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Abstract: The lightweight design of vehicle components is regarded as a complex optimization
problem, which usually needs to achieve two or more optimization objectives. It can be firstly
solved by a multi-objective optimization algorithm for generating Pareto solutions, before then
seeking the optimal design. However, it is difficult to determine the optimal design for lack of
engineering knowledge about ideal and nadir values. Therefore, this paper proposes a multi-
objective optimization procedure combined with the NSGA-II algorithm with entropy weighted
TOPSIS for the lightweight design of the dump truck carriage. The finite element model of the dump
truck carriage was firstly developed for modal analysis under unconstrained free state and strength
analysis under the full load and lifting conditions. On this basis, the multi-objective lightweight
optimization of the dump truck carriage was carried out based on the Kriging surrogate model
and the NSGA-II algorithm. Then, the entropy weight TOPSIS method was employed to select the
optimal design of the dump truck from Pareto solutions. The results show that the optimized dump
truck carriage achieves a remarkable mass reduction of 81 kg, as much as 3.7%, while its first-order
natural frequency and strength performance are slightly improved compared with the original model.
Accordingly, the proposed procedure provides an effective way for vehicle lightweight design.

Keywords: multi-objective optimization; lightweight; dump truck carriage; finite element analysis;
TOPSIS; Kriging surrogate model; NSGA-II

1. Introduction

Automobile lightweight design is one effective way to reduce energy consumption
and emission and to improve vehicle braking efficiency [1–4]. It is especially important for
the commercial vehicle, since it can also enhance the profits for consumers. The lightweight
commercial vehicle structure makes it able to carry much more cargo without increasing
its overall weight [5]. High strength steel has been widely used in commercial vehicle
structures since it shows an attractive combination of mass reduction potential and material
cost saving [6–8]. Therefore, optimization design is necessary for the development process
of commercial vehicle components to achieve the appropriate distribution of high-strength
steel in the structure for avoiding additional cost.

For vehicle lightweight design problems, there are always two or more optimization
objectives to be achieved, while these objectives generally conflict with each other. Multi-
objective optimization methods are employed to solve this problem in many engineering
fields recently. Zhou et al. [9] designed a novel automotive bumper of negative Poisson’s
ratio (NPR) structure. Then, a multi-objective robust optimization method based on particle
swarm optimization algorithm and six sigma criteria was employed to optimize the NPR
structure parameters, for improving its energy absorption capacity. Vo-Duy et al. [10] used
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the NSGA-II algorithm to solve the multi-objective optimization of a laminated composite
beam, for minimizing its weight and maximizing the natural frequency. Liu et al. [11]
presented an improved particle swarm optimization algorithm to conduct the lightweight
design of auto-body by considering its crashworthiness. Wang et al. [12] conducted the
multi-objective parameter optimization of the powertrain and control strategy of a hybrid
electric vehicle, which achieved energy and fuel-saving as well as power performance
improvement. Xie et al. [13] performed the multi-objective lightweight design of S-rails of
cab-in-white of the commercial vehicle to reduce its weight and improve the crashworthi-
ness performances. Jiang et al. [14] performed multi-objective optimization of the control
arm and torsion beam. After optimization, the weights of the control arm and torsion beam
are reduced by 0.505 kg and 1.189 kg, respectively.

In order to efficiently solve these multi-objective optimization problems, the surrogate
models are usually adopted because of their affordable computational cost. Craig et al. [15]
used a response surface surrogate model to improve the efficiency of finding lightweight
parameters for enhancing automotive crashworthiness, which also reduced the total cost
of the optimization. The surrogate model was used by Wang et al. [16] to achieve the
lightweight goal of the body in white (BIM), which improved the efficiency of lightweight
optimization. The weight is reduced by 4.91 kg, which is as much as 5.70%. Ren et al. [17]
performed the multi-objective optimization of the lightweight design of the vehicle frame
based on the Kriging surrogate model, which realized the weight reduction of the frame and
the improvement of its dynamic performance. Gao et al. [18] used the Kriging surrogate
model to optimize the layout of the welded side frame of the intercity electric multiple unit
(EMU) bogie frames. After optimization, the weight of the EMU was reduced by 16% with
the improvement of fatigue performance.

