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Abstract: The assembly quality of the multistage rotor is an essential factor affecting its vibration
level. The existing optimization methods for the assembly angles of the rotors at each stage can ensure
the concentricity and unbalance meet the requirements, but it cannot directly ensure its vibration
responses meet the indexes. Therefore, in this study, we first derived the excitation formulas of
the geometric and mass eccentricities on the multistage rotor and introduced it into the dynamics
model of the multistage rotor system. Then, the coordinate transfer model of the geometric and mass
eccentricities errors, including assembly angles of the rotors at all stages, was established. Moreover,
the mathematical relationship between the assembly angles of the rotors at all stages and the nodal
vibration responses was established by combining the error transfer model with the dynamics
model of the multistage rotor system. Furthermore, an optimization function was developed, which
takes the assembly angles as the optimization variables and the maximum vibration velocity at the
bearings as the optimization objective. Finally, a simplified four-stage high-pressure rotor system was
assembled according to the optimal assembly angles calculated in the simulations. The experimental
results showed that the maximum vibration velocity at the bearings under the optimal assembly was
reduced by 69.6% and 45.5% compared with that under the worst assembly and default assembly.
The assembly optimization method proposed in this study has a significant effect on the vibration
suppression of the multistage rotor of an aero-engine.

Keywords: multistage rotor; vibration suppression; rotor misalignment and unbalance; geometric
and mass eccentricities; coordinate transfer; assembly optimization; rotor dynamics; aero-engine

1. Introduction

Vibration overrun is the main reason for the failure or damage to the rotating machin-
ery such as aero-engine and gas turbines with multistage rotors [1,2]. Rotor misalignment
and unbalance are the two most common factors causing the vibration on the multistage
rotor system [3–5]. Rotor misalignment is the geometric eccentricity caused by the accu-
mulation of the machining errors of each single-stage rotor after assembly stage-by-stage.
This accumulative error will also cause each single-stage rotor to deviate from its nominal
assembly axis and form mass eccentricity, resulting in unbalance. Therefore, rotor misalign-
ment and unbalance often exist simultaneously, and the multistage rotor of an aero-engine
often needs to be repeatedly balanced and disassembled to meet vibration indexes [6,7].
Assembly optimization is to search the optimal assembly angles of the rotors at all stages
to achieve the maximum vibration suppression of a multistage rotor without secondary
repair. It can significantly improve the qualification rate of the one-time assembly and
reduce the costs of manufacturing and test-run for an aero-engine.

Hussain et al. [8] first proposed to reduce the vibration on the stacked multistage rotor
system by assembly optimization. They put forward a linear-assembly method, which
means that the appropriate assembly angles of each rotor of a multistage rotor are selected
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to make the assembly axis as close as possible to a straight line in the assembly process.
This method has the potential to reduce the vibration caused by rotor misalignment. Then,
for 2-D axisymmetric rotors, Hussain et al. [9] realized the optimization of linear-assembly
by minimizing the root mean square of the radial runout errors of the assembly rabbets of
each rotor. Furthermore, Hussain et al. [10] proposed a method to minimize the inclination
angles of the assembly rabbets of each rotor, which also aims to avoid transitional bending
of the assembly axis. Zhang et al. [11] used the error transfer theory to deduce the geometric
cumulative eccentricity error after assembly and used this error to represent the bending
degree of the assembly axis. Zhang et al. [12] also put forward a concept of parallel-
assembly: minimizing the parallelism errors of the assembly rabbets of each rotor during
assembly. Comparing the linear-assembly method showed that this method could also
make the assembly axis not appear too large a deflection. Moreover, Zhang et al. [13]
put forward another concept of assembly optimization step-by-step, that is, for the rotors
at each stage, the geometric eccentricity error of the rotor at the next stage is optimized
based on the current assembly axis. In addition, Zhang et al. [14] deduced the geometric
eccentricity error of the multistage rotor in [11] as a probability density function, calculated
the cumulative eccentricity error under all assembly conditions, and then judged the
maximum and minimum curvature of the assembly axis.

In [8–14], the tolerance ranges of the assembly rabbets of each rotor were given, the
geometric eccentricity errors of a multistage rotor were calculated by the Monte Carlo
simulation method under all possible matching relations of the assembly angles of each
rotor. They could obtain the distributions of the cumulative assembly errors and the
maximum and minimum values of that. However, they could not directly give the optimal
assembly angles of each rotor.

Sun et al. [15] analyzed the primary and secondary relationship of the positioning
datum of the rotor at different stages, transformed parts of the parallel dimension chain
into the series dimension chain, established a more accurate Jacobian error transfer model,
and applied it to calculate the cumulative eccentric errors. However, Sun et al. [16] pointed
out that the dimension of the Jacobi matrix changes with the number of parts, which is not
suitable for fast modelling. Then, they constructed a deviation propagation analysis model
by homogeneous coordinate transformation. Wang et al. [17] substituted the measured
orientation and positioning errors of the assembly rabbets of each rotor into the above
transfer model and calculated the assembly angles of the rotors at all stages under the
condition of minimum eccentricity error. They verified the optimization effect of the
eccentricity error by experiments. Sun et al. [18] further combined the above transfer model
with a neural network to intelligently select the optimal assembly angles of each rotor
under the condition of minimizing geometric eccentricity error. The above studies only
focused on optimizing rotor misalignment of multistage rotors. However, the unbalance
caused by mass eccentricity is also an essential factor leading to excessive vibration on
the multistage rotor. Ganine et al. [19] proposed a new parametric model order reduction
algorithm for vibration analysis of rotor assemblies with variations in geometry induced by
disk misalignment. However, their study focused on the dynamics model order reduction
rather than the vibration suppression through optimizing the assembly angles.

