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Abstract: Using the interpolation/extrapolation skills of the core function of an iterative adaptive
controller, a structurally simple single essential layer neural network-based topological structure is
suggested with fast and explicit single-step teaching and data-retrieving abilities. Its operation does
not assume massive parallelism, therefore it easily can be simulated by simple sequential program
codes not needing sophisticated data synchronization mechanisms. It seems to be advantageous
in approximate model-based common, robust, or adaptive controllers that can compensate for the
effects of minor modeling imprecisions. In this structure a neuron can be in either a firing or a passive
(i.e., producing zero output) state. In firing state its activation function realizes an abstract rotation
that maps the desired kinematic data into the space of the necessary control forces. The activation
function allows the use of a simple and fast incremental model modification for slowly varying
dynamic models. Its operation is exemplified by numerical simulations for a van der Pol oscillator in
free motion, and within a Computed Torque type control. To reveal the possibility for efficient model
correction, a robust Variable Structure/Sliding Mode Controller is applied, too. The novel structure
can be obtained by approximate experimental observations as e.g., the fuzzy models.

Keywords: soft computing; neural networks; fuzzy systems; adaptive control; robust control; fixed-
point iteration-based adaptive control

1. Introduction

From ancient times [1,2] through Huygens’ centrifugal governors of windmills, and
used in Watt’s steam engines in the 19th century [3], control technology has meant the use
of particular mechanical constructions built in machines. It was Maxwell who, in the 1860s,
realized that in a wider sense, control issues are rather mathematical than “construction”
problems [4].

In the field of essentially nonlinear phenomena as e.g., classical mechanical systems
and chemical reactions, the fundamental, mathematically rigorous control design methods
were based on Lyapunov’s pioneering PhD thesis in 1892 [5] that became available for the
western world in English in the 1960s [6]. Lyapunov elaborated an ingenious method for
proving the stability of the solutions of nonlinear sets of ordinary differential equations
so that the solutions themselves could remain unknown: neither closed-form analytical
solutions existed for them, nor implementable numerical methods were available in the lack
of powerful computers in Lyapunov’s life. In control technological applications, the essence
of Lyapunov’s method is the Lyapunov function that corresponds to a particular metrics
used in the space consisting of the tracking error, its time-integral, and time derivative. For
the calculation of this metrics normally a non-orthogonal system of coordinates can be used,
the metric tensor’s matrix of which depends on the feedback parameters, too. Sometimes
the non-increasing, sometimes the strictly monotonic decreasing nature of this metrics can
be proved, leading to various stability definitions. If precise and reliable dynamic models
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are available, the control law contains only the feedback parameters, but the Lyapunov
function’s “fragments” do not appear in it. The Lyapunov function in this case is used only
for checking or guaranteeing stability.

From a practical point of view, both the “heuristic” and the “rigorous” approaches
must cope with the problem of the lack of reliable and precise system models. Furthermore,
normally limited possibilities are available for making direct measurements, indirect
observations, or at least approximate estimation of the actual state variables of the dynamic
system under control. In Analytical Classical Mechanics by Lagrange [7] normally rigid
body machine components are assumed in conservative dynamic coupling, so that dealing
with dissipative phenomena ab ovo means a problem. The most sophisticated approaches
such as, e.g., the “LuGre” model [8] introduce novel dynamically coupled subsystems. In
the identification of far simpler friction model parameters only limited possibilities are
available [9]. Even the friction-free approaches used for the identification of the dynamic
parameters of a PUMA 560 robot resulted in very imprecise results in the last decade of the
past century [10,11]. In model-based control used for treating patients suffering from type
I diabetes mellitus multiple compartment models are in use though normally only a single-
state variable, the subcutaneous glucose concentration, can be measured by sensors [12–16].
Another practical example is modeling turbojet engines. Observation of the real physical
state of the system needs sophisticated indirect experiments as measuring the near magnetic
field [17], application of thermal imaging-based diagnostics [18] while for control purposes
much simpler models can be applied in “situational control” (e.g., [19–21]).

The above examples are quite convincing and substantiate the statement that normally
only very approximate system models are available, and model-based controllers need
further completion by either robust or adaptive approaches for the compensation of the
effects of modeling imprecisions. Based on analytical system models, the “Robust Variable
Structure/Sliding Mode Controllers” apply a special kinematic tracking design that “some-
how” drives a so-called “error metrics” (from a mathematical point of view this quantity
does not have the attributes of metrics) during finite time to zero, and following that, this
quantity “somehow” must be kept near zero. Mathematically the tracking error’s damping
is the consequence of the zero-error metrics while a not very precise dynamic model is
needed for driving the error metrics to, and keeping it in the vicinity of zero (e.g., [22–24]).
The adaptive approaches try to refine the available model using the Lyapunov function
technique either for parameter-tuning or for fast signal adaptation.

In 2009 a fixed-point iteration-based adaptive approach was suggested that in the first
step transforms the control problem into finding the fixed-point of a contractive map, then
it therefore finds the fixed point via an iteration that during one digital control step only one
step of the adaptive iteration can be realized [25]. Its mathematical basis is Banach’s Fixed-
Point Theorem [26], which is far simpler than the Lyapunov function-based technique
and has many theoretical mathematical applications, too. The successful combination of
this adaptive method with the classic parameter tuning-based approaches was reported
in [27,28], and its relationship with the Lyapunov function was clarified in [29].

