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Abstract: Thermal error is one of the main sources of machining error of machine tools. Being
a key component of the machine tool, the spindle will generate a lot of heat in the machining
process and thereby result in a thermal error of itself. Real-time measurement of thermal error will
interrupt the machining process. Therefore, this paper presents a machine learning model to estimate
the thermal error of the spindle from its feature temperature points. The authors adopt random
forests and Gaussian process regression to model the thermal error of the spindle and Pearson
correlation coefficients to select the feature temperature points. The result shows that random forests
collocating with Pearson correlation coefficients is an efficient and accurate method for the thermal
error modeling of the spindle. Its accuracy reaches to 90.49% based on only four feature temperature
points—two points at the bearings and two points at the inner housing—and the spindle speed. If the
accuracy requirement is not very onerous, one can select just the temperature points of the bearings,
because the installation of temperature sensors at these positions is acceptable for the spindle or
machine tool manufacture, while the other positions may interfere with the cooling pipeline of
the spindle.

Keywords: Gaussian process regression; machine learning; machine tool spindle; Pearson correlation
coefficient; random forest; thermal error

1. Introduction

The machining errors of machine tools mainly include geometrical errors, thermal
errors, errors caused by cutting-force, fixture-dependent errors, etc. [1–4]. Bryan [1],
Ramesh [2], and Li et al. [3] mentioned that thermal errors account for 40% to 70% of
the total machining errors. The heat sources in the machining process of machine tools
include two categories: internal heat sources, and external heat sources [2,4]. Internal heat
sources include the heat produced by cutting, the heat induced by the friction of bearings,
spindle, gearbox, and motion guides; the heat generated in the motor; and the heating
or cooling effects produced by the cooling system. The external heat sources include
ambient temperature changes, solar radiant heat, and human body radiant heat. Being
a key component of the machine tool, the spindle will generate a lot of heat during the
machining process and thereby result in a thermal deformation/error of itself. The main
heat sources of the spindle are the friction of bearings and the heat generated by the motor.
Takabi [5] mentioned that the heat-generation of the bearings is affected by the bearing
type, the torque and preload applied on the bearing, the lubrication, etc. The heat transfer
of the spindle involves complex physical phenomena such as conduction, convection, and
radiation because the spindle is composed of many components of different materials and
it rotates at high speeds during machining process.

The design and manufacture of machine tools cannot completely solve the afore-
mentioned diverse machining errors appearing in machining process [1,2,4]. A feasible
solution is error compensation in the machining process. For compensation of thermal
errors during the machining process, the machine tool should be capable of knowing
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the real-time thermal errors. However, the thermal errors of the machine tool cannot
be measured at any time during the machining process, because this will interrupt the
machining process and thereby reduce the production efficiency. A feasible way to realize
the thermal error compensation in the machining process is by estimating the thermal error
from the temperature data of the machine tool, because measuring temperature is much
easier than measuring thermal deformation, and this will not interrupt the machining
process. However, the relationship between the temperature field of the machine tool and
its thermal deformation/error must be known. This problem has to be solved prior to
thermal error compensation.

The thermal error of the spindle accounts for the majority of the thermal errors of
the machine tool, because the spindle will generate a lot of heat in the machining process.
This heat mainly comes from the friction of bearings, the cutting heat of the tool, and the
heat generation of the motor, etc., which results in the thermal error of the spindle and
thereby changes the relative position of the cutting tool and the workpiece. Therefore, this
paper intends to establish a method to estimate in real time the thermal error of the spindle
in the machining process based on the spindle’s temperature data and rotational speed.
To achieve this goal, one has to solve two problems: one is the temperature field of the
spindle under diverse machining parameters, and the other is the relationship between the
temperature field of the spindle and its thermal error.

In the absence of cooling oil/water lines, the heat convection between the shaft of
the spindle and the atmosphere around the shaft can be regarded as the heat dissipation
mechanism of the shaft. Kendoush [6] derived an analytical solution of forced heat con-
vection between a rotating shaft and the surrounding atmosphere, which was useful to
evaluate the heat dissipation of the spindle. Industry and academia commonly use the
finite element method (FEM) or the finite difference method (FDM) to analyze the complex
heat transfer of the spindle. FEM and FDM can analyze the temperature field of the spindle
at the transient or steady state and then use the temperature distribution to calculate the
thermal deformation/error of the spindle [7–11]. More efficient is the thermal network
model (TNM), which lumps the temperature field of the spindle into several feature tem-
perature points called nodes, and these nodes are networked by the lumped parameters of
thermal resistances, thermal capacitances, and heat sources. The lumped parameters are
determined based on the theory of heat transfer and empirical formula and the measured
nodes temperatures [12–15].

