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Abstract: Powered Assistive Devices (PADs) have been proposed to enable repetitive, user-oriented
gait rehabilitation. They may include torque controllers that typically require reference joint torque
trajectories to determine the most suitable level of assistance. However, a robust approach able to
automatically estimate user-oriented reference joint torque trajectories, namely ankle torque, while
considering the effects of varying walking speed, body mass, and height on the gait dynamics,
is needed. This study evaluates the accuracy and generalization ability of two Deep Learning
(DL) regressors (Long-Short Term Memory and Convolutional Neural Network (CNN)) to generate
user-oriented reference ankle torque trajectories by innovatively customizing them according to the
walking speed (ranging from 1.0 to 4.0 km/h) and users’ body height and mass (ranging from 1.51 to
1.83 m and 52.0 to 83.7 kg, respectively). Furthermore, this study hypothesizes that DL regressors
can estimate joint torque without resourcing electromyography signals. CNN was the most robust
algorithm (Normalized Root Mean Square Error: 0.70 & 0.06; Spearman Correlation: 0.89 £ 0.03;
Coefficient of Determination: 0.91 % 0.03). No statistically significant differences were found in CNN
accuracy (p-value > 0.05) whether electromyography signals are included as inputs or not, enabling a
less obtrusive and accurate setup for torque estimation.

Keywords: ankle joint torque estimation; deep learning regression; electromyography; smart ma-
chines; human motion analysis

1. Introduction

There is an extreme need to recover the motor function of people with lower limb
impairments so they can independently perform their daily living activities, improving
their quality of life [1-6]. Physical rehabilitation has been pointed out as the most appropri-
ate strategy to face the long-term motor disabilities of neurologically injured patients [7].
Nonetheless, lower limb rehabilitation specialists have in recent years acknowledged the
need to deal with: (i) the disadvantages associated with the inter- and intra-therapist vari-
ances; and (ii) the absence of precise, user-, and daily-task oriented repeatable movements
during therapy.

Robotics-based gait assistance and rehabilitation interventions managed by Powered
Assistive Devices (PADs), such as active orthosis and exoskeletons, have been recom-
mended for subjects with long-term locomotor disabilities and impairments [8,9]. Accord-
ing to [10], rehabilitation therapies driven by PADs may improve the patient’s muscular
strength, movement coordination, and balance control, fostering the patient’s ambulation
and performance for successful locomotion.

Typically, these PADs are controlled by torque controllers ([11-15]) that require joint
torque reference trajectories to (i) automatically adapt the assistance that the patient should
receive, providing an Assist-As-Needed (AAN) training; or (ii) impose a desired joint mo-
tion considering healthy conditions [16]. Generally, these joint torque reference trajectories
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are obtained from multimodal walking datasets available in the literature. They contain
pre-recorded joint trajectories from healthy subjects walking at self-selected speeds (varying
between slow, normal, and fast) above force platforms or instrumented treadmills [17-20].

However, considering the findings reported in [16,21-26], there is evidence that lower
limb biomechanical parameters (e.g., joint kinematics, torques, and muscle activations) are
highly dependent on the subject’s walking speed and anthropometric information (such as
body height and mass). Additionally, it is being verified that the typical slower walking
speeds of healthy subjects (2.8 km/h) may be higher than the preferred walking speeds
of subjects with lower limb impairments (1.6-2.5 km/h) [27]. Thus, the employment of
joint torque reference trajectories obtained from available datasets may not be the most
suitable method to impose the desired motion, nor to tailor the assistance according to
patients’ needs due to the potential bias that can introduce in the gait dynamics given the
differences in walking speed.

It is necessary to develop a tool that is able to automatically generate healthy joint
torque reference trajectories while avoiding the need to collect joint trajectories for many
walking speeds and anthropometric data combinations. Nonetheless, the available meth-
ods for joint torque generation still present some issues, such as: (i) they only predict the
peak of the joint torque in specific gait cycle phases, not generating the entire trajectory
for the full gait motion [22,23,28]; (ii) they do not consider the effects introduced by the
subject’s anthropometry [22,28-30] and speed [23,29-31]; (iii) they depend on several mus-
cle parameters that need to be calibrated to the user’s anthropometric characteristics [31];
(iv) they rely on an expensive and complex sensor setup composed by electromyography
(EMG) [29,30] or cameras and force plates systems (in case of data collections [17-20]).