Normally, the best compromise solution is not easy to select from the Pareto set ob-
tained by multi-objective optimization without enough engineering knowledge. TOPSIS
(technique for order preference by similarity to an ideal solution) can convert multiple
performance indicators into a single comprehensive index for evaluation and analysis,
which is broadly used in many engineering fields. Wang et al. [19] used the improved
NSGA-II algorithm and TOPSIS method to perform the multi-objective lightweight de-
sign of the car subframe. Pirmohammad et al. [20] studied the effect of length ratio of
inner tube to outer tube on crashworthiness of polyurethane foam filled tapered tube, and
obtained the best length ratio by the TOPSIS method. On the basis of the analysis of the
influence of the damping coefficient and the spring stiffness on suspension performance,
Wang et al. [21] improved the lightweight and crashworthiness performance of B-pillar
based on the modified particle swarm optimization algorithm and TOPSIS. Ebrahimi-
Nejad et al. [21] employed the TOPSIS method to carry out the multi-objective optimization
of the suspension system and determined the optimal scheme. In order to improve vehicle
ride comfort, Ebrahimi-Nejad et al. [22] adopted the TOPSIS method to seek the best value
of the suspension stiffness and damping. Jiang et al. [23] replaced the material of steel
bumper anti-collision beam with carbon fiber reinforced plastic (CFRP), and used entropy
weighted TOPSIS method to optimize the stacking sequence of CFRP anti-collision beam,
so as to achieve the goal of weight reduction under the premise of ensuring the crashwor-
thiness of bumper beam. Ni et al. [24] established a multi-objective optimization model
with the minimum energy consumption and optimal machining quality and optimized the
cutting parameters and hob parameters by using the improved grey wolf algorithm and
TOPSIS method. Accordingly, the TOPSIS method can also be used to determine the best
compromise solution to the multi-objective optimization problem.

This paper proposes a multi-objective optimization method by integrating the Krig-
ing surrogate model, NSGA-II algorithm and entropy weighted TOPSIS to optimize the
dump truck carriage plate thickness, for realizing its lightweight design. Firstly, the finite
element model of the U-carriage is developed to carry out its modal and strength analysis.
The Kriging surrogate models for fitting the relationship of the design variables of plate
thickness and the performance indexes of the U-carriage are constructed, with the samples
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generated by the optimal Latin Hypercube method. Then the multi-objective optimiza-
tion of the U-carriage is modeled with the objective function of minimizing the weight
and maximizing the first-order natural frequency, while considering the constraints of
the maximum stress under the full load and lifting condition. The Pareto solutions are
acquired by the NSGA-II algorithm. Finally, the optimal parameters of U-carriage are
determined using entropy weighted TOPSIS method, so as to achieve weight reduction
and performance improvement.

The rest of this paper is structured as follows. The next section explains some basic
theories used for the proposed multi-objective optimization approach. In Section 3, the
finite element model of the dump truck carriage is established to calculate its performance.
In Section 4, the presented multi-objective optimization method is applied to perform the
lightweight design of the carriage and the optimization results are discussed and analyzed.
Finally, the main conclusions are outlined in Section 5.

2. Multi-Objective Optimization Procedure
2.1. Kriging Surrogate Model

Generally, there are a large number of iterations for solving engineering optimiza-
tion problems, making the optimization time-consuming, especially when the problem
is complex. Surrogate model-based optimization provides an alternative approach for
improving optimization efficiency [25–27], in which the Kriging model is one of the most
used surrogate models because of its high accuracy for predicting nonlinear response.

Kriging surrogate model includes two parts: polynomial function and random distri-
bution. The approximate function expression of the Kriging surrogate model is:

ŷ(x) = fT(x) · β + z(x) (1)

where β represents the regression coefficient vector. fT(x) is the polynomial of design
variable vector x for representing the global approximation model of design space.z(x)
represents the random distribution, which can be expressed as a random process with
mean of zero and standard deviation of σ.

Thus, the covariance matrix of random distribution z(x) can be expressed as:

Cov
[
z(xi), z

(
xj
)]

= σ2R (2)

where R represents the correlation symmetric matrix with n × n order diagonal 1. R(xi, xj)
represents the spatial correlation equation of two random sample points xi and xj in n
sample points, which plays an absolute key role in the simulation accuracy.

R(xi, xj) can be expressed by Gaussian correlation equation, which, featuring good
calculation effect, is widely used. It is formulated as:

R
(
xi, xj

)
= EXP

(
−

m

∑
k=1

λk

∣∣∣xik − xjk

∣∣∣2) (3)

where m represents the number of design variables. λk represents the correlation coefficient
of the fitting surrogate model. xik and xjk represent the kth value of xi and xj, respectively.