Liu et al. [20] assumed that the material distribution of the rotors at all stages is
uniform, estimated the mass eccentricity error through the geometric deviation of each
rotor, and substituted it into the model in [17] to calculate the minimum unbalance of a
three-stage rotor under all assembly possibilities, and gave the corresponding assembly
angles of each rotor. Piskin et al. [21] realized the weight matching of the blades in the
circumferential direction of the rotors at all stages by using an ant colony algorithm.
Chen et al. [22] pointed out that the assembly datum for unbalance optimization should
not be equal to that in optimization for geometric eccentricity error and proposed an
optimization method for unbalance based on orientation varying-axis. Sun et al. [23]
proposed an assembly optimization method for the dual objectives of concentricity and
unbalance of a multistage rotor, making the concentricity and unbalance simultaneously
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approach their respective optimal solutions to the greatest extent. Nevertheless, for the
genuine multistage rotors, the assembly angles of each rotor are discontinuous, which
requires the assembly screw holes of each rotor to be aligned first and then selected. To
solve this problem, Chen et al. [24] introduced the calibrated angles of screw holes into the
error transfer model and proposed a reverse assembly method, which decomposed the
assembly process of adjacent rotors into three steps: alignment, rotation, and translation.
Chen et al. [25] further transformed the continuous variables of the assembly angles of
each rotor into the discrete variables composed of assembly screw holes and obtained
the corresponding optimal relationship of the screw holes directly without secondary
calculation. The influence of the geometric measurement errors on the stability of assembly
optimization was also investigated by the Monte Carlo method.

All the above studies aimed to reduce the misalignment and unbalance in the stacked
multistage rotor by optimizing the assembly angles of each single-stage rotor. The ultimate
goal is to reduce the vibration on the multistage rotor to the greatest extent during the
pre-assembly stage. However, these studies have not established a direct relationship
between the assembly angles of the rotors at all stages and the rotor vibration in theory.
Although the optimization of the misalignment and unbalance can undoubtedly reduce
the vibration to a certain extent from mechanical common sense. However, from the
dynamics perspective, the vibration of different nodes on the rotor may be different under
the same concentricity and unbalance of a multistage rotor. If the assembly optimization
aims to reduce vibration, the vibration of the critical node caused by geometric and mass
eccentricities should be taken as the optimization objective. Therefore, we summarized the
existing problems in the field of assembly optimization into the following two aspects:

1. The mathematical relationship between the assembly angles of the rotors at all stages
and the vibration responses should be established;

2. The vibration responses of the critical nodes on the rotor should be taken as the
optimization objective to calculate the optimal assembly angles.

To solve the above problems, firstly, in Section 2.1, we developed a single-node dy-
namics model for a rotor with geometric and mass eccentricities, derived the corresponding
dynamics differential equations of the elastic shaft element in Section 2.2. Moreover, in
Section 2.3, we established a homogeneous coordinate transfer model of the geometric
and mass eccentricities errors. Furthermore, in Section 2.4, we combined the coordinate
transfer model with the rotor dynamics model to build a mathematical relationship be-
tween the assembly angles of the rotors at all stages and the nodal vibration responses.
Then, the solution method of the nodal vibration responses on a multistage rotor system
was introduced in Section 2.5. The objectives and variables in assembly optimization were
defined in Section 2.6. Finally, a simplified four-stage high-pressure rotor system was
assembled according to the optimal assembly angles calculated in the simulations. The
experimental results showed that the assembly optimization method proposed in this study
has a significant vibration suppression effect on multistage rotor system.

2. Methods
2.1. Single-Node Dynamics Model for a Rotor with Geometric and Mass Eccentricities

A single-node dynamics model for a rotor with geometric and mass eccentricities is
shown in Figure 1. M is the center of mass of the single-disc rotor, and the mass of that
is m. ε refers to the disc’s mass eccentricity, and the angle between it and the horizontal
direction is ϕε. Due to the initial bending of the rotating shaft, the geometric center of the
disc deviated from the rotating center O and reached point O0. O1 is the geometric center
of the disc after the rotation of the shaft. rs is the initial geometric eccentricity of the center
of the disc, and the angle between it and the horizontal direction is ϕs. r is the displacement
vector of the center of the disc, and the angle between it and the horizontal direction is
ϕr. rd is the dynamic response vector of the center of the disc when the rotor is rotating. p
is the displacement vector of the center of mass of the disc. k and c are the stiffness and
damping coefficient of the shaft, respectively, and the mass of that is neglected.
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According to the balanced relationship among the inertia force, the damping force
and the elastic force, the dynamics differential equation of the geometric center of the disc
can be expressed as in Equation (1):

m
..
p + c

.
r + krd = 0. (1)

From the geometric relationship in Figure 1, we can obtained Equation (2):{
p = r + ε

rd = r− rs
. (2)

Equation (3) can be obtained by substituting p and rd into Equation (1):

m
..
r + c

.
r + kr = krs −m

..
ε, (3)

where r, rs and ε can be expressed as plural forms in Equation (4):
r = r exp[i(ωt + ϕr)] = r cos(ωt + ϕr) + jr sin(ωt + ϕr) = xr + jyr
rs = rs exp[i(ωt + ϕs)] = rs cos(ωt + ϕs) + rsr sin(ωt + ϕs) = xs + jys
ε = ε exp[i(ωt + ϕε)] = ε cos(ωt + ϕε) + ε sin(ωt + ϕε) = xε + jyε

. (4)

Then, by substituting Equation (4) into Equation (2), the single-node dynamics differ-
ential equation can be obtained as follows:{

m
..
xr + c

.
xr + kxr = kxs + mω2xε

m
..
yr + c

.
yr + kyr = kys + mω2yε

, (5)

where kxs and kys are the nodal excitation forces caused by the geometric eccentricity, and
mω2xε and mω2yε are the nodal excitation forces caused by mass eccentricity.