To the authors’ best knowledge, there is no available automatic method dedicated to
the generation of reference joint torque trajectories oriented to the user’s anthropometry
and walking speed. Given the successful performance of Long-Short Term Memory (LSTM)
and Convolutional Neural Network (CNN) for time-series data and their prominent capac-
ity to model nonlinear walking motion data relationships [23,32-36], this study tackles the
challenges mentioned above, extending our previous work [37]. It proposes an automatic,
accurate Deep Learning (DL) approach for generating reference ankle joint torque trajec-
tories under healthy conditions according to the user’s walking speed, joint kinematics,
and anthropometry, considering a stratified anthropometric distribution. This advance
enables the achievement of a user-oriented ankle joint torque reference trajectory by in-
novatively customizing the trajectories according to the speed, gender, age, body mass,
height, and shank and foot length of each subject. The creation of a generalized model is
of utmost importance to estimate lower limb joint torque trajectories while avoiding the
need for regular data collections every time a user-oriented joint torque is required and
facilitating the PAD’s setup and use. The ankle joint was chosen as it is the lower limb joint
that is commonly affected by neurological diseases [37,38].

Moreover, most studies focused on AAN training by adjusting the PADs’ assistance
according to the user’s joint torque that is estimated in real-time. Most of the algorithms
for joint torque estimation fuse EMG data ([29,30]). EMG-based approaches have been
left behind since the EMG sensing is prone to fade during long-term use due to (i) move-
ments between the skin and the electrodes; (ii) temperature variations; and (iii) sweat-
ing [39-42]. These phenomena can cause incorrect joint torque estimations, which may
compromise the PADs’ assistance efficacy. This motivates the development of joint torque
estimation approaches non-dependent on EMG. For this reason, this study aims at a less
obtrusive approach for real-time joint torque estimation, versatile to both human motion
analysis and robotics-based gait assistance. We hypothesize that the kinematic-, speed-,
and anthropometry-driven DL model may output reliable ankle joint torque trajectories
without using EMG signals towards simplifying the current setup for real joint torque
estimations. Thus, this study proposes an innovative analysis by investigating the statistical
relevance and effect of including EMG signals as input in the DL model performance.
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2. Materials and Methods
2.1. Data Acquisition
2.1.1. Participants

To build the DL models, a single data collection was needed. The study involved thir-
teen healthy adult participants (6 males and 7 females) with a mean age of 24.2 + 1.85 years,
amean body mass of 65.2 4= 10.3 kg, and a mean body height of 1.68 + 0.12 m), as presented
in Table 1. Balanced gender distribution was tackled considering possible biomechani-
cal gender differences [43,44]. Before undergoing the experiments, an explanation of the
study’s purpose was provided, and each participant gave written and informed consent
according to the ethical conduct of the University of Minho Committee (CICVS 006/2020).

Table 1. Participants” demographic and anthropometric information.

Body Bod Ase Foot Shank
ID Gender Height M y 8 Length Length
ass (kg) (Years)

(m) (m) (m)
1 Male 1.81 66.2 25 0.28 0.42
2 Female 1.56 54.4 23 0.24 0.38
3 Female 1.57 53.5 26 0.24 0.39
4 Male 1.79 744 24 0.27 0.44
5 Female 1.65 60.0 21 0.24 0.39
6 Female 1.54 58.4 21 0.21 0.35
7 Male 1.72 75.8 23 0.27 0.41
8 Male 1.80 83.7 26 0.27 0.44
9 Male 1.82 76.8 25 0.26 0.42
10 Female 1.51 52.0 23 0.25 0.40
11 Male 1.83 734 25 0.23 0.46
12 Female 1.61 53.5 27 0.21 0.32
13 Female 1.60 65.3 26 0.26 0.34
Mean 1.68 65.2 242 0.25 0.40
Standard Deviation 0.12 10.3 1.85 0.02 0.04

The eligibility criteria consider that the participants must: (i) sign the consent form;
(ii) not present any evidence of physical or physiological disorders that could perturb
his/her walking pattern; (iii) be older than 18 years old; (iv) present a body mass ranging
from 45.0 to 90.0 kg; and (v) present a body height ranging from 1.50 to 1.90 m, covering
the mean anthropometric data of adult men and women across countries [45].