In order to ensure the unbiasedness of the simulation process, after determining
the correlation function, the relational expression of the estimated value ŷ(x) of the ap-
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proximate response, the regression coefficient matrix
^
β and the estimated value σ̂2 of the

variance can be obtained as follows:

ŷ(x) = fT(x)
^
β + rT(X∗)R−1

(
y− F

^
β

)
^
β =

(
FTR−1F

)−1FTR−1y

σ̂2 =

(
y−F

^
β

)T

R−1
(

y−F
^
β

)
n

(4)

According to the above equations, the maximum natural estimation of parameter λk
can be obtained as follows:

max(λk)
λk>0

= −
[
n ln

(
σ̂2)+ ln|R|

]
2

(5)

2.2. NSGA-II Algorithm

The elitist non-dominated sorting genetic algorithm (NSGA-II) is proposed by K.
Deb [28], which improves the iterative convergence rate while ensures population diversity
by employing the fast non-dominated sorting approach, elitist maintenance strategy and
efficient crowding distance estimation method [29]. This makes it popular in solving
complex optimization problems [30,31]. The principle of the NSGA-II algorithm is shown
in Figure 1, and its basic steps are as follows:
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Figure 1. Schematic diagram of NSGA-II algorithm.

Step 1: An initial population Pt of size N is randomly generated at generation t = 0,
and it is used to generate offspring population Qt.

Step 2: A new population Rt with a size of 2N is obtained by merging Pt and Qt.
Then it is classified into several fronts (F1, F2, F3, ...) based on non-dominated sorting.
Meanwhile, the crowding distance of population individuals is calculated for each front.

Step 3: Select N suitable individuals from Rt according to non-dominated sort and
crowding distance to form a new parent population Pt+1. In this step, the individuals
with lower non-dominated ranks are first selected, and then the individuals with larger
crowding distances are chosen.

Step 4: A new offspring population Qt+1 with a size of N is obtained from Pt+1 by
performing GA operators of selection, crossover and mutation.

Step 5: The procedure from Step 2 is continued until the termination criterion is satisfied.

2.3. Entropy Weighted TOPSIS

The TOPSIS technique is a well-known multiple attribute decision-making method,
used to rank the alternatives from the best to the worst, of which the best alternative should
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have the shortest distance to the positive ideal solution and the farthest distance to the
negative ideal solution [32]. When it is used to choose the best compromise solution to
the multi-objective optimization problem, the obtained Pareto set can be defined as the
original decision-making matrix of the TOPSIS method, which is expressed as:

X =


x11 x12 . . . x1n
x21 x22 . . . x2n

. . .
xm1 xm2 . . . xmn

 (6)

where xij, i = 1, 2, · · · , m; j = 1, 2, · · · , n represents the value of the jth evaluation index
for the ith alternative; m and n are the number of alternatives and performance indexes,
respectively.

To facilitate comparative analysis, the original data matrix needs to be regularized.
The formula is:

rij =
xij√
m
∑

i=1
x2

ij

(7)

where rij is the results after regularization of xij.
Information entropy can be used to describe the degree of disorder of the system. The

smaller the information entropy of a certain index is, the greater the information content
of the index is, and the higher the weight should be in the evaluation [33]. Thus, the
entropy method is adopted to determine the weight coefficient of each evaluation index.
The calculation formula of information entropy ej is:

ej = −k
m

∑
i=1

pij lnpij (8)

where k = 1/ln(m) is the adjustment coefficient; pij = rij/
m
∑

i=1
rij is the result of standardized

processing of rij.
Using entropy weighted method to calculate the weight coefficient of each perfor-

mance index, the formula is:

wj =
1− ej

n
∑

j=1
(1− ej)

(9)

Taking into account the weight coefficient of each performance index, the regulariza-
tion results are weighted as follows:

vij = wjrij

n

∑
j=1

wj = 1 (10)

where wj is the weight factor for the jth index.
TOPSIS method ranks each alternative by calculating the distance between the ideal

solution and the negative ideal solution. The ideal solution and negative ideal solution can
be defined as: {

A+ =
{

v+1 , v+2 , · · · , v+n
}

A− =
{

v−1 , v−2 , · · · , v−n
} (11)

where A+ and A− denote the ideal solution set and the negative ideal solution set, respectively.
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For the-smaller-the-better alternatives, such as the mass of the carriage, the stress of
the full load case and the stress of the lifting load case, the ideal solution and negative ideal
solution are calculated as follows:{

v+j = mini
{

vij, j = 1, 2, · · · , n
}

v−j = maxi
{

vij, j = 1, 2, · · · , n
} (12)

where v+j and v−j represent the ideal solution and negative ideal solution for the jth index,
respectively.