2.2. Dynamics Model of the Shaft Element of a Rotor

The rotor system can be divided into a finite element model composed of several shaft
elements and nodes, and the dynamics differential equation of a single Timoshenko-beam
element can be established as follows:[

Men 0
0 Men

]{ ..
qen
}
+

(
ω

[
0 Gen
−Gen 0

]
+

[
Cen 0
0 Cen

]){ .
qen
}
+

[
Ken 0
0 Ken

]
{qen} = {Ren}+ {Qen}, (6)

where {qen} = {xn,θyn, yn, −θxn, xn+1, θy(n+1), yn+1, −θx(n+1)}T is the displacement vector of
the nth shaft element. The vectors {Ren} and {Qen} denote the excitation forces acting on
the shaft element due to the geometric and mass eccentricities, respectively, as shown in
Equation (7):  {Ren} =

[
Ken 0
0 Ken

]
{Fn}

{Qen} = ω2{mnPn}
, (7)
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where {Fn} is the displacement vector of the geometric eccentricity, and {Pn} is that of
mass eccentricity. mn refers to the mass of each rotor. Here, the mass-radius product of
Pn and mn can be replaced by unUn, which refers to the product of the unbalanced mass
un and its action radius Un. The stiffness matrix Ken of the single-node was presented by
Genta et al. [26] as follows:

Ken =
EIdn

l3
n(1 + χn)


12 6ln −12 6ln

(4 + χn)l2
n −6ln (2− χn)l2

n
12 −6ln

symm (4 + χn)l2
n

, (8)

where E is the Elastic modulus of the rotor, and ln is the length of the element. Idn is
the diameter moment of inertia of the circular section of the shaft element, which can be
expressed as in Equation (9):

Idn =
π
(

D4
n − d4

n
)

64
, (9)

where Dn and dn are the outer and inner diameter of the shaft element, respectively. χn is
the dimensionless stiffness, as shown in Equation (10):

χn =
12En Idn

Gn Anl2
nκn

, (10)

where Gn is the shear modulus, and An is the cross-sectional area of the element as shown
in Equation (11). κn is the shear factor as shown in Equation (12):

An =
π
(

D2
n − d2

n
)

4
, (11)

κn =
6
(
1 + vn

2)
7 + 12vn + 4vn2 , (12)

where vn is Poisson’s ratio. The single-node moving inertia matrix can be expressed as in
Equation (13):

MTn =
ρn AnEnln

420(1 + χn)
2


t1 lnt2 t3 −lnt4

l2
nt5 lnt4 −l2

nt6
t1 −lnt2

symm l2
nt5

. (13)

The single-node rotational inertia matrix can be expressed as in Equation (14):

MRn =
ρn Idn

30ln(1 + χn)
2


t7 lnt8 t7 lnt8

l2
nt9 −lnt8 −l2

nt10
t7 −lnt8

symm l2
nt9

, (14)
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where the expressions of t1~t2 are presented in Equation (15):

t1 = 156 + 294χn + 140χ2
n

t2 = 22 + 38.5χn + 17.5χ2
n

t3 = 54 + 126χn + 70χ2
n

t4 = 13 + 31.5χn + 17.5χ2
n

t5 = 4 + 7χn + 3.5χ2
n

t6 = 3 + 7χn + 3.5χ2
n

t7 = 36
t8 = 3− 15χn
t9 = 4 + 5χn + 10χ2

n
t10 = 1 + 5χn − 5χ2

n

. (15)

The single-node global mass matrix can be obtained by Equation (16):

Men = MTn + MRn. (16)

Gen is the single-node gyro matrix, which is equal to 2MRn. Cen is the single-node
damping matrix, and the hysteretic damping model is employed (Cen = ηKen, η = 0.001) [27].

2.3. Error Transfer Model of the Geometric and Mass Eccentricities
2.3.1. Coordinate Transfer

A multistage rotor is assembled step-by-step through the assembly rabbets of each
single-stage rotor. In the assembly process, the machining error of the assembly rabbets
will make the rotors at each stage deviate from their ideal assembly position and then form
the geometric and mass eccentricities. In actuality, the transfer of the eccentricity errors is
equivalent to transferring the coordinates of points in the rotor. If the coordinate transfer of
each point in the rigid rotor during assembly is known, we can calculate the geometric and
mass eccentricities errors after assembly. Figure 2 shows a coordinate transfer process of a
three-stage simulated rotor. O-XYZ refers to the standard coordinate system for measuring
the geometric parameters of the rotors at all stages. Cn and Cn

′ are the geometric centers
of the assembly rabbet of the rotor at the nth stage before and after assembly, respectively.
En and En

′ are the unbalanced mass points of the rotor at the nth stage before and after
assembly, respectively. hn is the axial runout error of the assembly rabbets, and the point Hn
and Ln are the highest and lowest fitting points. Sn is the geometric center of the calibrated
screw hole in the geometric measurement of the rotor at the nth stage, and δn is the angle
between Hn and Sn. wn is the diameter of the assembly rabbet of the rotor at the nth stage.
Rot-axis is the nominal axis of rotation of the 3-stage rotor, connecting the front and rear
supporting points. Fn and Un are the geometric and mass eccentricity errors relative to
Rot-axis, respectively.