As mentioned, heat transfer of the spindle is very complex; furthermore, its heat
generation depends on the bearing type, the torque and preload applied to the bearing,
the lubrication, the diverse machining parameters, etc. Therefore, an analytical solution
is not a feasible approach to obtain the temperature field of the spindle, while FEM and
FDM are too time-consuming to meet the real-time requirements in the machining process.
The lumped parameters in TNM are determined based on the theory of heat transfer and
empirical formulas, which means that TNM only applies to certain idealized assumptions.
Therefore, TNM cannot meet the diverse machining parameters in practice. Measuring
temperature is much easier than measuring thermal deformation, and, furthermore, the
latter will interrupt the machining process. Based on the aforementioned considerations,
the authors intend to adopt a data-driven approach to establish a machine learning model
for estimating the thermal error of the spindle from its several feature temperature points
and rotational speeds.

The selection, including the location and number, of the feature temperature points
will dramatically affect the accuracy and efficiency of the spindle’s thermal error model
based on machine learning. Yan and Yang [16] adopted grey correlation theory (GCT)
to determine the location and number of feature temperature points, which reduced the
number of temperature points from 16 to 4 and improved the accuracy of the thermal
error model. Lo et al. [17] adopted the Mallows’s Cp in Statistics to group the temperature
points and remove the less relevant temperature points. Yuan and Ni [18] adopted the
coefficient of correlation (CC) to group the temperature points, and then, in each group,
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selected the point most correlative to the thermal error to conduct thermal error modeling.
Han et al. [19] adopted fuzzy c-means (FCM) cluster analysis to group the temperature
points, and then in each group selected the point closest to the center point to conduct
thermal error modeling. Yang et al. [20] adopted k-harmonic means clustering (KHM) to
reduce the number of feature temperature points for the thermal error modeling of machine
tools. FCM and KHM have similar clustering effects, but KHM has faster calculation speed
than FCM. However, different initial partitions will lead to different final clusters of
KHM, and thereby lead to different selections of feature temperature points. This is the
disadvantage of KHM. Krulewich [21] adopted the Gaussian integration model (GIM) to
select the temperature points and model the thermal error of a machine tool.

After determining the feature temperature points, it is necessary to find the relation-
ship between the feature temperature points and the thermal error of the spindle. Referring
to the published literature [3], the thermal error modeling methods include the least square
method, multi-variable regression, grey system, neural network, support vector machine,
hybrid model, etc. Li and Zhao [22] adopted the least square method (LSM) to find the
polynomial function relationship between the axial deformation of the spindle and its
feature temperature points. Ruijun et al. [23] adopted the multiple linear regression (MLR)
model to model the relationship between the multiple temperature points of the spindle
and its thermal error and found that MLR is more accurate than the back propagation neu-
ral network (BPNN) model and the radial basis function neural network (RBFNN) model,
but the disadvantage is worse reliability. Yang and Ni [24] adopted the system estimation
(SE) method to model the dynamic thermal error of the spindle based on the thermo-elastic
theory and pseudo-hysteresis. The dynamic model is more reliable than the previous static
model. Creighton et al. [25] adopted linear regression (LR) to determine the thermal error
model of the spindle that could predicts the thermal error from the rotational speed and
steady-state temperature of the spindle. Chen et al. [26] adopted the multiple variable
regression (MVR) method and the neural network (NN) for thermal error modeling. Both
MVR and NN have their own systematic and computerized processing methods to au-
tomatically find the non-linear and interactive terms in different temperature variables.
Li [27] adopted the AutoRegressive method to model the thermal error of the spindle,
which used the thermal error at the previous moment of the spindle and its rotational
speed to estimate the current thermal error. Pahk and Lee [28] adopted three methods,
namely LR, NN, and SE, to obtain the model between the spindle’s temperature increase
and the thermal error and compared the performances of the three methods. Shi et al. [29]
adopted fuzzy c-means clustering and correlation analysis to select feature temperature
points and used the Bayesian neural network to establish a thermal error model. However,
the disadvantage of the Bayesian neural network is that it requires a lot of calculations, and
its modeling is poor with high-dimensional data.

