tactile sensor when robot grasping. However,
the slip and rotation states are two kinds of critical states between stable and unstable
grasping. Both of these states are unstable and inevitably lead to unstable grasping. In
general, only stability is concerned in the actual grip operation, not the instability of the grip
operation. In addition, using a three-dimensional force perception tactile sensor array, the
tangential force can be guaranteed to avoid object slip, and object rotation can be inhibited
by choosing a proper contact center. Thus, the slip and rotation states are unnecessarily
distinguished, especially when collecting grasping data to construct the dataset.

Meier [26] used convolutional networks to judge the grasping conditions for three
kinds of objects to judge the grasping result based on grasping data. It is feasible for
powerful GPU-supported and fewer kinds of objects judged.With the increase of the types
of objects, the calculation will also increase greatly, and the application in embedded system
cannot be guaranteed due to the limitation of GPU. In addition, high judgment accuracy
requires a larger grasping dataset. Many limits prevent the convolutional networks from
being applied for grasping operation prediction. Machine learning [27] that achieves
pattern classification with higher efficiency and lower calculation costs can effectively
compensate for the deficiency of a single threshold judgment and convolutional network
judgment. The prediction model based on a machine learning algorithm can judge the
actual grasping state by training the dataset to adjust the control parameters of the robot,
achieving stable grasping operation.

Besides, many scholars have focused on robot grasping operations in other ways. They
achieve grasping benefitted from the characteristics of a multi-fingered gripper. Yao [28]
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concentrates a on grasp configuration planning method based on a three-fingered robot
hand, which depends on the grasping data described with the configuration of fingers and
the attribute of the object. Kim [29] trained a deep neural network based on information of
object and robot hand geometryand obtained the optimal grasping points between object
and fingers. The geometry and attributes of objects and fingers are the key to achieve
multi-fingered form-closure grasping on multiple kinds of objects, such as a polygon-type
form-closure grasping achieved with a four-fingers parallel-jaw gripper [30]. What is more,
a gecko-like robotic gripper, which is a kind of biomimetic multi-fingered structure, has
been designed for grasping [31]. Furthermore, the haptic characteristics of objects have
been identified with a three-fingered soft gripper [32]. The structure of a multi-fingered
gripper makes it more efficient to achieve form-closure stable grasping for various objects.
While the mechanical and control system is more complex compared with a two-finger
gripper system. By the introduction of the tactile sensor array, it can also achieve stable
grasping with a simple two-fingered gripper with high efficiency and reliability.

Herein, we construct an intelligent robot grasping system based on a highly sensitive
tactile sensor array to achieve stable grasping. In this paper, the realization of stable
grasping refers to finding an appropriate pressure distribution based on the tactile sensor
array, which reflects the force situation of the contact area between the object and the
clamp on the end-effector of the robot. The pressure distribution is not too large to break
the objects but produces enough friction to prevent slip and rotation of the object.We
set up a grasping dataset based on multiple groups of pressure distribution related to
either stable grasping or unstable grasping, and trained grasp stability prediction models
based on machine learning algorithms. With the grasp stability prediction models, the
system realizes grasp state prediction on different kinds of objects. The prediction results
of these models are compared by grasping success rate and standard deviation, then the
best model is selected. The select model guarantees high precision and efficiency, and
practically avoids redundant judgement on grasping state. It achieves judging grasping
state periodically and adjusting the control force in actual grasping operations, based on
the real-time feedback of the tactile sensor array.

