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Abstract: It is inevitable that machine parts will be worn down in production, causing other mechan-
ical failures. With the appearance of wearing, the accuracy and efficiency of machinery gradually
decline. The state between healthy and impaired is defined as sub-health. By recognizing the sub-
health state of machinery, accuracy and efficiency can be effectively guaranteed, and the occurrence
of mechanical failure can be prevented. Compared with simple fault detection, the identification
of s sub-health state has more practical significance. For this reason, the sound characteristics of
large-scale reciprocating machinery, combined with the concept of OOD (out-of-distribution) detec-
tion, are used, and a model for detecting machinery sub-health state is proposed. A planer sound
dataset was collected and collated, and the recognition of mechanical sub-health state was realized
by a model combining a VGG network and the threshold setting scheme of OOD detection. Finally,
an auxiliary decision-making module was added, and Mahalanobis distance was used to represent
spatial relationships among samples, further improving the recognition effect.

Keywords: fault detection; out-of-distribution; convolutional neural network; sound feature; state de-
tection

1. Introduction

Machinery is an indispensably essential part of society, and it has been since the
industrial revolution. Mechanical sub-health state is a transition state between a normal
state and a damage state. The standard of mechanical sub-health is manifested as decreasing
accuracy and efficiency, or an increasing defective rate, but it does not meet the criteria for
mechanical failure. The sub-health state of machinery is not fixed, and it can be changed
according to actual needs; its identification can ensure that a given piece of machinery is
working in its best state. There are obvious differences between a fault sound and a normal
sound. Thus, in order to identify the sub-health state of machinery, ascertaining whether a
machine is faulty or not should be considered first; only then can its sub-health state be
established. In recent years, the intelligent fault diagnosis technology of deep learning
has becoming increasingly mature, and the efficiency of fault diagnosis has continuously
improved. Currently, mainstream methods use vibration sensors to collect one-dimensional
vibration signals, which are then converted into two-dimensional signals and used through
a neural network to diagnose the state of a given machine [1]. However, heavy machinery
has great stability, as well as local vibration that a low impact. Due to this, some main
working parts are inconvenient objects on which to install vibration sensors, leading to the
recognition effects being imprecise.

More recent fault diagnoses mainly use vibration signal characteristics. For example,
W. Zhang et al. [2] used a novel method named deep convolutional neural networks
with wide first-layer kernels (WDCNN) for fault diagnosis. Q. Hang et al. [3] used high-
dimensional imbalance data to diagnose rolling bearings. W. Sun et al. [4] proposed a motor
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fault detection method based on a sparse autoencoder. In early research, sound detection
technology and sound source localization were initially used in military applications,
such as sonar exploration, detection, and localization. With developments in technology,
sound detection technology has gradually been applied in various fields. For example,
Yiallourides and Naylor [5] used knee joint sound time–frequency analysis for the non-
invasive detection of osteoarthritis. Das et al. [6] used acoustic features by unsupervised
learning for heart sound event detection. In addition, Bayram [7] used sequence auto-
encoders to detect anomalies in industrial processes, while Liu [8] also detected healthy
broilers by using abnormal sounds. Tran and Lundgren [9] proposed a drill fault diagnosis
method based on an intelligent acoustic signals scale spectrum and the Mel spectrum.
Wang et al. [10] used sound signals to detect and locate pipelines leaks. Volkmann et al. [11]
and Hou et al. [12] used sound signals to detect the injury on cows’ feet and the longitudinal
tears of a conveyor belt, respectively. Further, Ramteke et al. [13] outlined a fault diagnosis
method for a diesel engine cylinder liner wear fault based on vibration and acoustic
emission analysis. There are more others who have theorized equipment health state
condition monitoring and fault detection using acoustic signals. Common mechanical fault
diagnosis mainly focuses on rotating machinery intelligent diagnosis, such as bearings and
gearboxes, and the majority of these datasets were collected on analog equipment. Due
to the fact that such equipment has great lubrication, and because its sound features are
not obvious, the results of vibration signals are better than sound signals. However, in
large-scale and heavy-duty reciprocating equipment, due to the technical requirements for
good stability, the vibration effect of key working parts is not obvious, and the sound is
relatively loud. In light of this condition, the use of sound characteristics can achieve more
comprehensive results.