For the-larger-the-better alternatives, such as the first-order natural frequency, the
calculation method of the ideal solution and negative ideal solution is:{

v+j = maxi
{

vij, j = 1, 2, · · · , n
}

v−j = mini
{

vij, j = 1, 2, · · · , n
} (13)

The distance between each alternative and the ideal solution and negative ideal
solution can be calculated by Euclidean distance, namely:

S+
i =

√
n
∑

j=1
(vij − v+j )

2

S−i =

√
n
∑

j=1
(vij − v−j )

2
, (14)

where S+
i and S−i represent the distance between the alternative and the ideal solution and

the negative ideal solution, respectively.
The relative closeness coefficient of each alternative can be defined as its relative

proximity to the negative ideal solution, namely:

Ci =
S−i

S+
i + S−i

(15)

where Ci is the relative closeness coefficient of the ith alternative. The larger the value is
the closer the alternative is to the optimal value.

2.4. Multi-Objective Optimization Procedure

In this paper, a multi-objective optimization procedure integrating the Kriging sur-
rogate model, the NSGA-II algorithm and entropy-based TOPSIS is proposed to perform
the lightweight design of the dump truck carriage. In this method, the optimal Latin
Hypercube sampling method is firstly applied to generate the sample points of the design
variables, and the corresponding responses are calculated by finite element simulations.
Then, the Kriging surrogate model is adopted to present the numerical relationship between
the design variables and the responses. On this basis, the NSGA-II algorithm is utilized
to perform the multi-objective optimization based on the Kriging model, for searching
the Pareto front. Finally, the optimal solution is determined from the Pareto set through
the entropy-weighted TOPSIS method. The flowchart of the proposed multi-objective
optimization procedure is presented in Figure 2.
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3. Finite element Analysis of Dump Truck Carriage
3.1. Finite Element Modeling of Dump Truck U-Carriage

A dump truck is a special purpose vehicle, which has been widely used to transport
sand, garbage, construction materials and so on, because of its capacity of self-uploading
freight through hydraulic lifting devices. It is equipped with the carriage, which is an open
box, for storing the freight. The mass reduction of the carriage is an effective way to cut
transportation costs as well as to realize energy conservation and environmental protection.

Thus, a U-shaped dump truck carriage, as shown in Figure 3, is selected as the research
object, for studying the lightweight design method of the commercial vehicle component.
The U-carriage, with a dimension size of 7600 mm × 2300 mm × 1730 mm, is made of
high-strength steel with a yield strength of 1200 MPa. The basic material properties are
given in Table 1.
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Table 1. Material basic properties of high-strength steel used for carriage.

Material σs/MPa E/MPa µ

High-strength steel 1200 2.10 × 105 0.28

The finite element model of the dump truck carriage was established by the finite
element preprocessing software HyperMesh, and this model would be solved by OptiStruct.
In the modeling process, the three-dimensional solid model of the U-carriage is first
imported into the finite element software. After geometric cleaning, the plates of the
carriage are meshed by shell elements with a size of 10 mm. The hinge support and
lifting support are meshed using solid elements. The welded parts are simulated by the
rigid elements, which can be used for connecting two nodes to model a rigid welded
type connection. Through meshing, the U-carriage is divided into 790,503 elements and
896,499 nodes, and its finite element model is shown in Figure 4.
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3.2. Definition of Boundary Conditions

The strength of the dump truck carriage is an important performance for guaranteeing
it can store freight safely. In this paper, there are two load cases to carry out the static
structural analysis of the U-carriage with the finite element method. One is the full load case,
which is used to obtain the stress distribution of the U-carriage under full load working
conditions. The other is the lifting load case, which is adopted to simulate the critical
separation state between the carriage and frame when the dump truck uploads freight.

In the full load case, the translational freedom in the x, y and z directions and the
rotational freedom around the y and z axes are constrained at the joints between the
carriage hinge support and the frame, as well as the joints between the carriage lifting
support and the hydraulic cylinder (denoted as 1, 2, 3, 5, 6). Meanwhile, the y-direction
translational freedom for the nodes in the contact area of carriage and frame is constrained
(denoted as 2).