It is evident that either robust or adaptive refinement of controllers that use some
“soft computing-based model” instead of an analytically formulated one is desirable in
the practice, too. The mathematical foundation of such controllers goes back to the use of
“universal approximators”, the research of which was initiated by Weierstraß who proved
in 1885 that over compact intervals polynomials serve as universal approximators of
continuous functions [30]. In 1948 his work was extended to other approximator functions
than polynomials by Stone [31,32]. With regard to the approximation of multiple variable
continuous functions by the use of single variable ones, as a constructive rebuttal of
Hilbert’s 13th conjecture [33] Kolmogorov developed a proof in 1957 [34] that later was
simplified and made more elegant by Specher and Lorenzt in the 1960s [35,36]. In 1927
Volterra elaborated special series for function approximation for use in mathematical proofs
and solution of integro-differential equations [37].
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As technical realizations of these mathematical tools, later various neural network
structures appeared as the multilayer perceptron [38] and the convolutional neural net-
work [39]. For modeling dynamical systems, recurrent networks such as Hopfield’s net-
work [40] and Elman’s network [41] appeared.

For providing mathematically rigorous tools for dealing with imprecisions of non-
statistical origin, Zadeh developed the theory of fuzzy sets [42]. The fuzzy sets later were
found to be universal approximators, too [43,44], while at the same time they also offered
the possibility for linguistic interpretation. These technical tools can be recognized as
“empty structures” that can be filled in with particular contents in dynamic modeling, since
the dynamic models can be formulated as nonlinear maps that express certain physical
quantities as the function of other ones. For this purpose, either “supervised learning”
can be done, as in the case of the multilayer perceptrons, or “unsupervised learning” is
possible, too, as in the case of Kohonen’s self-organizing map [45].

Though theoretically the above structures promise “general solutions”, in practice
they suffer from the “curse of dimensionality” that means that for achieving “arbitrarily
precise models” huge structures must be constructed so that the teaching and the operating
regime of these tools assume massive parallelism and the application of sophisticated data
synchronization methods. For instance, the error backpropagation-based teaching of the
multilayer perceptron that was borrowed from biological observations later was identified
as the application of the classic Gradient Descent method. In this approach, practically the
parameters of each neuron in the network must be tuned. Though technically this process
can be simplified using particular activation functions, essentially it remains very laborious.
The use of evolutionary training methods such as Genetic Algorithms (e.g., [46]), Simulated
Annealing (e.g., [47,48]), Particle Swarm Optimization [49] or the Simplex Algorithm [50]
that despite its simplicity, remained the subject of sophisticated convergence investigations
(i.e., [51–53]), can efficiently tackle such problems. The size of the necessary structures
to some extent can be reduced by using the “generalization ability” of these networks.
Adaptive maintenance of the slowly varying models remains a significant issue. For
instance, in the classifiers used in time series analysis this phenomenon is referred to as
“concept drift” that can be detected by sophisticated observations [54–56].

For systematic reduction of the structure sizes, the polytopic and “Tensor Product
Models” [57,58] can be mentioned in which the input data can be collected over a very dense
grid. Its density later can be reduced under controlled conditions using the generalization
of Golub’s “Singular Value Decomposition (SVD)” method from 1965 [59] under the name
“Higher Order Singular Value Decomposition (HOSVD)” in 2000 that was elaborated
by Lathauwer et al. [60]. The model transformation for not very complicated dynamic
systems can be run on common laptops, and the resulting approach allows the convenient
use of Linear Matrix Inequalities-based classic controller design. However, adaptive
updating of slowly time-varying models remains an issue because the modified model
should be transformed into the polytopic form, and its reduction should be repeated.
Regarding the use of polytopic models, the “Switching Controllers” (e.g., [61,62]) create
a local Linear Time-Invariant (LTI) model approximation and use Lyapunov’s technique
to fit control parameters that are valid within the cell. As the state variable meanders
between the cells the feedback parameters are switched on accordingly. This method has
the inconvenient consequence that though the error, its time-derivative and time-integral
may vary continuously at the cell borders. The Lyapunov function suffers jumps because
in each cell a different metric tensor is used for obtaining its “scalar metrics”. Therefore,
though within the cells the Lyapunov function has strictly monotonic decrease due to
the control design, it can be abruptly increased at the cell boundaries. In this manner,
further design problems are generated if the designers wish to guarantee that the tracking
is becoming more and more precise even though the state variable meanders between the
cells. In other approaches, the system behavior inside a polytopic region can be described
using a linear combination of redundant basis vectors that correspond to the system model
in the vertices of a larger polytop (like the barycentric coordinates). For this purpose,
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convex hulls must be generated around the vertices, and in this description no jumps occur
between the boundaries of small cells (e.g., [16,63]).