Machines 2021, 9, 189 7 of 24

Machines 2021, 9, 189 7 of 24 
 

 

1 1

1 1

1

1 1

1 1

cos arctan 0 sin arctan

0 1 0

sin arctan 0 cos arctan

h h
w w

Iy

h h
w w

       
                 
 =  
       
−                  

, 
(19) 

 
Figure 2. Coordinate transfer process of a three-stage simulated rotor. 

where Δδ2 = δ2 − δ1 is the difference between the angles of the calibrated screw holes of the 
rotors at the second and the first stage, which means that the angle of the rotor at the 
second stage needs to rotate around the Z-axis during the alignment of the rotors at the 
second and the first stage. θz2 is the rotation angle of the rotor at the second stage relative 
to that at the first stage around the Z-axis, which is the so-called assembly angle of the 
rotor at the second stage to be optimized. Then, when the rotor at the third stage is assem-
bled on the rotor at the second stage, the coordinate transfer process of the geometric cen-
ter of the assembly rabbet of the rotor at the third stage can be expressed by Equation (20): 

3 2 2 1 2 1Iz Iy Iz Iy Iz Iy′ = + +3 3 2 1ξ ξ ξ ξ , (20) 

where ξ3′ and ξ3 represent the coordinate vectors of C3 and C3′, respectively. Iz3 is the ro-
tation matrix of the rotor at the third stage around Z-axis, and Iy2 is the rotation matrices 
of the rotor at the second stage around the Y-axis, and their expressions are the same as 

Figure 2. Coordinate transfer process of a three-stage simulated rotor.

When the rotor at the second stage is assembled on the rotor at the first stage, the
coordinate transfer process of the geometric center of the assembly rabbet of the rotor at
the second stage can be expressed by Equation (17):

ξ2
′ = ξ2 Iz2 Iy1 + ξ1, (17)

where ξ1 is the coordinate vector of C1, and the rotor at the first stage is fixed during
assembly. ξ2

′ and ξ2 represent the coordinate vectors of C2 and C2
′, respectively. Iz2 is the

rotation matrix of the rotor at the second stage around Z-axis, as presented in Equation
(18). Iy1 is the rotation matrix of the rotor at the first stage around Y-axis, as presented in
Equation (19).

Iz2 =

 cos(θz2 + ∆δ2) − sin(θz2 + ∆δ2) 0
sin(θz2 + ∆δ2) cos(θz2 + ∆δ2) 0

0 0 1

, (18)

Iy1 =


cos
(

arctan
(

h1
w1

))
0 sin

(
arctan

(
h1
w1

))
0 1 0

− sin
(

arctan
(

h1
w1

))
0 cos

(
arctan

(
h1
w1

))
, (19)

where ∆δ2 = δ2 − δ1 is the difference between the angles of the calibrated screw holes of
the rotors at the second and the first stage, which means that the angle of the rotor at the
second stage needs to rotate around the Z-axis during the alignment of the rotors at the
second and the first stage. θz2 is the rotation angle of the rotor at the second stage relative
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to that at the first stage around the Z-axis, which is the so-called assembly angle of the rotor
at the second stage to be optimized. Then, when the rotor at the third stage is assembled
on the rotor at the second stage, the coordinate transfer process of the geometric center of
the assembly rabbet of the rotor at the third stage can be expressed by Equation (20):

ξ3
′ = ξ3 Iz3 Iy2 Iz2 Iy1 + ξ2 Iz2 Iy1 + ξ1, (20)

where ξ3
′ and ξ3 represent the coordinate vectors of C3 and C3

′, respectively. Iz3 is the
rotation matrix of the rotor at the third stage around Z-axis, and Iy2 is the rotation matrices
of the rotor at the second stage around the Y-axis, and their expressions are the same as
Iz2 and Iy1. By analogy, the assembly process of an n-stage rotor can be expressed as in
Equation (21):

ξn
′ = ξn

[
∏

n:−1:2
(Izn Iyn−1)

]
+ ξn−1

′(n ∈ N∗, n>1). (21)

The assembly process of a multistage rotor is equivalent to the transfer process of
multiple rigid bodies. The moving trajectory of each point in the rigid body is the same in
the assembly process, so the coordinate transfer of each point in the rotors at all stages can
be calculated by Equation (21).

2.3.2. Decomposition of the Geometric and Mass Eccentricities Errors

The connecting line of the geometric center of the support journals on the rotors at
the first and the last stage is the nominal axis of rotation in a multistage rotor system,
which is the calculation datum of the geometric and mass eccentricities errors, and its linear
equation can be expressed as follows:

x
ξlx
′ =

y
ξly
′ =

z
ξlz
′ = λ, (22)

where ξl
′ = (ξlx’, ξly

′, ξlz
′) is the coordinate vector of the geometric center of the support

journal on the rotor at the last stage after assembly. λ is the parameter of the linear equation.
The equation of the normal plane passing through any point A in the rotor body and
perpendicular to the axis of rotation can be expressed as follows:

ξlx
′(x− Ax) + ξly

′(y− Ay
)
+ ξlz

′(z− Az) = 0. (23)

λ can be obtained by simultaneous Equations (19) and (20) as follows:

λ =
ξlx
′Ax + ξly

′Ay + ξlz
′Az

(ξlx
′)2 +

(
ξly
′
)2

+ (ξlz
′)2

. (24)

By bringing λ into Equation (22), the coordinates of the intersection point between the
axis of rotation and the normal plane can be obtained by Equation (25):

Jx =
(ξlx

′)2 Ax+ξlx
′ξly
′Ay+ξlx

′ξlz
′Az

(ξlx
′)2+(ξly

′)
2
+(ξlz

′)2

Jy =
ξlx
′ξly
′Ax+(ξly

′)
2

Ay+ξly
′ξlz
′Az

(ξlx
′)2+(ξly

′)
2
+(ξlz

′)2 .