Under normal circumstances, if a convolutional neural network is used to identify
a mechanical state, a large number of normal and abnormal sound samples are needed.
In real work, normal sounds are often smooth and regular, and they are accompanied
by an obvious abnormal sound when a machine breaks down; however, it is difficult
for us to collect abnormal data without deliberately damaging machinery. In 2018, Dan
Hendrycks et al. [14] proposed a novel OOD detection baseline with deep learning based on
abnormal detection. The model used positive samples as in-distribution data by training the
positive samples, and the in-distribution data and out-of-distribution data could be clearly
distinguished; this approach is suitable for actual situations related to mechanical fault
detection. Moreover, Liang et al. [15] improved the baseline and proposed an ODIN (Out-of-
distribution detector for Neural networks) model, while Devries et al. [16], Shalev et al. [17],
Denouden et al. [18], Abdelzad et al. [19], and others improved the baseline in different
directions, thus improving detection efficacy.

Based on the above description, we propose the use of deep convolutional neural
networks to extract sound features, and we use OOD detection technology to recognize
mechanical sub-health state with normal sample data as input. The remaining part of
this paper includes four sections: Section 2 introduces the dataset collected and organized
by us. Section 3 introduces our experimental method. Section 4 uses three interrelated
experiments to prove that using sound features and OOD detection can greatly identify
mechanical sub-health state. Finally, a conclusion is drawn in Section 5.

The contributions of this paper can be summarized as follows:

(1) A kind of mechanical running state is defined, which is called a mechanical sub-health
state, and it has a positive effect on maintaining machining accuracy and preventing
mechanical damage in real work;

(2) We prove that the working sound of heavy machinery can identify the state of a
machine, as well as the enhancement effect of OOD detection on the adaptability and
recognition accuracy of our model. Since there are no similar public data, a planer
sound dataset was collected and collated by us;
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(3) A baseline model for identifying mechanical sub-health states is proposed. Then, the
performance of the basic model is improved by adding an auxiliary decision module
and using Mahalanobis distance to represent the distances between samples.

2. Dataset

The dataset we collected is the sound of a traditional mechanical shaping machine
when it is working, including the intact sound/sub-healthy sound made by machining
four materials in six gears. Each recording is a single channel audio of 10 s, which includes
the sounds of the machine, its related equipment, and environmental noise. The four
materials are:

• Smooth cast iron;
• Rough cast iron;
• Cast aluminum;
• Cold-rolled carbon steel.

2.1. Recording Process

We use a square microphone array composed of four different microphones to col-
lect sound. The distribution of the microphone array is shown in Figure 1. By using a
microphone array, single-channel and multi-channel methods can be evaluated. In order to
simplify the task, only the first channel record in the multichannel is used, and multichan-
nel recording will be used in future research. The microphone array was kept at a distance
of 40 cm from the machine and recorded a 10 s sound clip. In addition, each machine sound
was recorded in a separate session. In the running state, the sound of the machine was
recorded as a 16-bit audio signal sampled at 16 kHz in the reverberation environment.
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2.2. Introduction to Datasets

As shown in Figure 2, the dataset contains the working sounds of four materials in six
gear; each part has a complete training and testing set. Training data include intact data and
sub-health data, while test data include normal data and abnormal data. For each part, this
dataset provides: (i) intact status data recorded with a new cutter (clips of about 50 normal
sounds from the source domain used for training), as shown in Figure 3; (ii) sub-health
sample data that were recorded using cutters that were operating continuously for half
a year, including 50 sub-health status sounds for training; (iii) abnormal samples data,