In summary, a thermal-error model that can accurately estimate the thermal error from
real-time temperature data is required to compensate in real-time for the thermal error in
the machining process. According to the above literature survey, the methods of thermal
error modeling can be roughly divided into three categories: FEM, MVR, and machine
learning. The accuracy of FEM depends on whether the heat source, the coefficients of heat
transfer, and the boundary conditions are clearly defined [30,31]. However, the spindle is
composed of many components of different materials, and its heat sources and boundary
conditions are highly dependent on assembly and machining parameters. Thereby, it is
difficult to define commonly applicable heat sources, coefficients of heat transfer, and
boundary conditions for any types of machining parameters and conditions. Thus, FEM
is not suitable for real-time thermal-error compensation in machining processes. MVR
is commonly adopted to find the mathematical relationship of multiple inputs and a
single output, such as between the temperature or speed of the spindle and its thermal
error [12,32]. However, the MVR model would lack robustness if the data samples were
small and dirty. Lei et al. [33] revealed that random forest is suitable for poor data samples
and used it to model the thermal error of the spindle of a boring machine. Machine learning
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is very suitable for a system with multiple inputs and multiple outputs, especially suitable
for a system that is difficult to describe in terms of mathematical expression.

In order to adapt to the changing machining conditions and environment, the thermal
error model must be verified and updated with the continuous use of the machine tool.
Therefore, the authors decided to adopt machine learning to set up the thermal error model
of a spindle. This paper will adopt two methods, namely Gaussian process regression
(GPR) and Random Forest (RF), to model the thermal error of the spindle and compare the
performance of these two methods. RF is suitable for small and dirty data [33], and GPR can
give a reliable estimate of their own uncertainty, namely the probability distribution [34].
The inputs of the thermal error model are the feature temperatures of the spindle and its
rotational speed, while the output is the thermal error of the spindle. Then, the authors
adopted the Pearson correlation coefficient (PCC) method to reduce the number of the
feature temperature points to search for a more efficient and economic thermal error
model for the spindle. GPR [35,36] has high robustness and accuracy and is easy to
implement. It can adjust the hyperparameters by maximizing the marginal likelihood and
by accurately optimizing them according to the value of the hyperparameters. Furthermore,
the tradeoff between penalty and data-fit in GPR is automatic, that is, it is needless to set
the weighting parameter through other external methods. RF [37,38] is very suitable for
processing high-dimensional data and can handle both discrete and continuous data. It is
not necessary to normalize the data and easy to adjust hyperparameters, and has less of an
over-fitting problem.

2. Methodology

In the following subsections, the authors describe the spindle running-in setup for
the experiment, the method of feature temperature measurement, the method of thermal
error measurement, and the machine learning methods for the thermal error model of
the spindle.

2.1. Spindle Running-in Setup

This paper used a spindle running-in system (Figure 1a) to demonstrate the present
methodology [15]. The spindle, a belt-driven spindle manufactured by the Precision
Machinery Research Development Center (PMC) in Taiwan, is screwed on the running-in
platform through the flange. The power source of the spindle is a 7.5 kW motor, and the
motor controller controls its rotational speed. The personal computer is responsible for
collecting the measurement data and controlling the motor speed, namely the spindle
speed. The authors used ten Pt1000 resistance temperature detectors (RTDs) (Figure 1b) to
acquire the temperature data of the spindle, and two Keyence LK-H055 laser displacement
sensors (Figure 1c) to measure the axial displacement of the flange and the shaft end.
Table 1 lists the specification of the sensors.

Table 1. The specifications of the sensors.

Specification of the Temperature Sensor Probe Specification of the Laser Displacement Meter

Sensor type PT1000 (A class) Sensor type Keyence LK-055
Accuracy (◦C) ±(0.15 ± 0.002|t|) Reference distance (mm) 50

Measurement range (◦C) −50 to 300 Measurement range (mm) ±10
Excited current limit (mA) ≤5 Light source Red semiconductor laser

Thermal response (s) ≤0.3 @ air Wave length (nm) 655
Package material Stainless steel 304 Light spot diameter (µm) 50 × 2000
Protection level IP 65 Linearity ±0.02%

Repeatability (µm) 0.025
Sampling time (µs) 20
Package material Al
Protection level IP 67
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Figure 1. The spindle running-in experiment setup: (a) the scheme of the spindle running-in setup [15], copyright
authorization has been obtained; (b) the side-view photograph of the spindle and the temperature measurement RTD;
(c) the front-view photograph of the front end of the spindle and the laser displacement sensors.