Jz =
ξlx
′ξlz
′Ax+ξly

′ξlz
′Ay+(ξlz

′)2 Az

(ξlx
′)2+(ξly

′)
2
+(ξlz

′)2

(25)

The coordinate vector of the unbalanced mass point E1
′ in the rotor at the first stage

after assembly is (Ex1
′, Ey1

′, Ez1
′), and the coordinate vector of the intersection point JE1

between the axis of rotation and the normal plane passing through E1 can be obtained by
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Equation (25) is (JxE1, JyE1, JzE1). Then, the vertical vector from E1
′ to the axis of rotation

can be expressed as in Equation (26):

→
E1
′ JE1 =

{(
Ex1
′ − JxE1

)
,
(
Ey1
′ − JyE1

)
,
(
Ez1
′ − JzE1

)}
. (26)

The angles between this vector and the vertical vectors from the other unbalanced
mass points to the axis of rotation can be expressed as in Equation (27):

θEn−1 = arccos


→

E1
′ JE1 ·

→
En
′ JEn∣∣∣∣ →

E1
′ JE1

∣∣∣∣∣∣∣∣ →
En ′ JEn

∣∣∣∣
. (27)

It is assumed that the angle between this vector and X-direction of the acquisition of
vibration responses is ∆θ. Then, the mass eccentricity error Un of the rotor at the nth stage
can be decomposed into X- and Y-directions as follows:

Uxn =

∣∣∣∣ →
En
′ Jen

∣∣∣∣ cos θen−1 cos ∆θ +

∣∣∣∣ →
En
′ Jen

∣∣∣∣ sin θen−1 sin ∆θ

Uyn =

∣∣∣∣ →
En
′ Jen

∣∣∣∣ cos θen−1 sin ∆θ +

∣∣∣∣ →
En
′ Jen

∣∣∣∣ sin θen−1 cos ∆θ
. (28)

Similarly, the geometric eccentricity error Fn of the rotor at the nth stage can also be
decomposed as follows:

Fxn =

∣∣∣∣ →
Cn
′ Jcn

∣∣∣∣ cos θcn−1 cos ∆θ +

∣∣∣∣ →
Cn
′ Jcn

∣∣∣∣ sin θcn−1 sin ∆θ

Fyn =

∣∣∣∣ →
Cn
′ Jcn

∣∣∣∣ cos θcn−1 sin ∆θ +

∣∣∣∣ →
Cn
′ Jcn

∣∣∣∣ sin θcn−1 cos ∆θ
. (29)

where Cn
′ refers to the coordinate vector of the geometric center of the assembly rabbet of

the rotor at the nth stage after assembly. JCn is the intersection point between the axis of
rotation and the normal plane passing through Cn

′, and its solution principle is the same
as that of Equation (25). θCn-1 is the angle between the vertical vector from Cn

′ to the axis
of rotation and the vertical vector from E1

′ to the axis of rotation, which can be obtained by
Equation (30) as follows:

θCn−1 = arccos


→

E1
′ JE1 ·

→
Cn
′ JCn∣∣∣∣ →

E1
′ JE1

∣∣∣∣∣∣∣∣ →
Cn ′ JCn

∣∣∣∣
. (30)

2.4. Dynamics Model of a Multistage Rotor System

All the shaft elements, the concentrated mass, the supporting elements and the nodal
excitation forces can be superimposed to form a dynamics differential equation of a multi-
stage rotor system as follows:

[Ms]
{ ..

qs
}
+ [ωGs + Cs]

{ .
qs
}
+ [Ks]{qs} = [Ks]{Fs}+ {Qs}, (31)

where Ms is the global mass matrix with a bandwidth of 4(n + 1) × 4(n + 1), as shown
in Equation (32). Mdn is the lumped mass matrix loaded at the nth node as shown in
Equation (33), which can load the additional mass and the moment of inertia of a locking
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device. Ks and [ωGs + Cs] are the global stiffness and damping matrices as shown in
Equations (34) and (35), respectively.

[Ms] =



Me1 0
Me1 + Me2

Me2 + Me3
. . .

Me(n−1) + Men(+Mdn)

0 Men


, (32)

[Mdn] =


mn 0

Jdn
mn

0 Jdn

, (33)

[Ks] =



Ke1 0
Ke1 + Ke2

Ke2 + Ke3
. . .

Ke(n−1) + Ken(+Kbn)

0 Ken


, (34)

[ωGs + Cs] =



Ce1 ωGe1 0
−ωGe1 Ce1 + Ce2 ωGe2

−ωGe2 Ce2 + Ce3
. . .