Machines 2021, 9, 179 4 of 14

which were composed of 30 normal sounds with Gaussian distribution and random noise
generated by uniform distribution; and (iv) normal sample data, which were about 15 intact
and sub-health sample data in the target domain, as shown in Figure 4. In conclusion, each
part contained 160 different sound samples, a total of 960 sample data for each material,
and 3840 samples were included in the original dataset.
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3. Materials and Methods
3.1. Pre-Process and Feature Extration

Pre-processing was divided into four steps. The first step was to pre-emphasize the
input digital voice signal in order to emphasize and increase the role of high frequency
in the signal and remove the role of influences such as “lip radiation”. The first-order
FIR of high-pass digital filter is used to achieve pre-weighting generally, and the transfer
function is

H(Z) = 1− αz−1 (1)

The α is the pre-weighting coefficient with a range of 0.9 < α < 1.0. x(n) is the value
of speech sampling at time n, and y(n) = x(n)− αx(n− 1) is the result after pre-adding
and re-processing, where its value is α = 0.98.

The second step was sub-frame. In order to make the transition between frames
smooth and maintain its continuity, we adopted an overlapping segmentation method.
The third step was to add a window and multiply each frame by the Hamming window to
increase the continuity between the left and right ends of the frame. Suppose the signal
after framing is S(n), n = 0, 1, · · · , N − 1, N; then, after obtaining the Hamming window
S′(n) = S(n)×W(n), the form W(n) is as follows:

W(n, a) = (1− a)− a× cos
[

2πn
N − 1

]
, 0 ≤ n ≤ N − 1 (2)

Different a value will produce different Hamming windows, so we take a value of 0.46.
The fourth step was fast Fourier transform. The time-domain diagram of the data is

shown above. It is not easy to ascertain the characteristics of the signal from the diagram.
The general method is to perform fast Fourier transform on each frame to attain the energy
distribution in the spectrum. Different distributions represent different characteristics.

Finally, the feature collection work was carried out. The feature extraction method we
used is currently the most commonly used log-Mel filter in audio processing. The principle
of log-Mel is to simulate the structure of the human ear and filter sound. For two sound
signals of different loudness, the treble is masked by the bass. Fourier transformation
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is a step of the entire model, and its purpose is to obtain the energy distribution on the
frequency spectrum. Signal energy is used as its basic feature, and signal processing can be
used as the output feature. This characteristic is not affected by the nature of the signal,
and the corresponding characteristics can be obtained regardless of whether it is treble
or bass. This feature has a better recognition effect when the signal-to-noise ratio is low.
Figure 5 shows the log-Mel spectrogram of each material we enumerated.
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3.2. The Proposed Model

A simple sub-health data recognition model was established by two convolutional
neural networks (the flowchart is shown in Figure 6).

In the model, CNN-1 and CNN-2 are exactly the same two VGG16 networks (the
network structure is shown in Figure 7). VGG16 [20] contains 13 convolutional layers,
3 fully connected layers, and 5 pool layers. Among them, the convolutional layer and
the fully connected layer have weight coefficients, so they are also called weighted layers,
and the total number is 16. The convolutional layers all use the same convolution kernel
parameters. The size of the convolution kernel used by the convolutional layer (kernel
size) is 3; in other words, the width and height are 3, and 3 × 3 is small. The size of the
convolution kernel, combined with other parameters (stride = 1, padding = same), enables
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each convolutional layer (tensor) to maintain the same width and height as the previous
layer (tensor).
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In training process, intact data are used not only to train the CNN-1 model, but also to
train the CNN-2 model, together with sub-health data. The input data in testing would be
entered from CNN-2. If they are the normal data that would be entered into the CNN-1
network, it is necessary to determine whether they are sub-health data.

3.3. OOD Detection Principle and Fusion

Hawkins found that, in the actual classification task, many instances of high-confidence
prediction resulted in errors. If the classifier cannot advise whenever this error occurs,
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it can cause serious problems and be limited in practice. Hawkins proved the following
experimentally:

(1) The model can provide a high softmax probability in the OOD samples, and it also
has some misclassified samples; in addition, probability cannot directly represent
confidence;

(2) Currently classified samples have a higher softmax probability than misclassified
samples and OOD samples.