2.2. Feature Temperature Measurement

The authors used Pt1000 RTDs to measure the temperature of the spindle. For details
of the architecture of the sensor and circuit, one can refer to Hu’s (one of the authors of
this paper) published literatures [12,32]. The number and position of the temperature
points have an influence on the accuracy of the thermal error modeling [39]. It is better to
select the positions where the temperature is highly correlated to the thermal error, and
these positions are called the feature temperature points. There are some guideline for the
selection of the feature temperature points [40]: the temperature points should be near the
heat source; the feature temperature points should be able to describe the temperature field;
and the temperature points should be closely related to the thermal error. Based on the
aforementioned literatures, the authors selected ten feature temperature points (Figure 2):
front bearings A and B; rear bearings C and D; front and rear outer housings; front and rear
inner housing; mid inner housing; and ambient. These feature temperature points were
measured by the use of ten Pt1000 RTDs.
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Figure 2. The feature temperature points [15], copyright authorization has been obtained.

The authors collected the temperature data under the two conditions of constant speed
and variable speed. The constant speed conditions were 5000, 6000, 7000, and 8000 rpm; the
variable speed conditions were divided into four stages of 5000, 6000, 7000, and 8000 rpm;
and speeds were increased step-by-step from low to high. The data samples were collected
at night because of no sunshine. The experiments were carried out in a laboratory with



Machines 2021, 9, 184 6 of 18

an air conditioner, and the ambient temperature and humidity were controlled within
25 ± 1 ◦C and 55–65%, respectively. Each constant speed and variable speed condition
performed 3 runs on different days. Each constant speed condition lasted 6.5 h (Figure 3);
while each speed stage of the variable speed condition lasted 1.6 h and thus 6.4 h in
total (Figure 4). Figure 3 shows that the temperature initially increased rapidly and then
reached stable conditions. The temperatures of the rear bearings were higher than the
other temperature points; this is because the rear bearings were near the driving belt. The
temperatures of the front bearings were lower than the other temperature points; this is
because the diameter and volume of the spindle near the front bearings were larger and
thus had a larger heat capacity.
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2.3. Thermal Error Measurement

The spindle was screwed to the ring bracket of the running-in platform through its
flange. Ideally, the flange is a fixed support of the spindle. However, the tensile force
of the belt will exert a downward lateral force on the spindle and cause the rear end of
the spindle to tilt downward slightly (Figure 5) because the ring bracket is not perfectly
rigid. Therefore, the authors used two Keyence LK-H055 laser displacement sensors
(Figure 1c) to measure the axial displacement of the flange and the shaft’s front end. Thus,
subtracting the displacement of the flange from that of the shaft’s front end gave the
thermal deformation/error of the spindle. Figure 6 shows the thermal error under the
constant speed and the variable speed. The speeds of the constant speed experiments
were, respectively, 5000, 6000, 7000, and 8000 rpm; while the speeds of the variable speed
experiment were divided into four stages, namely 5000, 6000, 7000, and 8000 rpm, and
were sped up from low to high. This figure shows that the thermal error initially increased
rapidly and then reached stable conditions. This phenomenon is consistent with that of the
temperature (Figures 3 and 4).
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2.4. Training Data and Validation Data

Data samples were divided into training data group and validation data group. Each
rotation speed mode performed 3 runs on different days. Therefore, there were 3 training
data sets for each rotation speed mode (Table 2). Similarly, in the validation data group,
there were 3 validation data sets for each rotation speed mode. The validation data group
was collected on different days from the training data group and did not participate in the
model training. Each data set contained the time series data of the ten feature temperature
points of the spindle and its rotational speed and thermal error, similar to Figures 3, 4 and 6.
In the training process of the thermal error model, the temperature and rotation speed
data in the training data sets were the input, while the thermal error data were the output.
The temperature and rotation speed data in the validation data sets were to be input to
the thermal error model to predict the thermal error and then to compare the predicted
thermal error with the thermal error data in the validation data sets to validate the thermal
error model.

Table 2. The list of the training and testing data sets.

Data Group Data Set Speed (rpm)

Training group

T5000,1, T5000,2, T5000,3 5000
T6000,1, T6000,2, T6000,3 6000
T7000,1, T7000,2, T7000,3 7000
T8000,1, T8000,2, T8000,3 8000

Tvar,1, Tvar,2, Tvar,3 5000→6000→7000→8000

Validation group

V5000,1, V5000,2, V5000,3 5000
V6000,1, V6000,2, V6000,3 6000
V7000,1, V7000,2, V7000,3 7000
V8000,1, V8000,2, V8000,3 8000

Vvar,1, Vvar,2, Vvar,3 5000→6000→7000→8000

2.5. Thermal Error Modeling by Machine Learning

In the following sub-subsections, the authors briefly describe Gaussian process regres-
sion (GPR) and random forest (RF) adopted in the thermal error modeling of the spindle.