2. Materials and Methods
2.1. Robot Grasping System Integrated with Flexible Tactile Sensor Array

Figure 1a illustrates a robot grasping system based on a tactile sensor array. The
behavior of an object holding mainly depends on the perception of tactile signals rather
than vision. The tactile sensation plays a decisive role in stable object grasping operations.
Similarly, the robot arm grasping system also requires the support of tactile sensors (shown
in the dotted circle) to achieve the stable grasping of objects. In this work, a flexible piezore-
sistive sensor array with high sensitivity is assembled on the clamp of the manipulator arm,
and the sensors can measure three-dimensional forces. The piezoresistive sensing material
and the electrodes form a sandwich structure, and the electrodes are connected by electrical
routings from different rows and columns. Figure 1b and c show the assembly details of
the tactile sensor array on the finger of the robot. Generally, the robot grip is designed in a
multi-fingered structure whose designing schemes have been discussed detailed in [33–35].
In this work, we propose a two-finger gripper-based grasping system, which has simple
structures and achieves good performance on stable grasping benefitted from the tactile
sensor array. A two-finger grip jaw is installed as the end-effector of the robot, and the
tactile sensor array and data collection system are assembled on it. The tactile sensor array
is designed in rectangular shape according to the regular and smooth surface of finger,
which is attached on polyethylene and then installed on the finger of the grip jaw. This
setup improves the contact performance between the object and the tactile array. Figure 1c
shows the assembly details of the scanning circuit for the sampling of the tactile signals. A
pin board is attached on the opposite side of the clamp, and the scanning circuit is installed
on the clamp of the robot. The tactile signal is delivered through the pin board to the
scanning circuit and then transmitted by the wireless LAN to the processor.
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Figure 1. Robot with flexible tactile sensor array. (a) Schematic diagram of grasping operation with
tactile sensor. (b) Instalation of tactile sensor array at the clamp of robot. (c) The assembly of tactile
data collecting system.

The overall appearance of the tactile sensor is shown in Figure 2a, which can sensitively
achieve normal pressure perception, as well as the perception of tangential forces. The
resistance variation under tangential force is displayed in Figure 2b. The thickness of
the sensor is 2 mm, and the area of each three-dimensional force measurement unit is
7 × 7 mm2, which integrates four symmetrically distributed piezoresistive sensing cells,
so the spatial resolution of the individual piezoresistive elements is 8/cm. The sensitivity
of the tactile sensor reaches 20.8 kPa−1 in the range of <200 Pa, 12.1 kPa−1 in the range
of <600 Pa and 0.68 kPa−1 in the range of 1–5 kPa [21]. In Figure 2b, a tangential force is
implemented in x direction by a force gauge. The force is implemented by the interval of
0.05 N, and the output voltage is collected then transferred into resistances. As a result,
the resistance responses and sensitivities of the four neighboring cells are shown. We
can see that the sensitivity of the sensor can achieve 0.05 N when a transverse force is
applied to the three-dimensional element, and the resistance of only one cell will produce
obvious corresponding changes, while the resistance of the other three will remain basically
unchanged. The curve in Figure 2b is measured three times, and the data are regressed to
achieve the shown result, which provides a good basis for detecting the tangential contact
force magnitude by using the difference.
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Figure 2. The arrangement and piezoresistive curve of tactile sensor array. (a) Photo image of the
applied tactile sensor array. (b) Piezoresistive curve of the tactile sensor under tangential force.