2.1.2. Instrumentation and Data Collection

EMG signals from Tibialis Anterior (TA), Gastrocnemius Lateralis (GAL), Biceps Femoris
(BF), and Vastus Lateralis (VL) were acquired at 2000 Hz, using a surface 8—channel wireless
EMG system (Delsys, MA, USA). In this respect, 8 EMG electrodes were attached to the
participants’ skin according to the SENIAM recommendations (Figure 1) [46].

A twelve-camera motion-capture system (Oqus; Qualisys—Motion Capture System,
Goteborg, Sweden) and five force platforms embedded on the floor (FP4060; Bertec, Ohio,
OH, USA) were utilized to collect the 3D kinematic motion data and the ground reaction
force (GRF) data at 200 Hz, respectively.

The Newington-Hayes marker-set was adopted to determine the kinematic data from
the lower limb joints [47]. A total of 12 pairs of retro-reflective markers were used, as pre-
sented in Figure 1.
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Figure 1. EMG configuration and marker-set adopted: (A) VL; (B) TA; (C) BF; (D) GAL; (1) Anterior superior liiac apine;
(2) trochanter; (3) thigh; (4) lateral knee; (5) medial knee; (6) shank; (7) lateral ankle; (8) medial ankle; (9) foot metatarsal 5;
(10) foot metatarsal 1; (11) foot metatarsal 2; (12) posterior superior iliac spine.

2.1.3. Experimental Protocol

In the beginning, the gender, age, body mass, height, and shank and foot length of
each subject was registered. Then, the subjects were asked to perform a standing anatomic-
calibration trial during 3 s with both arms crossed in front of the chest, looking ahead,
and with both feet aligned with the shoulders, to adjust all the recordings to the subject’s
anthropometry. Subsequently, each subject was instructed to perform ten forward walking
trials, walking sequentially at seven controlled walking speeds (1.0, 1.5, 2.0, 2.5, 3.0, 3.5,
and 4.0 km/h) on a 10 m-flat surface, including five force platforms, as depicted in Figure 2.
The speeds were controlled with a metronome. The participants were asked to look ahead
and walk naturally according to the beats of the metronome. Further details of the protocol
are presented in [48].

Floor

Force
Platform

Marking
Cones

Subject *

10m

Figure 2. Data acquisition scenario, in which points A and B represent the beginning and the end
positions of each trial, respectively.

2.2. Data Processing

The EMG signals were filtered using a band-pass fourth-order zero-lag Butterworth
filter with cutoff frequencies of 20 and 450 Hz. Furthermore, the signals’ envelope was
obtained by using the Root Mean Square value with a 300 ms movable window [49].
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The 3D marker trajectories registered with the motion-capture system were filtered by
the same filter, using a cutoff frequency of 6 Hz [47]. Hereinafter, the filtered 3D marker
trajectories, along with the GRF data, were processed in Visual3D software to compute
the lower limb joint angles and torques. This computed torque corresponds to the real
torque data that were used as ground truth to build DL regression models. The Automatic
Gait Events function from the Visual3D software was also used to automatically detect
the heel-strike event and segment the data in gait cycle-normalized data. This function
considers that the heel strike event corresponds to the instant where the participants’ foot
strikes the force platforms. Moreover, all heel-strike detections were visually inspected
against GRF’s Z component data to confer robustness to the data segmentation. Every
time that the GRF’s Z data component did not start to increase at the heel-strike event by
the Visual3D software, the heel-strike instant was manually corrected. Further details are
presented in [48]. The raw and the processed data used in this study are available at [48].
Study [48] shows the dataset variability across subjects and speeds.

2.3. Data Preparation

We implemented two approaches to predict the ankle joint torques. The first one con-
sidered ankle joint angles, angular velocities, angular accelerations, walking speed, body
height and mass, foot and shank length, gender, and age, pursuing the evidence that this
anthropometric information improves the model performance [23]. In the second approach,
we added the EMG signals from the TA and GAL muscles to the above-mentioned inputs.
These two muscles were chosen since they are the most responsible muscle for ankle joint
motion [50].