2.5.1. Gaussian Process Regression (GPR)

GPR was conducted to find a function that can describe the relationship between the
independent variables (inputs), x, and the dependent variables (outputs), y, for a given
data set, and that can predict the corresponding dependent variables based on the new
independent variables. For the thermal error model of the spindle, the inputs, x, are the
time series data of its feature temperature points and the output, y, is the time series data
of its thermal error. It does not need to choose the form of the fitting function to fit the
relationship between the independent variable and the dependent variable. For a given
data set, there will be many potential functions that can be used to fit the relationship
between the input and output data. GPR will assign a probability value to each potential
function and uses the mean value of the distribution of the probability values to represent
the most possible feature of the data set. A Gaussian process is composed of the mean
function and the kernel function. Through modifying the mean function and the kernel
function, one can obtain a good machine learning model to map the input and output data.
For details of GPR, one can refer to [41].

The authors adopted the MATLAB built-in GPR to model the thermal error of the
spindle. The procedure is as follows:

1. Use the “Import Data” to import the training data sets and the testing data sets;
2. Choose the “Machine Learning and Deep Learning” variety in the App toolbar, and

then use the “Regression Learner”;
3. Choose a training data set, set the thermal error data to response, set the temperature

data to predictors, and set “validation” to prevent the model from overfitting;
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4. Choose the Exponential of Gaussian Process Regression, one can use “Advanced” to
adjust the training parameters;

5. Click “Export Model”, input testing data set to the model to get a response, get mean
error and accuracy by calculating the true value, and predicted value based on the
testing data set.

2.5.2. Random Forests (RF)

RF is a method of machine learning proposed by Leo Breiman [42] in 2001. RF
is composed of many trees, called decision trees, and there is no correlation between
each decision tree. The decision trees classify the data in the training data sets layer by
layer until they can no longer be classified. There are many types of decision trees, such
as classification trees (CT), regression trees (RT), and classification and regression trees
(CART) [43]. CT classifies the data into multiple classes; therefore, each node may split into
many branches, and the leaf/output of CT is a class. RT classifies the data based on the
threshold values; therefore, each node may split into many branches, and the leaf/output
of RT is a number. This paper is to find the relationship between the feature temperature
points of the spindle and its thermal error; therefore, it is a regression problem and the
decision tree is RT. RF is composed of many CARTs. CART is a combination of CT and RT,
but the difference is that its node will only split into two branches, that is, it is a binary tree.
Its advantage is less prone to overfitting. This paper uses RF to model the thermal error of
the spindle; the output of RF is the mean value of all CARTs. For a given training data set,
T = {(x1y1,), (x2,y2), (x3,y3), . . . , (xn,yn)}, where x is an 11-dimensional vector because, in
addition to the spindle speed, there are 10 feature temperature points of the spindle, and
y is the thermal error. The goal of regression is to find a model to satisfy all the elements
in the training data set, so that the mean square error is the smallest. The details of RF
can refer to [42,43]. The authors used Python programming, and the source code is listed
in Appendix A.

3. Results

This section shows the modeling results of GPR and RF. In addition, since ten feature
temperature points is too many and some temperature points are unacceptable in the
industry, the authors here used Pearson correlation coefficient (PCC) to reduce the number
of the feature temperature points.

3.1. Thermal Error Model Based on Gaussian Process Regression

The GPR randomly selected 75% of the training data set to train the thermal error
model of the spindle and selected the remaining 25% of the training data set to self-validate
the thermal error model. The values of root mean square error (RMSE) and R-squared
were the two indices to check the accuracy of the thermal error model. RMSE means the
deviation between the predicted value and the actual value, and the smaller the better.
R-squared means the proportion of variance of the dependent variable explained by the
independent variables in a regression model, and the closer it is to 1 the better. Figure 7
shows the self-validation results of the thermal error model trained by GPR. R-squared
approached 1 and the average RMSE was about 0.22 µm. In addition, the thermal error
model had to be validated externally by new data sets, namely the validation data sets
listed in Table 2. Figure 8 shows the external validation results of the thermal error model
trained by GPR. The average RMSE was about 2.21 µm, and the average accuracy was
about 87.22%.
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3.2. Thermal Error Model Based on Random Forest

The RF randomly selected 80% of the training data set to train the thermal error
model of the spindle and the remaining 20% of the training data set to self-validate the
thermal error model. Figure 9 shows the self-validation results of the thermal error model
trained by RF. The R-squared approached 1, and the average RMSE was about 0.22 µm. In
addition, the thermal error model had to be validated externally by new data sets, namely
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the validation data sets listed in Table 2. Figure 10 shows the external validation results
of the thermal error model trained by RF. The average RMSE was about 1.85 µm, and the
average accuracy was about 89.7%. The thermal error model of the spindle obtained by
RF was slightly better than that obtained by GPR. Though the deviation of RMSE between
RF and GPR seemed to be only about 0.36 µm, a deviation of 0.36 µm is important for
ultra-precision machining such as the machining of the cavity of contact lens.
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3.3. Feature Temperature Points Selection by Pearson Correlation Coefficient (PCC)