The arrangement of wires in the sensor array is simplified by connecting different cells
in corresponding rows and columns. To eliminate the cross-talk between different sensor
cells and improve the accuracy of information acquisition, a zero-potential method [36] that
can efficiently achieve crosstalk elimination based on the row-column scanning circuit is
adopted. The scanning circuit board is shown in Figure 3 and is composed of multiplexers,
a microcontroller unit (MCU, STM32F103), an analog-to-digital converter (ADC, 12 bits and
0.806 mV resolution), reference resistances, and operational amplifiers. The measurement
principle of the scanning circuit is that the row multiplexer is controlled by MCU to select
one of the rows, and then the output of each column of the operational amplifiers is
connected to the ADC through the column multiplexer. The output voltage of each cell can
be scanned and converted to digital signals. The corresponding resistance value can be
calculated by the product of the input voltage and reference resistance of each cell divided
by the output voltage of each cell.
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Figure 4 shows the entire robot grasping system with the control interface. The inset
shows the flexible tactile sensor array attached to the robot clamp, which was fabricated
with a transparent poly plate to clearly observe the deformation of objects in the process
of clamping. To increase the buffer in the process of clamping objects, a 5-mm-thick
polyethylene foam film (Young’s modulus is 0.172 GPa) was installed between the sensor
array and the clamp. The seven-axis full-angle robotic arm is a product of the SCHUNK
company (Lauffen, Germany), with a joint rotation resolution of 0.01◦. A 24 V direct
voltage power was used to supply energy for the manipulator, and a 5 V direct voltage was
supplied to the sensor array scanning circuit. The scanning circuit transmits the collected
array information to the PC processor through the wireless LAN for processing, storing
and displaying. Figure 5 shows the working process of the sensor array scanning circuit
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and grasping system. By the power supply to the MCU, the rows and columns of the
sensor array are selected by adjusting the electrical level. As a result, the tactile element
for measuring is determined. The analog signal of the tactile element is collected and
transferred into a digital signal by the ADC and then is then stored in the MCU. Via the
wireless LAN device, the signal is delivered to the processor for grasp operations.
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2.2. Grasp Stability Prediction Algorithm Based on Grasping Dataset

To achieve high accuracy and stable grasping, the grasp stability prediction model
was constructed by training on a grasping dataset obtained from a tactile sensor array. The
key of the stability prediction is to train the model to correctly predict the feasible and
infeasible data for stable grasping. The model can be used to determine if the grasping
operation is successful and stable based on real-time collected pressure distribution data. It
can be treated as a binary classification problem for grasping stability prediction, where
stable and unstable graspings are the two categories.

In this work, a grasping dataset was firstly built up for training the grasp stability
prediction model. Several objects were applied for collecting data samples from the tactile
sensor array for both stable and unstable grasping. The SVC (support vector classification)
algorithm [37], the KNN (k-nearest neighbor) algorithm [38], and the LR (logical regression)
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algorithm [39] were introduced to train the prediction models. KNN is one of the simplest
machine learning algorithms, while it has high computation cost, deep dependence on
training data, and has poor fault tolerance on training data. SVC aims to obtain the
optimal hyperplane in the feature space. The SVM learning can be expressed as a convex
optimization problem, which is sure to achieve global optimum. However, it is hard to
be implemented with large samples and on multi-category classification. LR uses the log
function as its loss function, which should be implemented with large samples. In addition,
it is sensitive to abnormal samples and needs a parametric model.

Anensemble learning algorithm is also discussed based on the SVC, KNN, and LR
prediction models, which is achieved by adding a meta-classifier onto the predictions of
the three models. Finally, comparing with the models according to the grasping success
rate, the highest one was selected for judging grasping operation stable or not on real-time
collected pressure distribution data.

(1) Grasping dataset

To train the prediction models, a grasping dataset of different objects was collected.
Six kinds of objects (plastic bottle, pop-tip can, pear, orange, nectarine, and egg) are selected
as test objects, which are shown in Figure 6. The hardness and volume of the test objects are
different, which can fully reflect the scenarios encountered by the robot grasping system in
grasping objects within the range of tactile sense. A total of five kinds of locations were set
for grasping operations, and the grasp operation was carried out 10 times for each object at
each location. As a result, 300 groups of grasping data were collected to form a dataset.
Half of the data show a stable grasping operation, while the others were unstable. With this
dataset, each algorithm of SVC, KNN, LR, and ensemble learning is respectively trained
and the corresponding prediction model is obtained.
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To prevent the model from over-fitting and to obtain a better classifier, the original
data were divided into three parts: training data, validation data, and test data at a certain
proportion. The model is trained by these three parts. The training data was utilized to
train the model, and the validation data is selected to make the model more effective. The
test data was used to determine the accuracy of the model on unknown data, which can
explain the generalization ability of the model to a certain extent.