The aim of the present paper is the introduction of a novel soft computing modeling
structure that to some extent is akin to neural networks and polytopic models. The
suggested structure obtains its “generalization property” from using a very particular
“activation function” that can be interpreted as a rotation in a higher-dimensional Euclidean
space. Its parameters can be directly computed without the need for massive parallelism in
the teaching phase, it works without considerable parallelism and data synchronization
techniques in the application phase, and allows adaptive modifications in the case of slowly
time-varying models, too. This model can be built up based on observations and it can be
useful in adaptive or robust controllers that can efficiently compensate the effects of minor
modeling imprecisions. The paper is structured as follows: in Section 2 the model structure,
the activation function and the teaching method is expounded. In Section 3 the teaching
process is exemplified by considering the free motion of the van der Pol oscillator that has
an unstable equilibrium point and a stable limit cycle that corresponds to nonlinear cyclic
oscillation. In Section 4 the controlled motion of this oscillator is presented via numerical
simulations using the novel, simple neural model. Both the simple CTC method and its
refined version obtained by the application of the VS/SM controller are considered. Finally,
in Section 5 the concluding remarks and the further works are outlined.

2. The Model Structure, the Activation Function and the Teaching Process

To introduce the model structure and activation function, consider the classical me-
chanical model of fully actuated robots that satisfies the equation of motion referred to as
Euler–Lagrange equations in the “Computed Torque Control (CTC)” [10,64] with the form

H(q)q̈ + h(q, q̇) = Q , (1)

in which H(q) is a symmetric positive definite inertia matrix that depends on the generalized
coordinate of the robot, q, while the additional term h(q, q̇) describes the gravitational and
Coriolis terms that contains quadratic contribution in q̇, and Q denotes the array of the
generalized force components that physically correspond to force or torque, and can be used
for controlling the motion of the system. In the case of the CTC control the dynamic model
expressed by (1) is directly used without being inserted into the mathematical framework
of Model Predictive Control (MPC) to reduce the computational capacity needs for the fast
motion of the robot arm. Consequently, during the free motion of the arm in which Q ≡ 0,
the mapping or function q̈(q, q̇) describes the model. For control purposes the control forces
must be computed in the given state of the system described by the variables q and q̇, and by
a kinematically determined desired 2nd time-derivative of q, i.e., the function Q

(
q, q̇, q̈Des)

describes the appropriate dynamic model.
Though for numerical simulations various classical mechanical systems could have

been chosen, the one-degree-of-freedom ones normally are too simple, while the higher-
degree-of-freedom models are too complicated for providing a lucid and simple picture
for exemplifying the suggested method. Fortunately, there are various low-degree-of-
freedom nonlinear systems the models of which are quite similar to that given in (1),
and at the same time, can produce more complex behavior than the mechanical systems.
For instance, the various nerve models such as Lapicque’s neuron model from 1907 [65],
the Hodgkin–Huxley neuron model from 1952 [66], chemical oscillations observed by
Zhabotinsky in 1964 [67] and modeled by Field, Koros and Noyes in 1972 [68], further
“abstracted” by Prigogine as the “Brusselator Model” [69,70], electrical circuits as the
Chua–Matsumoto circuit from about 1984 [71], the Lorenz system from 1963 [72], the
Duffing oscillator [73], etc. can be mentioned. As a simple example, the equation of motion
of the van der Pol oscillator is considered that originally was an excited electric circuit
containing a triode [74]. It had an unstable equilibrium point and generated a limit cycle
as nonlinear oscillation discovered in 1927. Since its equation of motion structure is very
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similar to (1), in the sequel it is referred to as a “mechanical system” with the dimensions
q [m] and Q [N] in (2)

q̈ =
(
−kq + b1

(
a2 − q2

)
q̇− b2q̇ + Q

)
/m , (2)

in which the parameters were set as follows: m = 1.5 kg inertia, k = 150.0 N·m−1 linear
spring stiffness, b1 = 2.0 N·s·m−3, and b2 = 0.1 N·s·m−1 viscous damping coefficient. The
unstable equilibrium corresponds to the data Q ≡ 0, q ≡ 0, and q̇ ≡ 0 result q̈ ≡ 0. The
term b1

(
a2 − q2)q̇ for q2 < a2 works as excitation that drives the system into the oscillating

limit cycle if q̇ 6= 0. If q2 > a2 it behaves as damping that also drives the system into the
limit cycle from the higher coordinate values. In the case of the free motion the function
q̈(q, q̇) corresponds to a R2 7→ R mapping, while in the case of the controlled motion the
model Q

(
q, q̇, q̈Des) means a R3 7→ R mapping.

In a special version of the fixed-point iteration-based adaptive control in [75] a trans-
formation was needed that mapped the vector b ∈ Rn into vector a ∈ Rn so that normally
‖a‖ 6= ‖b‖. Additionally, besides the exact transformation certain “interpolation” possibil-
ity was necessary for the control. This task was very simply solved by so augmenting the
vector a into vector A ∈ Rn+1 and vector b into vector B ∈ Rn+1 that the augmented vectors
had the common Frobenius norm ‖A‖ = ‖B‖ = R. In this case, vector B was rotated
into vector A using two orthogonal unit vectors of which the first one was eA = A

‖A‖ . The
second unit vector was computed from the part of B that was orthogonal to A. It was
computed as

B⊥ = B + µA in which µ = − AT B
AT A

, eB =
B⊥
‖B⊥‖

. (3)

The skew-symmetric matrix G := eAeT
B − eBeT

A has the properties as GeB = eA and
GeA = −eB since eT

AeB = 0, eT
AeA = 1, and eT

BeB = 1. As a consequence of these relations,
the property G3 = −G holds, and the orthogonal matrix

exp(ϕG) =
∞

∑
s=0

ϕsGs

s!
= I + sin ϕG + (1− cos ϕ)G2 (4)

corresponds to rotation with angle ϕ that leaves the orthogonal subspace of vectors A and
B invariant (the Rodrigues formula [76]). The necessary angle of rotation can be computed
from the scalar product of the vectors as AT B = ‖A‖ · ‖B‖ cos ϕ, and the interpolation
possibility was offered by making the rotation with an angle ψ 6= ϕ. Such a rotation
evidently can be done if the common norm of A and B, i.e., R, is great enough. When B is
exactly rotated into A its physically interpreted projection, vector b is mapped to vector a.
Depending on the angle ψ the transformed of vector b only approaches vector a.