Out of the thirteen subjects that participated in this study, one participant was ran-
domly selected to test the final model. A leave-one-subject-out cross-validation (LOSOCV)
method among the remaining twelve subjects was implemented to evaluate the model
generalization and optimize the model hyperparameters.

2.4. Implementation of the Regression Models

In this study, LSTM and CNN were applied, tested, and compared by using Matlab®
(2021a, The Mathworks, MA, USA).

Regarding the LSTM neural network, the data were organized by sequences. Each se-
quence, which represents a single gait cycle, was composed of X lines (X can take the
values 10 or 12, representing the 10 or 12 inputs with or without EMG signals, respectively)
and 250 columns (representing the 250 samples that form a single normalized gait cycle).
We conducted an empirical analysis to select (i) the number of neurons per LSTM layer
(from 10 to 200); and (ii) the number of LSTM layers (from 1 to 2), based on the findings
of [23,36,51]. According to [36,51], the number of neurons should be 5 times the number of
output responses (1). In this study, we explore higher values to create a model with enough
capacity, while controlling overfitting. The final layer corresponds to a fully connected
dense (feedforward) layer, and its number was set to the number of responses to predict,
ie., 1([36,51]).

In CNN, we performed a data transformation, treating the inputs as several im-
ages [35], being organized into 3D matrices, as follows: width—number of each gait cycle’s
samples (250); height—number of inputs (10 or 12); depth—number of gait cycles. In this
neural network, we also conducted an empirical analysis to select (a) the kernel size (2 x 2,
5 x 5, and 10 x 10); (b) the number of filters per convolutional layer (8, 16, 32, 64); and
(c) the number of convolutional layers (1, 2, 3). This empirical analysis was based on the
findings of [52].

In both models, an empirical analysis was applied to select (i) the normalization
method (considering the max-min, z-score, and robust normalization methods); (ii) the
optimal batch size (from 1 to the maximum number of gait cycles); and (iii) the dropout
percentage. In addition, both neural networks” weights and biases were updated according
to an adaptive moment estimation optimization algorithm (ADAM) considering the mean
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square error (MSE) ([36,51]). Moreover, the activation function used for LSTM and CNN
layers was the rectified rectilinear unit (ReLU) considering [36,52].

2.5. Model Evaluation Metrics

The regression model performance was evaluated during the LOSOCV and final
model testing procedures. Three metrics were determined, namely Normalized Root Mean
Square Error (NRMSE), Spearman correlation (SC), and Coefficient of Determination (R2)
between two variables: the predicted and the real ankle joint torque trajectory.

The predictions performed by the final model were also evaluated using the Bland—Altman
Plot [53]. Furthermore, we computed the average of the real ankle joint torque data of all gait
cycles belonging to the test dataset, resulting in a mean gait cycle and its standard deviation
(SD). The same procedure was performed for the predicted ankle joint torques. Additionally,
we assessed the computational time (in ms) to predict a single sample. All predictions were
performed in a Hewlett-Packard computer with an Intel® Core™ i7-4710MQ CPU @ 2.50 GHz
processor and a Random Access Memory with 16.0 GB.

3. Results
3.1. Comparative Analysis of Regression Models without Using EMG Signals

Table 2 presents the best results achieved for the two explored DL algorithms, for both
validation and test conditions, without considering the EMG signals as input. The results
presented by the LOSOCV method (depicted in Figure 3) suggest that CNN appears to
be the best-fitted regression model to estimate the ankle joint torque trajectories. This DL
regressor revealed a higher generalization capability when compared to LSTM since it
presents a higher mean and a lower SD in the evaluation metrics (NRMSE, SC, and R?).
Regarding the performance achieved in the test dataset (presented in Table 2), both results
are within the mean & SD exhibited in LOSOCV method, which suggests that both models
are generalized. CNN revealed a smaller computational time in comparison with LSTM
(0.51 ms < 3.7 ms), which suggests its promising application, even in real-time conditions.

Overall, there is a consistency across all findings that the ankle joint torque trajectories
predicted by the CNN exhibit a high level of similarity with real trajectories when compared
to the predictions made by LSTM.