Therefore, the model shows a difference in softmax prediction probability distribu-
tion between the normal classification samples and the OOD samples. By selecting the
appropriate threshold, the ID and OOD samples can be distinguished effectively. We
incorporate this idea into our model [21–25]. According to the method proposed by OOD
detection, we obtained the values of AUPR Succ and AUPR Err (as shown in Table 1). The
large difference between AUPR Succ and AUPR Err in the two networks indicates that
the predicted threshold score can be set to detect whether a sample is in the correct range;
Wilcoxon rank sum test was used to verify this conclusion.

Table 1. AUPR is the area under the precision recall curve, reflecting the relationship between
precision and recall. Examples of correct classification are treated as positive classes, denoted as Succ;
the misclassified example is treated as a positive class, denoted as Err. The “Base” value is obtained
using a random detector.

CNN-1 CNN-2

AUPR Succ/base AUPR Err/base AUPR Succ/base AUPR Err/base
91/76 43/24 96/79 62/21

Finally, we set the output vector of the neural network as z1, z2, · · · , zi; then, the
resulting expression after calculation by the softmax layer was as follows:

Si =
ezi

ez1 + ez2 + · · ·+ ezi
Si ∈ [0%, 100%] (3)

If the threshold is set to Q (1 > Q > 0.5), and the probability of S1 predicted
classification obtained through the VGG network is P, the final classification result is{

1
0

P ≥ Q
P < Q

, where 1 represents in-distribution data and 0 represents OOD data.

3.4. Further Improvements to the Model

In order to achieve better results, we made two more improvements to the base model,
which resulted in our final model. The two further improvements are as follows:

Improvement 1: A variational autoencoder auxiliary module added to the network
structure (as shown in Figure 8);
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Improvement 2: Using Mahalanobis distance to measure the distance between a
sample and training data in a manifold space.

An autoencoder is an unsupervised learning algorithm, which is mainly used for data
dimension reduction or feature extraction (the structure is shown in Figure 9). The encoder
part creates a hidden layer (or multiple hidden layers) containing low dimensional vectors
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of input data features. The decoder reconstructs the input data through the low dimensional
vector of the hidden layer [26]. As we all know, it is easier to distinguish normal samples
from abnormal samples in a high-dimensional space, so the output of the decoder greatly
improves the decider. The variable autoencoder assumes that the hidden layer after neural
network coding is a standard Gaussian distribution; it then samples a feature from the
distribution and decodes that feature. The expected result is the same as that of the original
input. The loss is almost the same as that of autoencoder, but the regularization term
of KL divergence of coding inference distribution and standard Gaussian distribution is
increased. The variable autoencoder generates a potential probability distribution p(z|x )
for each input x, and then randomly samples from the distribution to obtain a continuous
and complete potential space, which solves the problem that the autoencoder cannot be
used to generate [27–32].
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In general, a variable autoencoder is used to add constraints to an encoder, i.e., to
force it to produce potential variables that obey the units of Gaussian distribution. One of
its advantages is its ability to directly compare differences between reconstructed data and
original data, which can play a decisive auxiliary role in our convolutional neural network.

Mahalanobis distance is an effective way to calculate the similarity of two unknown
samples as it can measure the distance between points and a distribution [33]. Therefore,
we use it to measure the distance between sample x and the ID training data in the manifold
space [34–36]:

DM(x) =

√
(x− µ̂)T ˆ∑

−1
(x− µ̂) (4)

µ̂ and ∑̂ are the value of mean and covariance matrices of the multivariate Gaussian
distribution. Mahalanobis distance is a constant scale and can also consider the relationship
between different dimensions. Finally, using reconstruction error and Mahalanobis distance
to detect OOD samples, we find the following:

novely(x) = α · DM(E(x)) + β · λ(x, DM(E(x))) (5)

4. Experiment and Discussion
4.1. Parameter Introduction

There are several fixed detection indicators for OOD detection: true positive rate
(TPR), TP, and FN represent true positive and false negative, respectively

TPR =
TP

TP + FN
(6)
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False positive rate (FPR) is calculated in Equation (7), where, FP and TN indicate false
positive and true negative, respectively.