The above detailed abstract rotations were used as “activation functions” in the sug-
gested new neural structure outlined in Figure 1 to describe the motion of the free van der
Pol oscillator.

Similar to the feedforward neural networks, this new structure consists of an “input
layer” that receives the input signals that in the case of the “learning phase” consists of the
signals {q, q̇, q̈}. The essential computation happens in the second layer that may contain
many “nodes” receiving their input from the “input layer”, while the last, the third layer“
consist of a single element that simply summarizes the outputs obtained from the second
layer. Like in the case of the polytopic models, a finite grid can be created for the input
variable pairs (q, q̇). Each grid element can be characterized by its “range of competence”
described by the disjoint intervals [qmin, qmax) and [q̇min, q̇max). The neurons learn according
to the following algorithm:

1. Each neuron investigates if the input belongs to its range of competence. If
q ∈ [qmini , qmaxi ) ∧ q̇ ∈ [q̇mini , q̇maxi ) then the given neuron (number i) is competent
to make operation. In this case, in the learning phase, it

2. associates the appropriate q̈ input value with the given grid element;
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3. augments the vector b = [q, q̇] into B = [q, q̇, Bd], a = [q̈, 0] into A = [q̈, 0, Ad] in
which Ad and Bd are the “dummy components” that guarantee the common norm
‖A‖ = ‖B‖ = R;

4. calculates the unit vectors eA, eB and the angle of abstract rotation, ϕ, and finally
5. if the place of the appropriate node is still empty, simply stores the computed data in

the hyper-matrix as Node[iq, iq̇, 1 : 3] = eA, Node[iq, iq̇, 4 : 6] = eB, and Node[iq, iq̇, 7] =
ϕ where the subscripts iq and iq̇ now denote the number of the given cell/node.

6. If the node already is filled in, it either does nothing (simple skips the operation), or
applies “incremental learning”.

“Incremental learning” means that instead of replacing the old node content with the
new one, their weighted combination is calculated and will replace the old value. In the
case of a scalar quantity x means that “the new value to be stored” (xS) is calculated by the
use of the previously stored “old value” (xO) and the “new observed value” (xN) with an
“aggregation factor” α ∈ [0, 1] as xS = αxO + (1− α)xN . This updating rule can be applied
for the angle of the abstract rotation ϕ. The idea can be extended for the aggregation of
unit vectors in the following approximate manner: the linear combination of not exactly
parallel unit vectors must be a unit vector, i.e., the equations as follows must be valid:

∑
`

u2
` = 1 , ∑

`

v2
` = 1 , (5)

∑
`

(αu` + βv`)2 = α2 + β2 + 2αβS = 1 , (6)

in which
S = ∑

`

u`v` ∈ [−1, 1] leading to a quadratic equation for β (7)

as
β2 + 2αSβ + α2 − 1 = 0 , (8)

with two possible solutions as

β1,2 = −αS±
√

α2S2 + (1− α2) (9)

of which the reasonable one is

β = −αS +
√

α2S2 + (1− α2) ≥ 0 . (10)

Since as a scalar product of two unit vectors S ∈ [−1, 1], S2 ∈ [0, 1], and since α ∈ [0, 1],
the practical solution in (10) always can be chosen. For identical unit vectors S = 1 and the
same rule applied for the scalars, i.e., using the weighting factors α and 1− α is obtained.
Furthermore, if α = 1 then β = 0 for an arbitrary possible S, i.e., the old vector remains
invariant (no aggregation is happening). Similarly, if α = 0 then for an arbitrary possible S
β = 1 is yielded, i.e., simply the old vector will be replaced by the new one.

The above rule can be applied for the aggregation of the unit vectors eA and eB. Since it
cannot be expected that the new aggregated unit vectors remain exactly orthogonal to each
other, the matrix in (4) will not remain exactly an orthogonal one. However, since for not
very different unit vectors S / 1, the new unit vectors e′A and e′B remain almost orthogonal to
each other, consequently (4) can be considered to be a quickly calculable approximation of an
orthogonal matrix.

Evidently this model in the “operation phase” can be used as follows:

1. For a given pair (q, q̇) each neuron determines whether the input belongs to the box
associated with its “competence of operation”: if not, the output value will be zero,
otherwise it completes the following calculations:

2. the neuron retrieves the parameters of the activation function as eA, eB, and ϕ,
3. computes the orthogonal matrix O in (4);
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4. augments the vector [q, q̇] into [q, q̇, d], where d is the physically not interpreted
“dummy component”;

5. computes the rotated vector O[q, q̇, d], and uses its first component as q̈ obtained from
this special model, and

6. optionally it can refresh the cell content via “incremental learning”.