3.2. Detailed Analysis of CNN Performance

Given its prominent capacity to estimate the ankle joint torque trajectories, we com-
pared the predictions performed by CNN to the real ankle joint torque trajectories of the
test dataset using the Bland—Altman Plot. The results depicted in Figure 4a show that the
predictions made by CNN are closer to the real ankle joint torque trajectories since the
majority of the measures are within the limits of agreement, the bias is close to 0 N.m, and
the limits of agreement are small.

Furthermore, Figure 4b illustrates the mean and SD values of the real and CNN-based
predicted ankle joint torque for the test dataset. These results show that the CNN produced
reference ankle joint torque trajectories closely similar to the real ones.
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Table 2. NRMSE, SC, R?, and computational time results for both DL models without using EMG signals.

- . NRMSE SC R? Prediction Time
DL Model yperparameters
LOSOCV Test Test LOSOCV Test (ms/Sample)
Number of 100
neurons
LSTM LSTM layers ! 0.58 £ 0.20 0.71 0.92 0.79 +0.22 0.92 3.7
Normalization
method Z-score
Batch size 20
Dropout (%) 50
Kernel size 2 X2
Number of layers 2 (8-16)
CNN (number of filters) 0.70 + 0.06 0.76 0.92 0.91 + 0.03 0.94 0.51
Nomalitin o
Batch size 20
Dropout (%) 25
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Figure 3. LOSOCYV results for both DL regression models without using EMG signals.
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Figure 4. (a) Bland—Altman plot results; (b) Mean (dashed lines) and SD (filled area) of the real and
CNN-based predicted ankle joint torque for the test dataset.

3.3. Walking Speed Versus Body Mass and Height Analysis

We investigated the performance of CNN under variations of walking speed, body mass,
and body height, as presented in Figure 5. Visually, the results seem to indicate that the
performance of CNN tends to improve as the walking speed increases. Nonetheless, this
improvement is minor for each body height or body mass interval since all metrics present
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found among the other conditions.
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values closer to 1 (the desired value to achieve in each evaluation metric). The lower perfor-
mances were more pronounced for lower values of walking speed. The Friedman test (using
a significance level of 5%) was conducted to analyze if the performance in terms of NRMSE,
SC, and R? presented statistically significant differences between the seven walking speeds.
This non-parametric test was chosen since the assumptions of normality, homoscedasticity, and
the existence of outliers were not achieved for all evaluation metrics. The results, presented in
Table Al, show that there are statistically significant differences (p-value < 0.02) in the CNN
performance when the participants walked at the lower speed (1.0 km/h) comparatively to the
other speeds (2.0, 2.5, 3.0, 3.5, and 4.0 km/h). No significant differences (p-value > 0.05) were

0.75

0.92
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Regarding the body height, the results of Figure 5 show that the model exhibited (i)
lower performances for subjects with a body height ranging from 1.60 to 1.70 m; and (ii)
higher performances for subjects with a body height between 1.80 and 1.90 m. However,
based on the results of the Kruskal-Wallis H test (Table A2), there are no statistically sig-
nificant differences between different body heights for all evaluation metrics and walking
speeds (p-value > 0.05). The same finding was reached for the body mass since no statis-
tically significant differences were found between different body mass for all evaluation
metrics and walking speeds (p-value > 0.05).

3.4. EMG Inclusion for Ankle Joint Torque Prediction

We investigated the effect of introducing EMG signals from TA and GAL in the ankle
joint torque trajectory prediction. The results presented in Table 3 indicate that CNN
exhibited a higher performance (a higher mean and a lower SD of NRMSE, SC, and R?)
when compared to the results presented by LSTM.

Additionally, we compared the best-fitted CNN model obtained when EMG signals
were not used/used as inputs (presented in Tables 2 and 3, respectively). Figure 6 depicts
the results of this comparative analysis. Pursuing the hypothesis that the ankle joint
torque trajectories can be accurately estimated without using EMG signals, we performed
a statistical analysis to evaluate if the differences presented in Figure 6 were statistically
significant. The Shapiro-Wilk normality test showed that all data are parametric, and
the assumptions of homoscedasticity and the existence of outliers were accomplished.
Thus, a two-tailed and paired t-test was conducted with a level of confidence of 95%.
The results indicate that there are no significant differences between both approaches, with
a p-value > 0.05 having been achieved for all metrics (NRMSE: p-value = 0.10, SC: p-value
=0.17, and R?: p-value = 0.28).