In the lifting load case, the constraints are the same as the full load case, except that a
displacement of 10 mm is applied to the carriage lifting support point, which is adopted
to simulate the critical separation state between the carriage and frame. Moreover, the
y-direction translational constraint for the nodes in the contact area of carriage and frame
is canceled. The constraint condition of the U-carriage in the full load case and lifting load
case are shown in Figure 5.
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The dump truck carriage is usually for storing loose material. In this paper, the load
of sandy loam soil applied on the plates of the carriage is calculated according to Rankine’s
theory of active earth pressure [34]. The pressure of sandy loam soil exerted on the floor,
front, rear and side plates are shown in Figure 6.
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The pressure of sandy loam soil applied on floor can be calculated as:

q = Hγ (16)

where H is the height of loaded sandy loam soil and γ is its bulk density.
The bulk density γ of sandy loam soil can be formulated as:

γ = ρg (17)

where ρ is the density of sandy loam soil; g denotes the acceleration of gravity.
It is assumed that the upper surface of the sandy loam soil loaded in the carriage

is horizontal, and the sandy loam soil is in the limit equilibrium state before sliding.
According to Rankine’s theory of active earth pressure, at a depth h below the upper
surface of the sandy loam soil, the horizontal pressure q2 of the sandy loam soil acting on
the front, rear and side plates of the carriage can be calculated as:

q2 = q1 tan2(45◦ − φ/2) (18)

where q1 is the vertical pressure at the depth of h, q1 = hγ; φ is the internal friction angle of
sandy loam soil.

To simplify the calculation of loading of the dump truck carriage, the depth h is
calculated by the vertical distance between the geometric center of each plate and the upper
surface of the loaded soil. Accordingly, the applied pressure is divided into five equivalent
loading areas, as shown in Figure 7. The pressure is obtained according to the full load
condition, with consideration of a dynamic load coefficient of 1.5 caused by road roughness.
Since the lift angle is very small at the beginning of unloading freight, it is assumed that the
load condition for the lifting load case is the same as the applied load of the full load case.
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3.3. Initial Performance Analysis of U-Carriage

The strength analyses of the finite element model of the U-carriage are solved by Op-
tiStruct, under the full load condition and lifting load condition, and the stress distribution
is obtained, as shown in Figure 8. The maximum stress is given in Table 2. Moreover, the
modal analysis of the U-carriage is conducted to calculate its natural frequencies in a free
state. The first six order modes are obtained, as listed in Table 2.
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Table 2. Initial performance analysis of carriage.

Performance Initial Value

Mass m/kg 2193

Maximum stress/MPa
Full load σmz 316.32

Lifting σjs 690.08

Natural frequency f /Hz

1st order 6.1
2nd order 9.7
3rd order 11.4
4th order 12.7
5th order 14.6
6th order 20.9

4. Lightweight Design of Dump Truck Carriage
4.1. Construction of Kriging Surrogate Model

For saving the computation cost from lots of finite element simulations in multi-
objective optimization, as an effective alternative, the Kriging surrogate model is widely
used to establish the mathematical relationship between the design variables and the
performance responses, with high fitting accuracy [35–37]. The lightweight design of dump
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truck carriage is a multi-objective optimization design problem. Its aim is to minimize the
dump truck carriage mass while improving its performance by optimizing the geometrical
parameters. Therefore, the thickness of key plates of the dump truck carriage is taken as
the design variable, as shown in Figure 3. That is to say, the design variables consist of
the floor thickness, the thickness of the front, rear and side plates, and the thickness of
front and rear reinforced plates and the rear U-shaped plate. Their value range is given in
Table 3. The initial values of the design variables are defined based on the original model
of the dump truck carriage. On this basis, their upper and lower limits are determined by
giving deviations from the initial values.

Table 3. Value range of design variables.