The aim of the “incremental learning method” consists of refining the model. Each
neuron belongs to a “range” determined by the grid cells, while the input values may be
concentrated in different parts of the cells. In this case, some refinement of the model can
be achieved. In Section 3 the above method is exemplified when the system learns the
model of the van der Pol oscillator in free motion.

  

q

d2q/dt2

+
dq/dt

Node1

Nodek

Node1

NodeL

output

For teaching

d2q/dt2

Figure 1. The structure of the nodes for an R2 7→ R mapping used for checking the mapping abilities
in the case of the function q̈(q, q̇) of the free motion of the van der Pol oscillator.

3. Teaching Example: the Free Motion of the van der Pol Oscillator

The appropriate simulations were made in Julia Language Version 1.5.1 (2020-08-25)
that is a kind of compilation of the most efficient simulation languages that legally can be
used free of charge [77]. Its running speed is comparable with that of the codes made in
language C or some Assembler language; however, it appears as a conveniently applicable
high-level programming language such as, e.g., MATLAB. The here-presented results
were obtained by the program “VDP_free_motion.jl”. (It is available at the link given
in Section entitled “Supplementary Materials”.) This code is a simple text file edited by
the use of Atom 1.57.0 x64 that allows the use of very special characters in the variable
names. The initial state of the free motion was qini = 0.0 m, q̇ini = 2.0 m·s−1, the discrete
time resolution of the simple Euler integration was dt = 10−3 s. The resolution of the grid
was determined as follows: the cell size for q was δq = 0.125 m and the interval [−2.0, 2.0]
m was covered by the model; for q̇ δq̇ = 1.25 m·s−1 was chosen for covering the interval
[−20.0, 20.0] m·s−1. In the teaching process the already filled in cell remained invariant,
which theoretically corresponds to the aggregation weight α = 1, β = 0 in (10).

It is evident that according to the sub-figure (d) of Figure 2 the model provided
acceptable approximation of the learned q̈ values. In Section 4 the same technique will be
chosen for the realization of a CTC-type control of this oscillator.
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(a) (b)

(c) (d)

Figure 2. Learning the free motion of the van der Pol oscillator: (a) The phase trajectory. (b) The q̈
values provided by the exact dynamic model. (c) The learned q̈ values retrieved from the neural
model. (d) Comparison of the exact and the learned q̈ values.

4. Controlled Motion of the van der Pol Oscillator Using the Novel Neural Model

To critically reveal the possible consequences of the modeling imprecisions the CTC
scheme was selected since in the possession of an exact dynamic model it can asymptotically
drive any initial error to zero. However, when the model in use is only an approximate
one, the trajectory tracking is degraded though the PID-type feedback terms can keep the
errors at bay. Therefore, this paradigm can critically reveal the consequences of modeling
errors. It is detailed in the following.

4.1. The Computed Torque Control and the Robust VS/SM Schemata

These control schemata are depicted in Figure 3, which easily can be followed when
writing a simple sequential program code using Euler integration. The only difference
between these schemata consists of the contents of the box “Kinematic Block”.

  

Nominal trajectory
qNom(t )

Kinematic Block Soft Model The System

Control Force
Q (t )

Desired

Realized

q̈ (t)

∫
t0

t

q̈( z)dz+q̇ (t 0)∫
t0

t

q̇( z)dz+q (t 0)
Realized

q̇ (t)

Realized

q (t )

d
dt

d
dt

q̇Nom(t )

q̈Nom(t )

+ -

∫
t 0

t

e( z)dz

e (t )Tracking Error

Integrated
Error eintegr .(t )

q̈Des (t)

Figure 3. The CTC and the robust VS/SM control schemata (the difference between these schemata consists of the contents
of the box “Kinematic Block”).
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In the case of the CTC control the “Kinematic Block” in Figure 3 can be defined using
an exponential parameter Λ

[
s−1] that is used for the calculation of the “desired” 2nd

time-derivative q̈Des in

e(t) := qN(t)− q(t) , ė(t) := q̇N(t)− q̇(t) , eint(t) :=
∫ t

t0

[
qN(ξ)− q(ξ)

]
dξ ,(

Λ +
d
dt

)3
eint(t) ≡ 0 leading to

q̈Des = Λ3eint(t) + 3Λ2e(t) + 3Λė(t) .

(11)

Evidently (11) has the general solution of an LTI system that can be expressed by the
linear combination of three basis functions as

e(t) = c0 exp(Λ(t− t0)) + c1(t− t0) exp(Λ(t− t0)) + c2(t− t0)
2 exp(Λ(t− t0)) , (12)

in which the c0, c1 and c2 constants determine the initial conditions for the error quantities.
Trivially, the operator

(
Λ + d

dt

)
maps to zero the function weighted by c0 in (12). Similarly,

the operator
(

Λ + d
dt

)2
maps to zero the functions weighted by c0 and c1, and finally, the

operator
(

Λ + d
dt

)3
maps to zero the functions weighted by c0, c1, and c2. Since each “basis

function” converges to 0 as t → ∞, the general solution also converges to zero if (11) is
precisely realized. For this purpose, the exact system model is needed in Figure 3. If the
system model is imprecise, no asymptotic convergence to zero can be expected.