(2) Grasp stability prediction models

Figure 7a shows the schematic diagram of the SVC algorithm in a two-dimensional
feature space. The hyperplane corresponding to boundary H1 is wx + b = 1, and the
hyperplane corresponding to boundary H2 is wx + b = −1, where w is the normal vector.
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The instance points on H1 and H2 are the support vectors of the training data, and there are
no instance points between lines H1 and H2. The width of the interval between two parallel
dotted lines is 2/‖w‖, and the model trained by the SVC algorithm aims to maximize the
interval.
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Figure 7b shows the schematic diagram of the KNN algorithm. The model trained by
the KNN algorithm divides the feature space into some subspaces, and the classification
can be determined according to the subspaces. In the model trained by the KNN algorithm,
K is a hyper-parameter that needs to be set in advance, and the selection of the K value will
affect the performance of the prediction model. If a smaller K value is chosen, the prediction
result is determined by instance data in smaller neighborhoods, and the approximate error
of learning is relatively decreased. However, if noise exists in the neighboring instances,
the model is prone to overfitting, leading to an incorrect prediction result. If a larger K
value is chosen, the prediction result is related to instance data in larger neighborhoods,
which can reduce the estimation error of learning, but the approximation error will increase
correspondingly. The choice of the K value determines the complexity of the model. The
larger the K value, the simpler the overall model is; the smaller the K value, the more
complex the model is.

The LR algorithm associates the characteristics of samples with the probability of
the occurrence of the samples and categorizes samples through different probabilities of
occurrence. For binary classification problems, the LR algorithm can be expressed as

p̂ = σ(w · xb), ŷ =

{
1, p̂ ≥ 0.5
0, p̂ < 0.5

(1)

where p̂ is the probability of sample occurrence, ŷ is the result of sample classification,

xb =
(

x(1), x(2), · · · , x(n), 1
)T

is the extended sample feature, w =
(

w(1), w(2), · · · , w(n), b
)

is the expanded weight vector, b is the bias and σ(·) represents the sigmoid function, of
which the definition domain is (−∞,+∞) and the range is (0,1). The function can be
expressed as

σ(t) =
1

1 + e−t (2)

where t = w · xb. By adjusting the extended weight vector w, the difference between the
judgment value and the real value of the decision algorithm is minimized, and the model
based on LR algorithm can be obtained.

Based on the models trained by SVC, KNN and LR algorithms, the ensemble learning
model is constructed based on the framework of soft voting. The average probability of all
model prediction results of each category is calculated respectively, and then the category
with the highest average probability is voted as the final prediction result.
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3. Results

Figure 8 shows the state of different objects being stably grasped by clamps and the
corresponding pressure distribution in the sensor array. Each color box represents a tactile
sensor cell, and the value of the colors indicates the output voltage of each cell. At the
beginning of the grasping operation, the two clamps move to each other, and the sensor
array is unloaded. As the tactile sensor starts to contact the object, the output value of the
corresponding sensing elementwill increase, and the real-time pressure data transmitted to
the processor will be processed by the prediction algorithm to judge the state of grasping.
If the model determines that the object is not being grasped, the clamps will continue to
tighten up in case the object falls, and the grasping state of the object will continue to be
judged circularly. When the grasping state changes from unstable to stable, the clamps of
the manipulator driven by the motor will stop moving, and stable grasping operation is
achieved. The pressure distribution in the tactile sensor array reflects the contact area and
shape between the tactile sensor and the grasped object, which depends to some extent on
the shape of the captured object.
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A total of 300 groups of grasping data for each object are collected in random place-
ment to form the dataset. All the grasping data of each object are divided randomly.
A certain proportion of the data is used as training data, which is called the training
ratio. The rest of the data are used for model validation and testing. Grasping data in-
cludes eigenvalues and label values. The eigenvalues are the pressure information of the
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64 elements on the tactile pressure sensor array. The label value represents the grasping
state, which is 1 for stable grasping and 0 for unstable grasping.