FPR =
FP

FP + TN
(7)

Throughout the experiment, we set two core indicators to measure the performance
of our model. These two indicators are AUC value and pAUC value. Area under curve
(AUC) represents the ability of the model to distinguish between positive and negative
samples, and its value is between 0 and 1. The larger the AUC, the better the performance.
pAUC is calculated from a part of the ROC curve within a predetermined range. In our
measurements, pAUC was calculated as the AUC with a low false positive rate (FPR) in
the range of [0, 0.1]. Thus, pAUC is important for stopping a system from sending out false
alarms—it is not trusted, like “The boy who cried wolf”—so we added it into consideration.

4.2. Results and Discussion

In order to show the effect of OOD detection, we first obtained a group of experimental
results that were not integrated into the principle of OOD detection, as shown in Table 2.

Table 2. Sub-health data recognition results before adding OOD detection.

Smooth Cast Iron Rough Cast Iron Cast Aluminum Cold-Rolled
Carbon Steel

AUC pAUC AUC pAUC AUC pAUC AUC pAUC

CNN-1/
Damage 72.31% 51.52% 75.01% 59.77% 69.82% 50.13% 78.29% 61.75%

CNN-2/
Sub-health 68.88% 48.72% 71.49% 53.00% 67.30% 47.08% 73.61% 58.71%

The experimental results are shown in Table 2. The average AUCs of the two neural
networks in the baseline model were 74.11% and 70.32%, which preliminarily realized the
identification of mechanical diagnosis and sub-health state, respectively. Therefore, we
prove that it is feasible to judge a mechanical state using sound characteristics when a
machine is working.

The experimental results with the addition of the OOD detection method are shown
in Table 3. OOD detection only needs to train a network within the distributed data to
achieve a suitable classification performance. Moreover, OOD detection is also suitable for
detecting mechanical diagnosis with more normal data and fewer abnormal data.

Table 3. Sub-health data recognition results after adding OOD detection.

Smooth Cast Iron Rough Cast Iron Cast Aluminum Cold-Rolled
Carbon Steel

AUC pAUC AUC pAUC AUC pAUC AUC pAUC

CNN-1/
Damage 79.31% 56.87% 81.70% 64.70% 77.62% 54.89% 85.16% 66.75%

CNN-2/
Sub-health 74.42% 52.53% 76.69% 60.04% 71.12% 51.20% 80.34% 62.29%

The experimental results show that the improved model is significantly better than
the baseline system. Additionally, the average AUCs are 80.95% and 75.64%, respectively,
which is 6.84% and 5.32% points higher than the baseline system.

Experimental results of the improved model are shown in Table 4. According to the
experimental results, we know that the average AUC of our final model reached 84.22%
and 79.20%, which increased by 3.27% and 3.56%, respectively, compared with the previous
improvement. The TPR and FPR values of the three experiments are summarized in
Table 5. It can be seen from Figure 10 that the model proposed in this paper can effectively
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identify different states in the dataset by the mechanical sound features, so as to realize the
recognition of a mechanical sub-health state; each improvement improves the recognition
effect of the model. In addition, it can also be seen that there are obvious differences
between the effects of different materials, mainly because of the different hardness and
smoothness of the materials, resulting in different degrees of sound characteristics.

Table 4. Sub-health data recognition results after the addition of auxiliary network.