In the case of the robust VS/SM controller, by maintaining the definition given in (11)
for e(t), ė(t), and eint(t), instead of (11), the desired 2nd time-derivative is computed
as follows:

S(t) :=
(

Λ +
d
dt

)2
eint(t) (13)

with the “damping”

Ṡ(t) = −K tanh
(

S
w

)
(14)

leading to

q̈Des(t) := q̈N(t) + Λ2e(t) + 2Λė(t) + K tanh
(

S
w

)
. (15)

Equation (14) has the following interpretation: for |S| � w tanh
(

S
w

)
≈ ±1, i.e., the

great S values with constant rate approach the value 0 that therefore approximately can be
reached during finite time, and following that, S will be kept in the vicinity of 0 with the
precision depending on the constant positive parameter w. This rate, and the precision by
which S is subsequently kept near 0, also depends on the positive constant parameter K.
According to (13) S ≡ 0 means that(

Λ +
d
dt

)2
eint(t) =

(
Λ +

d
dt

)[(
Λ +

d
dt

)
eint(t)

]
≡ 0 , (16)

of which it follows that after a few times Λ−1 time the quantity
(

Λ + d
dt

)
eint(t) will

become zero. In other words, eint(t) will exponentially converge to 0. Evidently, (16) can
be rearranged as follows: (

2Λ +
d
dt

)
e(t) = −Λ2eint(t) , (17)

that is a linear, time-invariant inhomogeneous differential equation in which the inhomo-
geneous driving term will vanish, and after that, the tracking error e(t) will exponentially
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converge to 0. The robustness of this construction simply consists of the fact that no precise
realization of (14) is necessary. It is just enough to “somehow” make S quickly achieve
0, and following that, to “somehow” keep it near zero. For achieving this goal, no very
precise system model is needed, and it can be expected that the deficiencies of the “soft
model” can be compensated by choosing appropriate K and w parameters.

Since normally the control force Q with sharp jumps cannot be exactly tracked by
real drives, and Figure 2 anticipates that small jumps can be expected when the firing
neuron is changed, a signal smoothing technique that widely used in technical sciences for
noise reduction (e.g., a second-order variant is used in [78]) was applied as follows. Let Qn
denote the rough signal obtained from the neural model that can contain jumps, and let Qs
denote its “smoothed” version applied in the control. Using a positive constant λ > 0 the
smoothed signal must satisfy the differential equation(

λ +
d
dt

)
Qs(t) = λQn(t) . (18)

It is evident that for constant Qn the stationary solution of (18) is Qs = Qn. If λ is great
enough Qs can well track slowly varying Qn(t) signals while the abrupt jumps in Qn(t)
are “filtered out” in this manner. In the following, the results of simulation investigations
are presented for the CTC control.

4.2. Simulation Investigations

In this approach, the arrays a = [q; q̇; q̈Des] were transformed into the vectors [Q; 0; 0],
therefore the augmented vectors had 4 components. The neuron structure is outlined in
Figure 4.

  

q

q̇

q̈Des

Q

For teaching

Node

Node

Node

+
Q

Output

Learned

Input

Figure 4. The structure of the nodes for an R3 7→ R mapping used for control purposes, i.e., for the
approximation of the function Q

(
q, q̇, q̈Des).

Its teaching and operation is in strict analogy with that of the structure given in
Figure 1, therefore these details will not be repeated here. For simulation purposes the
Julia language program “VDP_machines_learning.jl” exemplified the CTC control, and
the program “VDP_machines_learning_VSSM.jl” represented the VS/SM control. (The
codes are available at the link given in Section entitled “Supplementary Materials”.) Both
programs used the parameters dt = 10−3 s discrete time resolution in the Euler integration,
Λ = 6.0 s−1, λ = 25.0 s−1, the norm of the augmented vectors was R = 5000, for the
aggregation of the unit vectors α = 0.9 was chosen. In the VS/SM controller the further
parameters in (14) were K = 100.0 m·s−2, and w = 0.1 m·s−1.

The resolution of the grid was determined as follows: the cell size for q was δq = 0.125 m
and the interval [−2.0, 2.0] m was covered by the model; for q̇ δq̇ = 1.25 m·s−1 was chosen
for covering the interval [−20.0, 20.0] m·s−1; for q̈ δq̈ = 12.5 m·s−1 was chosen for covering
the interval [−200.0, 200.0] m·s−2. The teaching section consisted of filling in the values at
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the box centers with the data computed from the analytical model. Later, these values were
slightly modified due to the aggregation that happened during the controlled motion.

In the first set, the nominal trajectory was chosen to be a harmonic oscillation with
the amplitude A = 1.5 m and circular frequency ω = 10.0 s−1 that is in the vicinity of
the limit cycle of the oscillator’s motion (the data of which the grid limits were selected).
Therefore, the best results were expected for this nominal trajectory. In Figure 5 the control
surfaces expressed by the angle of the abstract rotations are described, just to illustrate
certain internal details.
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Figure 5. Various projections of the stored control surfaces expressed by the angle of abstract rotations in the case of the
CTC control.

The trajectory tracking properties are given in Figure 6 and the phase trajectories and
the control forces are described in Figure 7. It can be seen that the CTC controller works
with small error, and using the kinematic prescription applied in the VS/SM control even
this small error can be almost perfectly compensated. Following an initial transient phase,
the trajectories and the forces applied by the VS/SM control practically become identical
with the results using the exact dynamic model.