Based on the dataset, we implemented training on machine learning algorithms with
Python on a Ubuntu operation system, using an open library “scikit-learn”, which is a
powerful framework of machining learning, to obtain the prediction models. In the KNN
model, the value of k is set as 1. The weight of the nearest neighbors of each sample is set
as “distance”, which means the weight is inversely proportional to the distance among
samples. The measure of distance is set as 1, namely the Manhattan distance. In the SVC
model, Gaussian Kernel is used and the hyperparameter of penalty coefficient (a kind
of soft margin classifier) is set to 0.03 to guarantee some tolerance of noise within the
boundary. In the LR model, the regularization parameter is set as L2 and the coefficient
of regularization is set 1, which can efficiently avoid overfitting. As a result, prediction
models are trained at different training ratios. Evaluation is carried out with validation
data to refresh the parameters of models. The judgement accuracy which represents the
probability of correct judgment on the grasping state is tested on test data. The training
process is iterated to achieve the best judgment accuracy of models on test data. So far, the
complete grasping prediction models are obtained.

In the actual grasping operation, the prediction models work at each control cycle.
When the clamp moves closer to the object, the tactile sensor array measures the pressure
distribution, which is then immediately provides feedback to the prediction models to
determine if the grasping is stable. If not, the clamp continuously moves closer to the object
until the pressure distribution can be classified as stable. By this time, the object is grasped
with the robot arm stably. Grasping operations are carried out with different prediction
models, the judgment results are recorded in the processes. The judgment results curves at
different training ratios when grasping different objects using the four types of prediction
models are illustrated in Figure 9.

As shown in Figure 9, for all the tested objects, the accuracy of each trained prediction
model is relatively low, and the standard deviation is relatively large at a small proportion
of training data. With the increase of the training ratio, the accuracy of each algorithm
model increases, and the standard deviation decreases gradually. For example, the average
grasping accuracy of the four prediction models on grasping plastic bottles is 98.67% at
a training ratio of 0.2 and increases to 99.11% at a training ratio of 0.6. Correspondingly,
the average standard deviation of the four prediction models on grasping plastic bottles is
1.18% at a training ratio of 0.2 and decreases to 0.54% at a training ratio of 0.6. Grasping
experiment results on other objects have the same variation tendency. Thus, in order to
achieve high judgement accuracy and low fluctuation, enough training data is necessary
for prediction model training.

Table 1 shows the comparison of the judgment accuracy of the different models at
a training ratio of 0.6. Among the four models adopted in this paper, the KNN model
performs poorly except when grasping plastic bottles. Allfour of the models perform worse
in judging grasping a pear, but perform much better in judging grasping a plastic bottle.
The overall judgment accuracy of grasping stability for each object is greater than 95% at a
training ratio of 0.6 for all the models. The overall judgment accuracy of each prediction
model is also shown in Table 1.

Table 1. Comparison of the judgment accuracy of different algorithms at a training ratio of 0.6.

Pear Nectarine Orange Plastic Bottle Egg Pop-Top Can Overall

SVC 95.78% 99.89% 98.78% 99.11% 98.22% 97.67% 98.24%
KNN 91.67% 95.00% 97.00% 98.78% 94.56% 93.00% 95.00%

LR 95.00% 97.22% 98.44% 98.78% 97.30% 97.67% 97.40%
Ensemble Learning 95.22% 99.89% 99.11% 99.89% 99.44% 98.67% 98.70%
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Figure 9. The influence of the different proportions of training data on the judgment accuracy of
different objects: (a) egg, (b) orange, (c) pear, (d) pop-top can, (e) plastic bottle, (f) nectarine and the
error bar represents standard deviation.