Variables Description Initial Lower Upper

x1/mm Floor 6.0 4.0 8
x2/mm Front plate 3.0 2.0 4
x3/mm Rear plate 3.0 2.0 4
x4/mm Side plate 3.0 2.0 4
x5/mm Side reinforced plate 4.0 2.5 5.5
x6/mm Front reinforced plate 6.0 4.0 8
x7/mm Rear U-shaped plate 8.0 6.0 10

Then, the optimal Latin hypercube approach is utilized to search the sample points,
and 30 points are acquired as a result, which is randomly and uniformly distributed in
the design space. The corresponding performance responses are obtained through finite
element analysis of U-carriage. The Kriging surrogate model is built, and its accuracy can
be verified by the determination coefficient R2, which is formulated as:

R2 =

n
∑

i=1
(ŷi − y)2

n
∑

i=1
(yi − y)2

(19)

where n is the number of sample points used to verify the accuracy of the surrogate model;
ŷi and yi are the predictive value and numerical simulation value, respectively; y is the
mean value.

The range of R2 is [0,1], and the closer the value is to 1, indicating that the accuracy
of the surrogate model is higher [38]. There are 10 sample points randomly selected from
the sample points for accuracy validation. The determination coefficients of the surrogate
models for the mass, the first-order natural frequency, the maximum stress of the full load
case and the lifting load case are obtained, as shown in Table 4. The validation results for
the mass and first-order frequency are given in Figure 9. Obviously, the Kriging surrogate
models of the U-carriage exhibit sufficient accuracy.

Table 4. Determination coefficients of surrogate models.

Surrogate Model R2

Mass m 0.9611
First-order natural frequency f 1 0.9031

Maximum stress of full load case σmz 0.9151
Maximum stress of lifting load case σjs 0.9163
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4.2. Multi-Objective Optimization for Lightweight Design of Carriage

The lightweight multi-objective optimization of the dump truck carriage is carried out
for minimizing the mass while maximizing the first-order natural frequency. Meanwhile,
the maximum stress of the full load case and the lifting load case are taken as constraints.
Then, the multi-objective optimization of the U-carriage can be formulated as:

find x = (x1, x2, x3, x4, x5, x6, x7)
min{m(x)}, max{ f1(x)}
s.t. σ1(x) ≤ [σmz]

σ2(x) ≤
[
σjs
]

x ∈ (xL, xU)

(20)

where m is the mass of the carriage; f1 is the first-order natural frequency; σ1 is the
maximum stress of the carriage under the full load condition, [σmz] = 316.32 MPa; σ2 is the
maximum stress of the lifting condition,

[
σjs
]

= 690.08 MPa; xL and xU are the lower and
upper limits of the design variable, respectively.

The NSGA-II algorithm is adopted to solve the multi-objective optimization problem
with the population size of 20, generation of 40 and crossover probability of 0.85. After
optimization iteration, the Pareto front of multi-objective optimization of the dump truck
carriage is obtained, as shown in Figure 10.
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4.3. Results and Discussion

In order to find the optimal solution for lightweighting the dump truck U-carriage
from the Pareto front, 64 Pareto solutions are defined as the decision matrix according to
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the TOPSIS approach. Meanwhile, the weight coefficients of mass, the first-order natural
frequency, the maximum stress of the full load case and the lifting load case are calculated
by the entropy weight method, and the calculation results are listed in Table 5. Then,
the ideal and negative ideal solutions are determined from the weighted and regularized
decision matrix. Moreover, the Euclidean distance between each Pareto solution and the
ideal solution, as well as the distance between each Pareto solution and negative ideal
solution, are obtained for calculating the relative closeness coefficient. On this basis, the 64
Pareto solutions are sorted by the relative closeness coefficient in descending order. The
top 15 of the 64 Pareto solutions are illustrated in Table 6.

Table 5. Weight coefficient of performance index.

Performance Entropy Weight

Mass 0.99804 0.25232
First-order natural frequency 0.998125 0.241376

Maximum stress for full load case 0.998013 0.255759
Maximum stress for lifting load case 0.998053 0.250569

Table 6. Sorting results of Pareto solutions.

Sample S+ S− Ci Order

26 0.002106 0.004779 0.694092 1
47 0.002102 0.004668 0.689477 2
52 0.002102 0.00456 0.684501 3
49 0.002097 0.004549 0.684437 4
10 0.002087 0.0045 0.6832 5
20 0.002074 0.004423 0.68077 6
6 0.002027 0.004107 0.669589 7
63 0.002134 0.004161 0.660943 8
53 0.002136 0.003813 0.640888 9
34 0.002096 0.003672 0.636575 10
39 0.002138 0.003718 0.634826 11
19 0.002138 0.003709 0.634336 12
31 0.002211 0.003332 0.601195 13
42 0.002237 0.003356 0.600075 14
40 0.002227 0.003299 0.59694 15

It can be seen from Table 6 that the 26th Pareto solution is ranked first in terms of the
relative closeness coefficient. Thus, it is chosen as the optimal solution for the lightweight
design of the dump truck carriage, which is marked as “Optimal” in Figure 10. Additionally,
there are two Pareto solutions randomly selected to compare with the optimal solution,
which are marked as “Point A” and “Point B” in Figure 10. The comparisons among the
original model and optimized models of the dump truck carriage are given in Table 7.