Ce(n−1) + Cen(+Cbn) ωGen
0 −ωGen Cen


. (35)

where mn and dn refer to the lumped mass and the moment of inertia. Kbn and Cbn are the
additional stiffness and damping matrices loaded at the nth node, respectively, as shown in
Equations (36) and (37), which can load a supporting element such as a rolling bearing. {Fs}
and {Qs} are the excitation vectors of the geometric and mass eccentricities on the ith node,
respectively, as shown in Equations (38) and (39). {qs}, {

.
qs} and {

..
qs} are the generalized

displacement, velocity and acceleration vector of all nodes, as shown in Equation (40).

[Kbn] =


Kxx Kxy 0
Kyx Kyy

Kxx Kxy
0 Kyx Kyy

, (36)

[Cbn] =


Cxx Cxy 0
Cyx Cyy

Cxx Cxy
0 Cyx Cyy

, (37)

{Fs} =
{

. . . , Fxi, 0, Fyi, 0, Fx(i+1), 0, Fy(i+1), 0, . . .
}
(i ∈ N∗, 1 ≤ i ≤ n + 1), (38)

{Qs} = ω2
{

. . . , uiUxi, 0, uiUyi, 0, ui+1Ux(i+1), 0, ui+1Uy(i+1), 0, . . .
}
(i ∈ N∗, 1 ≤ i ≤ n + 1), (39)

{qs} =
{

x1, θy1, y1,−θx1, . . . , xn+1, θy(n+1), yn+1,−θx(n+1)

}
. (40)
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2.5. Solution Method of the Nodal Vibration Responses

The Newmark-β integration method [28] is employed to solve the nodal vibration
responses step-by-step. The nodal displacement, velocity and acceleration at the time of
t + ∆t can be used to express that at the time of t as follows:{ { .

qt+∆t
}
=
{ .

qt
}
+
[
(1− β)

{ ..
qt
}
+ β

{ ..
qt+∆t

}]
∆t

{qt+∆t} = {qt}+
{ .

qt
}

∆t +
[(

1
2 − γ

){ ..
qt
}
+ γ

{ ..
qt+∆t

}]
∆t2 , (41)

where β and γ are the integral parameters selected according to different expressions
of the acceleration. Usually, when the value of β and γ are greater than or equal to
0.5 and 0.25(0.5 + β), respectively, the calculation is unconditionally convergent. From
Equation (41), the expressions of the acceleration and velocity at the time of t + ∆t can be
further expressed as in Equation (42):

{ ..
qt+∆t

}
= 1

γ∆t2

(
{qt+∆t} −

{ .
qt
})
− 1

γ∆t
{ .

qt
}
−
(

1
2γ − 1

){ ..
qt
}{ .

qt+∆t
}
= β

γ∆t
(
{qt+∆t} −

{ .
qt
})

+
(

1− β
γ

){ .
qt
}
+
(

1− β
2γ

)
∆t
{ ..

qt
} . (42)

By substituting Equation (43) into Equation (32), the displacement vector at the time
of t + ∆t can be obtained as in Equation (43):

{qt+∆t} = [R][K]−1, (43)

where the equivalent stiffness K and the equivalent load R can be expressed as in Equa-
tions (44) and (45), respectively, as follows:

[K] = [Ks] +
1

γ∆t2 [Ms] +
β

γ∆t
[ωGs + Cs]. (44)

[R] = ([Ks]{Fs}+ {Qs}) +
(

1
γ∆t2 {qt}+ 1

γ∆t
{ .

qt
}
+
(

1
2γ − 1

){ ..
qt
})

[Ms]

+
(

β
γ∆t{qt}+

(
β
γ − 1

){ .
qt
}
+
(

β
2γ − 1

)
∆t
{ ..

qt
})

[ωGs + Cs]
(45)

The acceleration vector
{ ..

qt+∆t
}

and velocity vector
{ ·

qt+∆t

}
can be obtained by sub-

stituting {qt+∆t} into Equations (41) and (42), respectively.

2.6. Optimization Objective

It can be seen from the error transfer model in Section 2.3 that the geometric and
mass eccentricities errors of a multistage rotor will change with the change of the assembly
angles (θzn) of the rotors at all stages, and the excitations and the nodal vibration responses
on the rotor will also change with that. The rotor system is mainly subject to the radial
excitation forces, so we primarily investigate the influences of the assembly angles of each
rotor on the radial vibration responses and select the optimal assembly angles to minimize
that. The resultant vibration velocity of the single-node in the rotor system can be expressed
as in Equation (47):{

fi(γ) =
√[ .

xi(γ)
]2

+
[ .
yi(γ)

]2
s.t. γ = {θz1, θz2, . . . . . ., θzk}

(i, k ∈ N∗, 1 ≤ i ≤ n, θzk ∈ [0◦ ∼ 180◦]), (46)

where n refers to the number of the nodes in the finite element model, k to the number of
the single-rotor. A minimax method is used to reduce the overall vibration level of the
supporting parts on both sides of the rotor caused by geometric and mass eccentricities,
as shown in Equation (47). The maximum value of the vibration velocities at the left and
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right bearing in the rotor system is defined as the optimization objective and the assembly
angles of each rotor as the optimization variables.{

minV(γ) = min(max( fl(γ), fr(γ)))
s.t. γ = {θz1, θz2, . . . . . ., θzk}

(θzk ∈ [0◦ ∼ 180◦]), (47)

where fl(γ) and fr(γ) are the vibration velocities at the left and right bearings, respectively.