Since ten feature temperature points are too many, and some temperature points are
unacceptable in the industry, the authors here used Pearson correlation coefficient (PCC)
to reduce the number of feature temperature points. PCC is used to measure the linear
correlation between independent and dependent variables. Its value is between the range
[−1, +1], where −1 means absolutely negative correlation, +1 means absolutely positive
correlation, and 0 means no correlation. Figure 11 visualizes the average PCC of each
feature temperature point under the speeds of the running-in test in the order from high to
low. The highest correlation points were the rear bearings.
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There are many indices to justify the prediction performance of thermal error model,
such as mean error (ME), root mean square error (RMSE), and accuracy, whose definitions are,

ME =
∑n

i=1
∣∣yi − y′i

∣∣
n

, (1)

RMSE =

√
∑n

i=1
(
yi − y′i

)2

n
, (2)

Accuracy =

(
1− ∑n

i=1
∣∣yi − y′i

∣∣
∑n

i=1|yi|

)
×100%, (3)

where yi and y′i are the measured thermal error and the predicted thermal error, respectively,
ME and RMSE are the mean error and root mean square error of the predicted thermal
error with respect to measured thermal error, and Accuracy is the deviation percentage of
the predicted thermal error with respect to the measured thermal error. In addition, the
coefficient of determination in statistics (R2) is a common measure of how well the output
data are replicated by the model. Its value ranges from 0 to 1, and the closer to 1, the better
the model. R2 is defined as

R2 = 1− ∑n
i=1
(
yi − y′i

)2

∑n
i=1(yi − y)2 , (4)

where y is the mean value of the measured thermal error.
In order to compare the influence of the feature temperature point selection on the

thermal error prediction of the model, the authors selected the feature temperature points
from Figure 11 in the order of the correlation coefficient from high to low and re-trained the
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thermal error model under the variable speed condition. Tables 3 and 4 list their external
validation results obtained by GPR and RF, respectively. The best result of GPR was
obtained by selecting nine feature temperature points (excluding the room temperature),
and the accuracy was improved to be 89.71%; while that of RF was only four (including
rear bearings A and B, inner housing rear, and outer housing rear), and the accuracy was
improved to be 90.49%, respectively.

Table 3. The influence of the number of the feature temperature points on the external validation
result of the thermal error model trained through GPR under variable speed conditions.

No. F. Pt. 1 ME 2 (µm) RMSE 3 (µm) R2 * Accuracy

2 1.6423 1.7481 0.9884 88.92%
3 1.6128 1.6860 0.9888 89.09%
4 1.5960 1.7098 0.9888 89.19%
5 1.5595 1.6805 0.9889 89.45%
6 1.5769 1.6759 0.9894 89.38%
7 1.5458 1.6557 0.9899 89.57%
8 1.5374 1.6734 0.9906 89.64%
9 1.5145 1.6539 0.9905 89.71%
10 1.5160 1.6573 0.9910 89.62%

1 The number of feature temperature points selected from Figure 11 in the order of the correlation coefficient from
high to low; 2 mean error of the machine learning model; 3 root mean square error of the machine learning model;
* R-squared value.

Table 4. The influence of the number of the feature temperature points on the external validation
result of the thermal error model trained through RF under variable speed conditions.

No. F. Pt. 1 ME 2 (µm) RMSE 3 (µm) R2 * Accuracy

2 1.5728 1.6633 0.9914 89.41%
3 1.5730 1.6656 0.9909 89.41%
4 1.5273 1.6402 0.9905 90.49%
5 1.5167 1.6474 0.9901 89.61%
6 1.5125 1.6417 0.9902 89.62%
7 1.5140 1.6495 0.9898 89.61%
8 1.5129 1.6482 0.9899 89.62%
9 1.5130 1.6490 0.9898 89.62%
10 1.5181 1.6506 0.9898 89.60%

1 The number of feature temperature points selected from Figure 11 in the order of the correlation coefficient from
high to low; 2 mean error of the machine learning model; 3 root mean square error of the machine learning model;
* R-squared value.