B without EMG
P with EMG

1.0 T T

LOSOCY Results

NRMSE SC R2
LOSOCYV Metrics

Figure 6. LOSOCYV results for both DL regression models using EMG signals.
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Table 3. NRMSE, SC, R?, and computational time results for both DL models without using EMG signals.

DL Model Hyperparameters NRMSE ¢ R? Prediction Time
LOSOCV Test Test LOSOCV Test (ms/Sample)
Number of 100
neurons
LSTM L 1
LSTM STM layers 0.59 + 0.15 048 0.78 0.81 +0.13 0.73 4.80
Normalization
method Z-score
Batch size 20
Dropout (%) 50
Kernel size 2x2
Number of layers 2 (8-16)
CNN (number of filters) 0.73 & 0.08 0.72 0.89 0.92 +0.04 0.92 0.78
Nomallon o
Batch size 20
Dropout (%) 25
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4. Discussion

This study was developed under the scope of robotics-based gait assistance and
rehabilitation, where reference ankle joint torque trajectories are required to provide an
AAN training to the patient or to impose a desired healthy joint motion. In parallel, the
proposed DL regression models are also useful for a less obtrusive torque estimation,
contributing to the human motion analysis field.

The comprehension of the walking speed, body mass, and height effects on lower imb
biomechanical parameters is fundamental to determine changes in the gait pattern [16,21,22,24,26,54].
Contributions to the state-of-the-art were centered on the benchmarking analysis of two DL methods
to find an accurate and time-effective approach to automatically generate reference ankle joint torque
trajectories according to the speed and anthropometric information of the user. This avoids the need
for repeated data collections by research teams dedicated to robotic gait assistance.

In this study, we presented a proof-of-concept of DL regressors’ applicability to
achieve an accurate and generalized method for estimating ankle torque, considering
walking speeds ranging from 1.0 to 4.0 km/h and for subjects with body height and mass
varying from 1.51 to 1.83, and from 52.0 to 83.7 kg, respectively. This enables the reference
ankle joint torque’s estimation for a widespread population.

The achieved results indicated that CNN yielded the best performances (NRMSE:
0.70 & 0.06; SC: 0.89 +£ 0.03; R2: 0.91 £ 0.03) when compared to those presented by LSTM
(NRMSE: 0.58 + 0.20; SC: 0.84 & 0.08; R2: 0.79 & 0.22). In [16], the lowest Correlation
Coefficient (R = 0.69) was verified for lower walking speeds. Our study achieved the same
results as the ones stated in [16] since the lower performances of CNN were achieved for
slower speeds, in which statistically significant differences were found between the perfor-
mance at 1.0 km/h and the remaining walking speeds (p-value < 0.05). This phenomenon
may be associated with greater difficulty in maintaining the equilibrium at slow walking
speeds (below 2.0 km/h), as reported by the subjects during the data acquisition since these
speeds are less comfortable for healthy humans [55]. Consequently, the walking dynamics
suffered modifications, increasing intersubject variability. The inclusion of more subjects
might enhance the CNN robustness and generalization to deal with intersubject variabil-
ities, boosting the neural network performance, especially at slow speeds. Nonetheless,
according to [27], the preferred walking speeds of individuals with lower limb impairments
range from 1.6 km/h to 2.5 km/h. Since no statistically significant differences were found
in the CNN performance for this range of walking speeds and higher (p-value > 0.05), its
use for generating the reference ankle joint torque trajectories desired for impaired subjects
is plausible. Further, no statistically significant differences were found (p-value > 0.05)
in the obtained performance across different body heights and mass, which allows us to
conclude that the implemented CNN is robust in relation to the body height and body mass
variation. This finding empowers the notion that the proposed approach is a promising
choice for generating ankle joint torque trajectories for individuals with a body height and
mass ranging from 1.51 to 1.83 m and 52.0 to 83.7 kg, respectively.