In the next step, the frequency of the nominal motion decreased to ω = 8.0 s−1

while the amplitude remained invariant. In this case, the nominal motion to be tracked
discovered other regions of the phase space. According to Figures 8 and 9 it can be stated
that the VS/SM controller again well corrected the small errors of the CTC controller.
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Figure 6. Simulation results for trajectory tracking for amplitude A = 1.5 m and circular frequency
ω = 10.0 s−1: (a) Trajectory tracking of the CTC controller. (b) Trajectory tracking of the VS/SM
controller. (c) Trajectory tracking error of the CTC controller. (d) Trajectory tracking error of the
VS/SM controller.
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Figure 7. Simulation results for amplitude A = 1.5 m and circular frequency ω = 10.0 s−1: (a) Phase
trajectory tracking of the CTC controller. (b) Phase trajectory tracking of the VS/SM controller.
(c) Control force of the CTC controller. (d) Control force of the VS/SM controller.
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Figure 8. Simulation results for trajectory tracking for amplitude A = 1.5 m and circular frequency
ω = 8.0 s−1: (a) Trajectory tracking of the CTC controller. (b) Trajectory tracking of the VS/SM
controller. (c) Trajectory tracking error of the CTC controller. (d) Trajectory tracking error of the
VS/SM controller.
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Figure 9. Simulation results for amplitude A = 1.5 m and circular frequency ω = 8.0 s−1: (a) Phase
trajectory tracking of the CTC controller. (b) Phase trajectory tracking of the VS/SM controller.
(c) Control force of the CTC controller. (d) Control force of the VS/SM controller.

When the frequency of the nominal trajectory was further decreased to ω = 4.0 s−1 in
the phase trajectory, typical “deformations” appeared indicating that for this slow motion
the resolution of the grid was found “rough”. However, the VS/SM control again well
compensated the effects of the modeling errors (Figures 10 and 11).
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Figure 10. Simulation results for trajectory tracking for amplitude A = 1.5 m and circular frequency
ω = 4.0 s−1: (a) Trajectory tracking of the CTC controller. (b) Trajectory tracking of the VS/SM
controller. (c) Trajectory tracking error of the CTC controller. (d) Trajectory tracking error of the
VS/SM controller.
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Figure 11. Simulation results for amplitude A = 1.5 m and circular frequency ω = 4.0 s−1: (a) Phase
trajectory tracking of the CTC controller. (b) Phase trajectory tracking of the VS/SM controller.
(c) Control force of the CTC controller. (d) Control force of the VS/SM controller.

For very slow motion of ω = 1.0 s−1 this effect became more visible in Figures 12 and 13.
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Figure 12. Simulation results for trajectory tracking for amplitude A = 1.5 m and circular frequency
ω = 1.0 s−1: (a) Trajectory tracking of the CTC controller. (b) Trajectory tracking of the VS/SM
controller. (c) Trajectory tracking error of the CTC controller. (d) Trajectory tracking error of the
VS/SM controller.
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Figure 13. Simulation results for amplitude A = 1.5 m and circular frequency ω = 1.0 s−1: (a) Phase
trajectory tracking of the CTC controller. (b) Phase trajectory tracking of the VS/SM controller.
(c) Control force of the CTC controller. (d) Control force of the VS/SM controller.

In the next series, the circular frequency of the nominal motion was reset to ω = 10.0 s−1

but the amplitude was reduced to A = 1.0 m to discover other regions of the map.
Figures 14 and 15 again reveal acceptable results.
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Figure 14. Simulation results for trajectory tracking for amplitude A = 1.0 m and circular frequency
ω = 10.0 s−1: (a) Trajectory tracking of the CTC controller. (b) Trajectory tracking of the VS/SM
controller. (c) Trajectory tracking error of the CTC controller. (d) Trajectory tracking error of the
VS/SM controller.
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Figure 15. Simulation results for amplitude A = 1.0 m and circular frequency ω = 10.0 s−1: (a) Phase
trajectory tracking of the CTC controller. (b) Phase trajectory tracking of the VS/SM controller.
(c) Control force of the CTC controller. (d) Control force of the VS/SM controller.

For fast motion with small amplitude A = 0.5 m and ω = 10.0 s−1 can be selected, the
results are given in Figures 16 and 17 that show the same satisfactory effects.
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Figure 16. Simulation results for trajectory tracking for amplitude A = 0.5 m and circular frequency
ω = 10.0 s−1: (a) Trajectory tracking of the CTC controller. (b) Trajectory tracking of the VS/SM
controller. (c) Trajectory tracking error of the CTC controller. (d) Trajectory tracking error of the
VS/SM controller.
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Figure 17. Simulation results for amplitude A = 0.5 m and circular frequency ω = 10.0 s−1: (a) Phase
trajectory tracking of the CTC controller. (b) Phase trajectory tracking of the VS/SM controller.
(c) Control force of the CTC controller. (d) Control force of the VS/SM controller.