4. Discussion

Based on the results adopting 10 feature temperature points, RF is slightly better than
GPR for the thermal error modeling of the spindle. Though the deviation of RMSE of
RF and GPR seems to be only about 0.36 µm, the deviation of 0.36 µm is important for
ultra-precision machining, such as the machining of the cavity of a contact lens. Collocating
with PCC, RF can reduce to only four feature temperature points that are closest to the
rear end of the spindle; while GPR still requires nine feature temperature points, excluding
room temperature, to approach the accuracy of RF. Therefore, RF collocating with PCC is an
efficient and accurate method for the thermal error modeling of the spindle. If the accuracy
requirement is not very difficult, one can choose just the temperature points nearing the
bearings, because the installation of temperature sensors at these positions is acceptable
for the spindle or machine tool manufacture, while the other positions may interfere with
the cooling pipeline of the spindle. The external validations shown in Figures 8e and 10e
reveal that the thermal error prediction for variable speed conditions has larger deviations
than those of constant speed conditions. This is because under variable speed conditions,
the system has not yet reached a thermally steady state. When the system is in a thermally
steady state, the relationship between the thermal error and the temperature is close to
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linear. However, when the system does not reach a thermally steady state, the relationship
between the thermal error and the temperature is close to nonlinear. Fortunately, in
practical machining processes, the spindle speed will not change frequently and even keep
constant in the whole machining process but just change the depth of the cut and the feed
rate. Otherwise, the model training has to adopt nonlinear regression.

Table 5 compares the prediction performance of this paper with the other literatures
using machine learning modeling. Note that the prediction performance indices of this
paper shown in the table are under the variable spindle speed condition, while most
of the other literatures are under specific constant speed conditions based on their own
experiments. For specific constant spindle speed conditions, most literatures could show
not bad results, as does this paper. However, the performance of this paper under variable
spindle speed conditions is even better than those of the other literatures under constant
spindle speed conditions.

Table 5. Comparison of this paper with published literatures. Note that the prediction performance indices of this paper are
under the variable speed condition, while most of the other literatures are under specific constant speed conditions based
on their own experiments.

Paper M. L. Model * F. Pt. Selection * No. F. Pt. * ME * RMSE * R2 * Accuracy *

This paper RF ** PCC *** 4 1.5273 1.6402 0.9905 90.49%
GPR ** PCC 4 1.5960 1.7098 0.9888 89.19%

[16] DCM ** IGM *** 4 3.62 - - -
[17] Mallows’ Cp CC *** 4 - - 0.982 89%
[19] MLR ** FCM *** 4 1.8 - - -
[20] MLR KHM *** 3 - 6.9690 0.9356 90.86%
[21] GI ** - 9 - 2.4928 - 93%
[22] LS ** SRCC *** 11 - - - 85%
[23] RBF ** CC 5 - 2.4 - 75%
[29] BNN ** FCM 3 1.741 1.998 0.807 74.1%

* M. L. Model: machine learning model; F. Pt.: feature temperature point; No. F. Pt.: number of feature temperature point; ** RF: random
forest; GPR: Gaussian process regression; DCM: direct criterion method; MLR: multiple linear regression; GI: Gaussian integration; LS: least
square method; RBF: radial basis function network model; BNN: Bayesian neural network; *** PCC: Pearson correlation coefficient; IGM:
indirect grouping method; CC: correlation coefficient; FCM: fuzzy C-means; KHM: k-harmonic means clustering; SRCC: Spearman’s rank
correlation coefficients.

5. Conclusions

Though the thermal error model for estimating the thermal error of the spindle from
its feature temperature points is a regression problem, random forests is a better method
than Gaussian process regression. Furthermore, random forests collocating with Pearson
correlation coefficients provides an accurate and efficient method for the thermal error
modeling of the spindle. The result shows that random forests collocating with Pearson
correlation coefficients is an efficient and accurate method for the thermal error modeling
of the spindle. The temperatures at the bearings and the inner housing nearing the bearings
are the most important for the thermal error modeling of the spindle. If the accuracy
requirement is not very onerous, one can select just the temperature points of the bearings,
because the installation of temperature sensors at these positions is acceptable for the
spindle or machine tool manufacture, while the other positions may interfere with the
cooling pipeline of the spindle. Most of the published literatures showed the performance
of their model only under specific constant spindle speed conditions. For specific constant
spindle speed conditions, most literatures using the other machine learning models could
show not bad results, and so does this paper. However, the performance of this paper under
variable spindle speed conditions is even better than those of the other literatures under
constant spindle speed conditions. Note that the experiment is on a running-in platform of
the spindle, which means no cutting load. If the spindle is to conduct machining, the front
bearings should be the important feature temperature points, because the front bearings
are closest to the cutting heat. This is worth investigating in the near future.
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Appendix A