The results achieved in this study are encouraging when considering the findings
presented in previous studies [22,23,28-30]. Study [22] reached a R2 of 0.48 for predicting
the peak kinetic ankle dorsiflexion torque using linear and quadratic equations. In [28],
peak ankle, knee, and hip joint angles and torques were estimated using linear, quadratic
second order, and quadratic third order equations. The highest value of R? for peak ankle
joint torque estimation was 0.93. Study [23] estimated ankle, knee, and hip angles and
torques for the stance phase using feedforward and LSTM neural networks. A R of 0.98 was
achieved for ankle joint torque estimation. Despite presenting different datasets and study
conditions, our proposal appears to progress the results achieved in [22,23,28], predicting
ankle joint torque trajectories for the full gait cycle with a R of 0.91 & 0.03 (R of 0.95 & 0.18).
The estimation performed for the complete gait cycle is advantageous over the estimation
for specific gait events because the torque curve is characterized not only in magnitude
but also temporally [15]. Other studies ([29,30]) have reported that a Multilayer Perceptron
can estimate knee joint torque trajectories with a R of 0.97 by combining EMG signals
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with kinematic sensors. Our study predicts ankle joint torque trajectories, achieving a R of
0.95 + 0.18, based on fewer input data and without the need for complex data acquisitions
related to EMG.

Despite offering promising performances, the use of EMG signals can present some
practice-related drawbacks, such as (a) the difficulty to maintain the sensors in the same
position during the user’s locomotion, which can affect the joint torque estimation over
time; (b) the need for an expert-based setup; (c) skin reactions; (d) the measures are
affected by temperature variations and sweating [39-42,56]. From a comparative analysis
between the estimation of the ankle joint torque trajectories with and without considering
EMG signals as input, significant differences between both approaches were not found
(p-value > 0.05). Moreover, the low computational load demonstrated by CNN suggests
its promising application, even in real-time conditions. These findings revealed that the
proposed speed, kinematic-, speed-, and anthropometry-dependent approach corresponds
to a more practical solution than the ones proposed in [22,23,28-30] to estimate ankle joint
torque trajectories for the full gait cycle and it may simplify the current sensor setup for
estimating real joint torque estimations.

However, there is still room for extending the CNN applicability to other conditions
by including more participants per each anthropometric category and a wider range of
ages, ensuring a balanced body height and mass distribution, which may increase the
model performance. Moreover, introducing different locomotion modes (such as ramps or
stairs) may be useful for PADs that address personalized assistance in daily living scenarios.
The reference joint torque estimation for the remaining lower limb joints, covering an wide
range of walking speeds is another future challenge that could be addressed. Special
attention should be paid to lower walking speeds, such as 1.0 km/h, since the intra- and
inter-variability across individuals is higher and the lower limb joint biomechanics is highly
modified, jeopardizing the model’s learning.

5. Conclusions

This study tackles a gap in the state-of-the-art by presenting a DL-based benchmark
approach to generate user-oriented healthy reference ankle joint torque trajectories for
walking speeds ranging from 1.0 to 4.0 km/h and for subjects with body height and mass
varying from 1.51 to 1.83, and from 52.0 to 83.7 kg, respectively. CNN is demonstrated to
be the most accurate and time-effective method from a benchmarking analysis with two
DL algorithms (LSTM and CNN). The proposed system for joint torque generation avoids
the need for repeated data collection by research teams dedicated to robotic gait assistance.
From a comparative analysis between the estimation of ankle joint torque trajectories
with and without considering EMG signals as input, significant differences between both
approaches were not found. This finding revealed that the proposed speed-, kinematic-,
and anthropometry-dependent approach corresponds to a more practical solution for ankle
joint torque estimation in several applications of human motion analysis.
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Appendix A
Table A1l presents the results of the Friedman test (using a significance level of 5%)

conducted to analyze the performance of the kinematic-, speed-, and anthropometry-driven
CNN in terms of NRMSE, SC, and R2 among the seven walking speeds.

Table A1. The p-value of the related samples test for NRMSE, SC, and R2 variables, considering the
different walking speeds and a significance level of 5%. The most representative results appear in
bold (p-value < 0.05).