The “generalizing” or “extrapolating” property of this structure can be checked by
considering motions the appropriate data of which were not originally stored in the initial
teaching process. Parameters A = 1.6 m and ω = 10.0 s−1 correspond to such a case. At
this amplitude in the VS/SM control the |q̇| > 20.0 m·s−1 values frequently occur, for
which the soft model does not contain appropriate cells. Consequently, it produces a longer
fluctuating session before approaching the results of the controller that uses the “exact”
model (Figures 18 and 19). The CTC controller still works with small error. It can be stated
that at this amplitude for ω = 10.0 s−1 the “applicability limit” of this “soft model” has
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been found. (For the values A = 1.75 m and ω = 10.0 s−1 the VS/SM controller cannot
capture the exact case and produces much worse results than the CTC controller.)
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Figure 18. Simulation results for trajectory tracking for amplitude A = 1.6 m and circular frequency
ω = 10.0 s−1: (a) Trajectory tracking of the CTC controller. (b) Trajectory tracking of the VS/SM
controller. (c) Trajectory tracking error of the CTC controller. (d) Trajectory tracking error of the
VS/SM controller.
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Figure 19. Simulation results for amplitude A = 1.6 m and circular frequency ω = 10.0 s−1: (a) Phase
trajectory tracking of the CTC controller. (b) Phase trajectory tracking of the VS/SM controller.
(c) Control force of the CTC controller. (d) Control force of the VS/SM controller.

5. Conclusions

From a mathematical point of view, the soft computing-based modeling tools such as
various neural networks, fuzzy system models and neurofuzzy systems are technical im-
plementations of universal approximators that were elaborated for describing continuous
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functions. They generally can be used for describing various approximate dynamical sys-
tem models for the precise construction of which no satisfactory physical basis is available.
Such a “soft model” is coded in the form of algebraic combination of certain particular
functions and the stored parameters of these functions. The practical use of the model
means that depending on the model’s actual input, these functions must make real-time
computation, and for obtaining the model’s output sophisticated data synchronization
methods must be applied. Depending on the model structure teaching and using these
models normally mean more or less massive parallelism based on distributed computing
units. The whole family of these models suffers from the “curse of dimensionality” that
practically means that for achieving “arbitrarily precise system models” huge structures
must be used and tuned. Though since the pioneering work by Weierstraß in 1872 [79]
(when he first constructed a nowhere differentiable continuous function) it can be known
that the theoretical root of this problem is the “crazy nature” of the whole class of continu-
ous functions, dimensionality is a serious issue even if smooth functions are assumed in
the models. In the present paper, a novel neural network structure was suggested that has
certain interesting and practical features as follows:

• Its activation function’s operation has simple geometric interpretation: it executes
abstract rotations in higher-dimensional Euclidean spaces;

• The parameters of this function are encoded in two orthogonal unit vectors and in the
angle of the abstract rotation that is executed by this function;

• The “extrapolation ability” of this function originates from the fact that with this
rotation operator an array has to be transformed that conveys information on the
“absolute value” of the modeled state;

• As with the polytopic models, the system model is so coded that each cell in a grid
has its own activation function with its parameters;

• Though this model may have ample number of grid points, the representative neurons
can be arranged in a simple linear structure with only three layers (Figures 1 and 4):
an input layer, the layer of the nodes, and a single output layer;

• In contrast to the multilayer perceptrons or recurrent neural networks, no complicated
“connecting wire structure” must be realized in its implementation;

• In contrast to the teaching phase of a multilayer perceptron, in which the error back-
propagation requires the modification of the parameters of each function and the
weight parameters in a massively parallel process, in this system only one neuron is
active in a given time instant that is responsible for the necessary rotation. The other
cells only must determine whether they must make any computation;

• In a similar manner, in the operating phase, when the model is in use, only one
neuron executes the necessary transformation in a given time; the other ones only
must check their competence. In contrast to that, the fuzzy inference systems must
make massive distributed operations by executing the necessary “AND” and “OR”
operations, fuzzification of the input and defuzzification of the output. Additionally,
in the case of a multilayer perceptron, each neuron has to essentially take part in the
computation of the final result that can be obtained by collecting the output of each
neuron of a given layer, and forwarding their output to the neurons of the next layer;

• Due to the fact that the parameters of the functions are interpreted as orthogonal unit
vectors, incremental adaptive improvement or “further teaching” of this model during
its operation is possible by the use of a simple approximate “aggregation technique”
that was elaborated for unit vectors.

In this paper, the above properties were exemplified in the case of a CTC controller
that relatively is vulnerable to modeling errors. To compensate the effects of modeling
imprecisions, the simple robust VS/SM was also applied in the control. The controlled
system was the strongly nonlinear van der Pol oscillator that is a popular benchmark
paradigm in control technology.

It is worth noting that, especially in control technology, modeling precision is not the
“only”, and not necessarily the “most important” feature of a model. Possible small size,
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reduced complexity, and easy usability are important issues, too. Furthermore, robust as
well as adaptive techniques can be applied for the compensation of the effects of various
modeling imprecisions. In the present paper, a robust approach has been chosen for
this purpose.

In future work, the noise-sensitivity of the method and time-delay problems must
be investigated regarding this modeling method, in combination with the Fixed-Point
Iteration-based adaptive approach that applies similar abstract rotations in Euclidean
spaces to that of the “activation functions” of the suggested method.

Supplementary Materials: The following are available online at https://drive.google.com/drive/
folders/1zuj9ncGtpbzBMWdq4HhR4o7KPJZ0mQo8?usp=sharing: “VDP_free_motion.jl”: Julia lan-
guage code for exemplifying the learning process for free motion; “VDP_machines_learning.jl”: Julia
language code exemplifying the controlled motion using CTC controller; “VDP_machines_learning_
VSSM.jl”: Julia language code exemplifying the controlled motion using VS/SM controller.
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