Smooth Cast Iron Rough Cast Iron Cast Aluminum Cold-Rolled
Carbon Steel

AUC pAUC AUC pAUC AUC pAUC AUC pAUC

CNN-1/
Damage 81.74% 57.47% 85.46% 70.10% 80.74% 56.47% 88.92% 71.30%

CNN-2/
Sub-health 76.89% 56.22% 79.32% 64.70% 75.85% 55.54% 84.74% 65.19%

Table 5. TPR and FPR results of three experiments. From top to bottom: VGG16 network, VGG16+OOD network,
VGG16+OOD+ auxiliary network. All values are in %.

Smooth Cast Iron Rough Cast Iron Cast Aluminum Cold-Rolled Carbon
Steel Detection

Time(s)
TPR FPR TPR FPR TPR FPR TPR FPR

1
CNN-1/
Damage 70.4 9.5 71.0 9.6 69.2 8.7 75.5 7.1

323
CNN-2/

Sub-health 68.9 5.9 69.3 5.5 68.2 6.0 74.7 3.6

2
CNN-1/
Damage 74.5 7.4 74.2 7.4 72.9 8.2 77.3 6.2

384
CNN-2/

Sub-health 73.7 3.4 72.8 3.9 72.6 4.1 76.7 2.3

3
CNN-1/
Damage 75.8 6.6 76.0 6.5 73.3 8.0 78.1 5.8

571
CNN-2/

Sub-health 74.4 3.3 73.6 3.4 74.0 3.3 77.6 2.1
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4.3. Comparison of Effects under Different Conditions

The dataset based on sound characteristics is only the dataset provided by DCASE
2020 Task 2. This dataset only contains the sound of the machine working normally and
the sound after damage. Therefore, it is only possible to compare the effects of mechanical
fault diagnosis, as shown in Table 6.
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Table 6. Comparison of mechanical fault identification module and baseline system of DCASE 2020
Task 2. All values are in %.

AUC/pAUC Fan Pump Slider Valve ToyCar ToyConveyor

Baseline 82.80/65.80 82.37/64.11 79.41/58.87 57.37/50.79 80.14/66.17 85.36/66.96
Our model 93.65/82.47 93.68/91.2 97.71/80.55 91.48/89.74 86.06/70.01 88.43/73.44

In order to further prove the performance of our proposed method, we added a
comparison with two classic neural network models—AlexNet [37] and ResNet [38]. The
comparison results are shown in Table 7.

Table 7. Comparison of the proposed method with other methods. All values are in %.

Sub-Health
Identification

Smooth Cast Iron Rough Cast Iron Cast Aluminum Cold-Rolled Carbon Steel

AUC pAUC AUC pAUC AUC pAUC AUC pAUC

AlexNet 65.36% 45.71% 67.00% 51.03% 64.52% 44.93% 71.55% 56.87%
ResNet 70.57% 50.76% 71.33% 53.19% 69.21% 50.01% 77.65% 60.14%

Our model 76.89% 56.22% 79.32% 64.70% 75.85% 55.54% 84.74% 65.19%

5. Conclusions

In this paper, a method for identifying mechanical sub-health state based on sound
characteristics was proposed. By extracting the sound characteristics of the working parts
of heavy machinery when working, we solved the problem of poor recognition effects of
heavy machinery due to the inconspicuous characteristics of vibration signals. The collected
data of the bullhead planer were applied for the recognition experiment of a sub-health
state. It was found that a good recognition effect could be achieved by a simple neural
network; however, because there were only positive samples, the recognition effect could
not be improved further, even if the parameters were continuously modified. Through a
fusion experiment with OOD detection, it was found that OOD detection was an effective
way to solve a single positive sample; then, the auxiliary decision module and the change in
distance representation in its structure could effectively improve the recognition effect. The
identification of mechanical sub-health status can ensure the safe operation of equipment,
reduce maintenance costs, and prevent the occurrence of major accidents. Therefore, sub-
health detection is more practical than fault detection. In future work, we will use a more
efficient and precise neural network model and a more reasonable framework to improve
accuracy and efficiency, and we will draw on more ideas to continuously improve the
efficacy of our model’s recognition.
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