Table 7. Comparison among the original model and optimized models of the carriage.

Parameter Original Point A Point B Optimal Modification

x1/mm 6.00 6.24 7.00 6.32 6.50
x2/mm 3.00 2.06 2.07 2.12 2.00
x3/mm 3.00 2.02 2.01 2.54 2.50
x4/mm 3.00 2.12 2.67 2.90 3.00
x5/mm 4.00 3.73 5.13 3.65 4.00
x6/mm 6.00 5.54 5.82 4.43 4.50
x7/mm 8.00 6.00 6.33 6.08 6.00
m/kg 2193.00 2034.90 2083.92 2063.70 2112.00
f 1/Hz 6.10 5.93 6.22 6.11 6.16

σmz/MPa 316.32 299.25 289.42 288.45 272.49
σjs/MPa 690.08 692.69 699.33 689.21 688.17
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Obviously, the mass of the dump truck carriage achieves a remarkable reduction after
the multi-objective optimization. The mass and the first-order natural frequency of the
optimal solution is between Point A and Point B, which can be easily observed from the
Pareto front. The maximum stress of the full load case and the lifting load case in the
optimal solution are less than those in Point A and Point B, because the strength of the
dump truck carriage is also considered in determining the optimal solution by the entropy
weighted TOPSIS approach.

The design variables of the optimal solution are corrected according to practical
engineering, and are listed in Table 7. Then, the finite element model of the dump truck
carriage is modified and used to calculate the performance index. The first mode and stress
contours of the full load case and lifting load case are shown in Figure 11. It can be seen
that the stress distribution is improved compared with that before optimization. The mass
of the U-carriage is reduced by 81 kg with a mass reduction of 3.7%, while guaranteeing
sufficient performance, which achieves a significant lightweight. It is also proved the
effectiveness of the proposed method for multi-objective lightweight optimization.
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5. Conclusions

This paper proposed a multi-objective optimization approach integrating the NSGA-II
algorithm and entropy weighted TOPSIS and its effectiveness was proved by its application
to the lightweight design of the dump truck carriage. Firstly, the finite element model of
the U-carriage was built to perform the static strength analysis and the modal analysis.
The thickness of key plates of the carriage was taken as the design variable, and the
optimal Latin Hypercube sampling technique was adopted to choose the randomly and
uniformly distributed sample points in the design space. Then, the Kriging model was
utilized to construct the numerical relationships between the design variables and the
performance index of the dump truck carriage. On this basis, the NSGA-II algorithm was
employed to carry out the multi-objective optimization of the lightweight design of the
U-carriage for minimizing the mass while maximizing the first-order natural frequency,
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and the Pareto front was obtained. Finally, the entropy weighted TOPSIS approach was
used to determine the optimal solution for lightweighting the carriage from the Pareto
solutions. The optimization results indicate that the mass of the optimized carriage was
reduced by 81 kg compared with the original carriage, achieving a mass reduction of
3.7%, while guaranteeing the performance to meet the design requirement. This proves
that the proposed multi-objective optimization procedure could improve the optimization
efficiency, and it provides a feasible method for the lightweight design of dump trucks.

The contribution of this paper is mainly reflected as follows. First, the Kriging sur-
rogate model, instead of the finite element model, was used to perform the optimization,
which can save the computation cost and improve the optimization efficiency. Second,
the TOPSIS method provided a novel way to find the optimal solution from many Pareto
solutions. It can help researchers or engineers to determine the optimal design of the
optimization problem.

However, the above research still has some limitations. In this paper, the effectiveness
of the proposed method is only proved by comparing the optimal design with the initial
design. Although this optimization procedure can provide a technical reference for the
development and design of the dump truck carriage, the potential for optimization has yet
to be tapped.

Thus, future research could conduct a comparison between the proposed method and
other optimization methods to demonstrate its superiority over other methods. Meanwhile,
different optimization algorithms will be adopted to seek the Pareto solutions, to achieve a
better reduction in mass.
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