Based on the analysis above, the model trained by the KNN algorithm possesses
the lowest judgment accuracy for different training ratios, and the judgment accuracy of
prediction models trained by various algorithms can be ranked: Ensemble learning >
SVC > LR > KNN. Since the ensemble learning model is integrated with other models,
it inevitably has a more complex model frame and higher training cost than a single
machine learning algorithm-based model. Therefore, for most application scenarios, the
SVC algorithm can be qualitfied for the training prediction model that can provide high
judgment accuracy for robot grasping stability prediction. As shown in Table 1, the
judgment accuracy of the SVC model for the overall object exceeds 98% at a training ratio
of 0.6.

Table 2 lists the differences among the judgment results of four prediction models
trained by normalized data and unnormalized data at a training ratio of 0.5. Using the
model fed by normalized training data, the judgment accuracy is improved for the LR
model, SVC model, and ensemble learning model, but the judgment accuracy of the KNN
model is affected little, which indicates that data normalization has a different influence on
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the judgment accuracy of the different models. From another point of view, when data for
training is insufficient, in addition to the KNN model, data normalization is a feasible way
to improve the judgment accuracy of the prediction model.

Table 2. Effect of data normalization on the results of the different algorithm models.

SVC KNN Logistic Regression Ensemble Learning

With normalization 96.63% 93.77% 95.76% 97.06%
Without normalization 94.52% 93.75% 94.30% 94.83%

In conclusion, the grasping prediction models are validated efficiently in judging the
grasping state. The overall judgment accuracy of grasping state for each object is greater
than 95% at a training ratio of 0.6 for all the models. The SVC algorithm-based prediction
model, which achieves over 98% judgment accuracy for the overall objects, is proved to be
the best cost-performance model because of the high prediction accuracy and low training
resource cost. It guarantees grasping stability prediction of the robot system attached with
tactile sensor array in most practical application scenarios. Since it is hard to gain abundant
tactile data of robot grasping, the normalization of the training data is verified to be feasible
in improving the prediction accuracy with lesser training data.

4. Conclusions

A robot grasping system that can grasp objects stably in a tactile sensing range by
combining a highly sensitive tactile sensor array with a high motion resolution robot arm
is proposed in this work. The prediction model trained by machine learning algorithm is
used to judge the grasping state. The focus of this study is to find the appropriate pressure
distribution to realize the stable grasping operation of a variety of objects. Different
from the slip concern in other studies, we sought to find the most appropriate pressure
distribution for grasping which guarantees it is neither too small to fail at grasping nor too
large to cause damage to the object, toachieve a safe and strong grasping force for grasping
operation. Benefitting from the sensitive tactile sensor array developed by our team, the
pressure distribution of grasping operations can be collected and reflected in 64 cells, which
can represent more details of contact.

Different prediction models have been compared in terms of judgment accuracy
at different training ratios, the models trained by the SVC algorithm showed the best
performance in actual grasping operations. The prediction model can achieve real-time
judgment during each grasping control cycle (50 ms on average, with a minimum of 8 ms).
In addition, it can work without a GPU environment and requires less training time than
a CNN (convolutional neural networks) model. Moreover, the judgment accuracy can
exceed 98% with the SVC algorithm-based model with limited training data.

Nowadays, the vision-based methods [40] have advantages in achieving force measure-
ment for micro-object grasping, while for the daily objects grasping, pressure distribution
feedback based on a tactile sensor array provides more force conditions of the contact area
for precise force control. A stable prediction model based on machines learning algorithms
is highly efficient in real-time grasping operations. The grasping system is adapted for
further application scenes that are more complicated and high contact force-sensitive, such
as man-machine interaction-based nursing and healthcare. Overall, the main contributions
of this paper can be summarized in the following aspects:

• A highly sensitive tactile sensor array combined with a high motion resolution robot
grasping system.

• A dataset of pressure distribution reflecting the contact force condition between objects
and the end-effector of the robot.

• A high judgment accuracy grasping prediction model trained with the SVC algorithm
on the dataset of pressure distribution.

• Real-time stable grasping prediction during actual robot grasping operation.
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• Further application on high contact force sensitivity scenes such as man-machine
interaction-based nursing and healthcare.
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