Sample 1-Sample 2 Metric V4 p-Value

NRMSE —235 0.02

1.0-1.5km/h SC —1.33 0.18
R? —2.35 0.02

NRMSE —2.59 0.01

1.0-2.0 km/h SC —1.57 0.12
R? —2.43 0.02

NRMSE —2.82 0.01

1.0-2.5km/h SC —1.65 0.10
R? —2.82 0.01

NRMSE —3.06 0.00

1.0-3.0 km/h SC —1.10 0.27
R? —-3.06 0.00

NRMSE —3.06 0.00

1.0-3.5 km/h SC —1.26 0.21
R? —3.06 0.00

NRMSE —3.06 0.00

1.0-4.0 km/h SC —1.57 0.12
R? —3.06 0.00

NRMSE —1.41 0.16

1.5-2.0 km/h SC —0.47 0.64
R? —1.33 0.18

NRMSE —1.26 0.21

1.5-2.5km/h SC 0.00 1.00
R? -1.18 0.24

NRMSE —1.33 0.18

1.5-3.0 km/h SC —0.47 0.64
R? —1.33 0.18

NRMSE —1.33 0.18

1.5-3.5km/h SC —0.47 0.64
R? -1.26 0.21

NRMSE ~1.26 0.21

1.5-4.0 km/h SC —0.55 0.58
R? —1.26 0.21

NRMSE —1.18 0.24

2.0-2.5 km/h SC —0.62 0.53
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Table A1. Cont.

Sample 1-Sample 2 Metric V4 p-Value

R? —1.26 0.21

NRMSE —1.02 0.31

2.0-3.0 km/h SC —0.47 0.64
R? —1.18 0.24

NRMSE —1.10 0.27

2.0-3.5 km/h SC —0.28 0.78
R? —1.02 0.31

NRMSE —1.33 0.18

2.0-4.0 km/h SC -0.39 0.70
R? —1.10 0.27

NRMSE —0.08 0.94

2.5-3.0 km/h SC —0.78 0.43
R? 0.00 1.00

NRMSE —0.71 0.48

2.5-3.5km/h SC —0.47 0.64
R2 —0.08 0.94

NRMSE —0.63 0.53

2.5-4.0 km/h SC —0.55 0.58
R? —0.55 0.58

NRMSE —0.55 0.58

3.0-3.5 km/h SC —1.02 0.31
R2 —0.47 0.64

NRMSE —0.94 0.35

3.0-4.0 km/h SC —0.63 0.53
R? —0.78 0.43

NRMSE —1.10 0.27

3.5-4.0 km/h SC —0.23 0.81
R? —0.94 0.35

Table A2 presents the results of the Kruskal-Wallis H test (using a significance level of
5%) conducted to analyze the performance of the kinematic-, speed-, and anthropometry-
driven CNN in terms of NRMSE, SC, and R? among the different body heights and mass
for each walking speed.

Table A2. The p-value of the independent samples test for NRMSE, SC, and R? variables, considering
the different body heights, body mass, and walking speeds, and a significance level of 5%.

Walking Speed Metric Body Height Body Mass
Kruskal-Wallis H p-Value Kruskal-Wallis H p-Value
NRMSE 5.54 0.17 238 0.12
1.0km/h
sC 5.08 0.17 111 0.29
r2 554 0.14 238 0.12
NRMSE 152 0.68 0.80 0.37
1.5km/h sC 152 0.68 0.80 0.37
R2 152 0.68 0.80 0.37
NRMSE 3.98 0.26 0.32 057
2.0km/h sC 5.44 0.14 0.16 0.68
R2 3.98 0.26 0.32 057
NRMSE 2.69 0.44 0.53 046
25km/h sC 438 0.22 0.06 0.80
R2 2.69 044 053 046
NRMSE 3.98 0.26 111 0.29
3.0km/h sC 421 024 0.01 0.94
R2 3.98 0.26 111 0.29
NRMSE 477 0.19 0.80 0.37
35km/h sC 485 0.18 0.01 0.94
R? 4.77 0.19 0.78 0.37
NRMSE 3.14 037 0.01 094
4.0km/h sC 4.96 0.18 0.06 0.81

R? 3.14 0.37 0.01 0.94
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