#Import data set
import pandas as pd
data = pd.read_csv(“Data_random_1.csv”)
#Remove time and deformation
data2 = pd.read_csv(“Data_random_1.csv”, usecols = [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13])
#Import data split module and drawing module
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
np.random.seed(42)
#Set the input and output of the model
x = data2
y = data.Deformation
#Divide training data and testing data (training data account for 80%)
x_train, x_test, y_train, y_test = train_test_split (x, y, test_size = 0.2)
#Use grid-searching to fine suitable hyperparameters
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import randint
param_distribs = {
‘n_estimators’: randint(low = 0, high = 500),
‘max_depth’: randint(low = 1, high = 15),
‘min_samples_split’: randint(low = 2, high = 8),
‘min_samples_leaf’: randint(low = 1, high = 8),
‘max_features’: randint(low = 1, high = 9),
}
forest_reg = RandomForestRegressor(random_state = 42)
rnd_search = RandomizedSearchCV(forest_reg, param_distributions = param_distribs,n_iter

= 10, cv = 5, scoring = ‘neg_root_mean_squared_error’, random_state = 42)
rnd_search.fit(x_train, y_train)
cvres = rnd_search.cv_results_
for mean_score, params in zip(cvres[“mean_test_score”], cvres[“params”]):
print(np.sqrt(-mean_score), params)
rnd_search.best_params_
#Substitute the hyperparameters into the modeling
from sklearn.ensemble import RandomForestRegressor
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model = RandomForestRegressor(n_estimators = 199,criterion = ‘mse’, max_depth =
11, min_samples_split = 4, min_samples_leaf = 4, max_features = 5, random_state = 42)

predict = model.fit(x_train,y_train).predict(x_test)
#Use learning curve to judge whether the model is over-fitting or not
from sklearn.metrics import mean_squared_error
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
model = RandomForestRegressor(n_estimators = 199,criterion = ‘mse’, max_depth =

11, min_samples_split = 4, min_samples_leaf = 4, max_features = 5, random_state = 42)
def plot_learning_curves(model, x, y):
X_train, X_val, y_train, y_val = train_test_split(x, y, test_size = 0.2, random_state = 10)
train_errors, val_errors = [], []
for m in range(1, len(X_train)):
model.fit(X_train[:m], y_train[:m])
y_train_predict = model.predict(X_train[:m])
y_val_predict = model.predict(X_val)
train_errors.append(mean_squared_error(y_train[:m], y_train_predict))
val_errors.append(mean_squared_error(y_val, y_val_predict))
plt.plot(np.sqrt(train_errors), “r-”, linewidth = 2, label = “train”)
plt.plot(np.sqrt(val_errors), “b-”, linewidth = 3, label = “val”)
plt.legend(loc = “upper right”, fontsize = 14)
plt.xlabel(“Training set size”, fontsize = 14)
plt.ylabel(“RMSE”, fontsize = 14)
#Calculate the mean absolute error of the model
errors = abs(predict—y_test)
print(‘Mean Absolute Error:’, round(np.mean(errors), 2), ‘degrees.’)
#Calculate the root mean square error of the model
from sklearn.metrics import mean_squared_error
from math import sqrt
rmse = sqrt(mean_squared_error(y_test,predict))
print(rmse)
#Calculate the score of the model to judge whether over-fitting or not
print(“Traing Score:%f”%model.score(x_train,y_train))
print(“Testing Score:%f”%model.score(x_test,y_test))
#Import the validation data set to the thermal error model
data3= pd.read_csv(“801rpm.csv”)
data4= pd.read_csv(“801rpm.csv”, usecols = [1, 2, 3, 4, 5, 6, 7, 8, 9, 11])
x2 = data4
y2 = data3.Deformation
#Predict the outputs from the inputs of the validation data set through the thermal

error model
predict_df = []
from sklearn.ensemble import RandomForestRegressor
model = RandomForestRegressor(n_estimators = 199,criterion = ‘mse’, max_depth = 11,

min_samples_split = 4, min_samples_leaf = 4, max_features = 5, random_state = 42)
model.fit(x_train,y_train)
for m in range(0, len(x2)):
X_new = [x2.iloc[m,:]]
predict_df.append(model.predict(X_new))
#Export the prediction results to CSV file
def OutputVar():
Result = ‘C://Users/User/Desktop/Varresponse.csv’
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df_SAMPLE = pd.DataFrame.from_dict(predict_df)
df_SAMPLE.to_csv(Result, index = False)
print(‘Success’ + Result)
OutputVar()
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