3. Results
3.1. Simulation
3.1.1. Finite Element Model of a 4-Stage Rotor

Figure 3 shows a sectional view of a simulated four-stage rotor, scaled to a certain scale
according to the high-pressure rotor system of a real aero-engine and simplified as a multistage
rotor composed of four components: Rotor-1, Rotor-2, Rotor-3 and Rotor-4. Their assem-
bly rabbets are tightly connected by twelve, twenty-four and twelve uniformly distributed
screws, respectively. There are seven optional assembly angles between Rotor-1 and Rotor-2
(θz2 ∈

{
0
◦
, 30

◦
, 60

◦
, 90

◦
, 120

◦
, 150

◦
, 180

◦
}

), thirteen optional assembly angles between Rotor-

2 and Rotor-3 (θz3 ∈
{

0
◦
, 15

◦
, 30

◦
, 45

◦
, 60

◦
, 75

◦
, 90

◦
, 105

◦
, 120

◦
, 135

◦
, 150

◦
, 165

◦
, 180

◦
}

),
and seven optional assembly angles between Rotor-3 and Rotor-4
(θz4 ∈

{
0
◦
, 30

◦
, 60

◦
, 90

◦
, 120

◦
, 150

◦
, 180

◦
}

). Rotor-1 is fixed by default during assembly

(θz1 = 0
◦
).
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Figure 3. The finite element model of the simulated 4-stage high-pressure rotor system.

The four-stage rotor model is divided into 42 nodes, and the dimensional parameters
of each element are shown in Table A1. The rotor’s material is aluminum alloy, its elastic
modulus is 7× 1010 Pa, and its density and Poisson’s ratio are 2700 kg/m3 and 0.3, respectively.
The screws at each assembly rabbet are loaded on Node-12, -17, -22, -25, and -32 as lumped
masses. The twelve uniformly distributed screws’ mass and the diameter moment of inertia
are 0.014 kg and 4.89 × 10−6 kg·m2, respectively, and the twenty-four uniformly distributed
screws’ mass and the diameter moment of inertia are 0.028 kg and 2.92 × 10−5 kg·m2. Two
lock nuts and a bearing ring are installed on the front and the rear axle, and they are loaded
on Node-3, -4, -5, -39, -40 and -41 as lumped masses. The masses of the lock nuts and the
end ring are 0.0326 kg and 0.0093 kg, respectively, and their diameter moment of inertia are
6.82 × 10−6 kg·m2 and 1.65 × 10−7 kg·m2. Two angular contact bearings are selected as the
support elements, which are loaded on Node-6 and -38, and the cross stiffness and damping
are neglected in simulation. The linear stiffness coefficient Kxx and Kyy of the roll bearings are
8 × 104 and 1 × 105 N/mm at the rotational speed of 3000 rpm.

The mass eccentricities errors are set at Node-10, -19, -28 and -34, and an M5 through-
hole is used to produce the unbalanced mass in the rotors at each stage, whose center is
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collinear with the center of the calibrated screw hole of each rotor in the axial direction. The
unbalanced masses of the rotors at all stages and their coordinates in the self-measuring
coordinate system produced by the M5 through-holes are shown in Table 1. There are three
combining sites in the four-stage rotor, which are Node-13, -22 and -32, respectively, that is,
the excitation positions of the geometric eccentricities errors of the rotors at all stages.

Table 1. The unbalanced masses of the rotors at all stages and their coordinates produced by the M5
through-holes.

Unbalanced Mass Points un [g] Coordinates of En [mm]

E1 0.296 (17.25, 0, 35)
E2 0.197 (38.5, 0, 58.5)
E3 0.314 (60, 0, 77)
E4 0.178 (18.75, 0, 36.5)

3.1.2. The Machined Rotor According to the 4-Stage Rotor

The material object of the above simulated four-stage rotor was machined according to
the dimensional parameters in Table A1. Figure 4 shows the measurement of the geometric
parameters of each single-stage rotor by used a coordinate measuring machine (CMM).
Table 2 shows the measured geometric parameters of the four-stage rotor. By substituting
the parameters in Tables 1 and 2 into the error transfer model in Section 2.3, the geometric
and mass eccentricities errors (Un and Fn) of the rotors at each stage can be obtained, and
the nodal vibration responses can be obtained by further substituting Un and Fn into the
dynamics model in Sections 2.4 and 2.5. The unique unknown quantities are the assembly
angles of the rotors at all stages (θz1, θz2, . . . , θzn).
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Figure 4. The measurement of the geometric parameters of each single-stage rotor.

Table 2. The measured geometric parameters of the 4-stage rotor.

Components ξn [mm] h1 [mm] w1 [mm] δn [◦]

Rotor-1 (0.0181, 0.0062, 65.0152) 0.0193 36.0220 113
Rotor-2 (−0.009, −0.0223, 115.0210) 0.0235 101.9895 29
Rotor-3 (0.0056, 0.0244, 138.1047) 0.0241 50.0149 242
Rotor-4 (0.0116, 0.0124, 74.9581) - - 182

3.1.3. Optimization of the Assembly Angles

As the assembly angle of Rotor-1 is 0◦ by default, the position of the unbalanced mass
point (E1) in Rotor-1 is used as the initial acquisition direction of the photoelectric sensor.
As shown in Figure 5, the acquisition angle of the vibration response in X-direction is 45◦

(∆θ = 45◦). The rotational speed of the four-stage rotor is set at 3000 rpm. The maximum
value of the vibration velocities at the left and right bearings (at Node-6 and -38) of the
four-stage rotor in steady-state is taken as the optimization objective to search the optimal
assembly angles of the rotors at each stage.
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Figure 5. The sensor settings of the 4-stage rotor.

Figures 6–8 show the maximum value of the vibration velocities, displacements
and accelerations at the bearings under all possible sequences of the assembly angles
(7 × 13 × 7 = 637), respectively. From Table 3, when the assembly angles of θz2, θz3 and
θz4 are 180◦, 165◦, and 60◦, the vibration velocities at Node-6 and -38 are 4.4630 and
3.5759 mm/s, respectively. Assembling according to the above assembly sequence can also
minimize the vibration displacements and accelerations at Node-6 and -38. The maximum
vibration response is at Node-6 under the optimal assembly, and the vibration velocity
curves of Node-6 are shown in Figure 9.
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Position Vibration Velocity
[mm/s]
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[mm]
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In addition, when the assembly angles of θz2, θz3 and θz4 are 30◦, 15◦, and 60◦, the
vibration velocities at Node-6 and -38 are 40.5936 and 57.4941 mm/s, respectively. If the
assembly is carried out according to the above assembly sequence, the vibration velocities
at the bearings will reach the maximum. At the same time, the vibration displacement and
acceleration can also reach the maximum (Table 4). The maximum vibration velocity is
at Node-38 under the worst assembly, and the vibration velocity curves of Node-38 are
shown in Figure 10.

Table 4. The vibration responses at Node-6 and -38 under the worst assembly (θz2 = 30◦, θz3 = 15◦, θz4 = 60◦).

Position Vibration Velocity
[mm/s]

Vibration Displacement
[mm]

Vibration Acceleration
[mm/s2]

Node-6 40.5936 0.1285 1.2785 × 104

Node-38 57.4941 0.1820 1.8076 × 104

When θz2, θz3 and θz4 are all 0◦, the vibration velocity at Node-6 and -38 are 7.5441 and
10.8975 mm/s, respectively. From Table 5, the maximum vibration velocity, displacement
and acceleration are all at Node-38 under the default assembly, and the vibration velocity
curves of Node-38 are shown in Figure 11.
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Table 5. The vibration responses at Node-6 and -38 under the default assembly (θz2 = 0◦, θz3 = 0◦, θz4 = 0◦).

Position Vibration Velocity
[mm/s]

Vibration Displacement
[mm]

Vibration Acceleration
[mm/s2]

Node-6 7.5441 0.0239 2.3778 × 103

Node-38 10.8975 0.0345 3.4298 × 103
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The maximum vibration velocity under the optimal assembly is reduced by 92.2% and
59.0% compared with that under the worst assembly and default assembly, respectively.
The maximum vibration displacement under the optimal assembly is reduced by 89.0% and
59.1% compared with that under the worst assembly and default assembly, respectively.
The maximum vibration velocity under the optimal assembly is reduced by 92.2% and
59.1% compared with that under the worst assembly and default assembly, respectively.

3.1.4. Effects of Stiffness and External Force on the Vibration Responses

The assembly angles under the optimal assembly, the worst assembly and the default
assembly were obtained, respectively, in Section 3.1.3. This section will investigate the
effects of the support stiffness and the external force changes on vibration response under
the above three assembly states.

Firstly, the original stiffness coefficients were doubled, that is, Kxx = 1.6 × 105 N/mm
and Kyy = 2 × 105 N/mm, and then the maximum vibration responses at the bearings
(Node-6 and -38) under the new support stiffness were calculated. Tables 6–8 show the
vibration responses at Node-6 and -38 under the optimal assembly, the worst assembly
and the default assembly. Figures 12–14 show that the increase of stiffness can reduce the
maximum vibration responses at the bearings under the three assembly sequences above.
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Table 6. The vibration responses at Node-6 and -38 under the optimal assembly.

Position Vibration Velocity
[mm/s]

Vibration Displacement
[mm]

Vibration Acceleration
[mm/s2]

Node-6 2.9001 0.0093 0.9149 × 103

Node-38 2.1121 0.0074 0.8221 × 103

Table 7. The vibration responses at Node-6 and -38 under the worst assembly.

Position Vibration Velocity
[mm/s]

Vibration Displacement
[mm]

Vibration Acceleration
[mm/s2]

Node-6 25.1136 0.0795 7.9071 × 103

Node-38 34.0271 0.1077 1.0713 × 104

Table 8. The vibration responses at Node-6 and -38 under the default assembly.

Position Vibration Velocity
[mm/s]

Vibration Displacement
[mm]

Vibration Acceleration
[mm/s2]

Node-6 4.4776 0.0176 1.7205 × 103

Node-38 7.9312 0.0284 2.4682 × 103
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Figure 13. The maximum value of the vibration accelerations at the bearings under all possible
sequences of the assembly angles.
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In addition, considering that the belt drive will be used in the experiments and there
is a very light vertical downward preload on the measured rotor, an external force was
added at the contact position between the belt and the rotor (Node-34), and the vibration
responses under the optimal assembly were calculated when the external force is 5 N and
10 N, respectively. From Tables 9–11, because the external force was applied closer to the
right bearing, the vibration response at Node-38 is significantly affected by the external
force than that at Node-6.

Table 9. The vibration velocities at Node-6 and -38 under different external forces.

External Force
[N]

Vibration Velocity at Node-6
[mm/s]

Vibration Velocity at Node-38
[mm/s]

0 4.4630 3.5759
5 4.3109 3.1741

10 4.1034 2.4683

Table 10. The vibration displacements at Node-6 and -38 under different external forces.

External Force
[N]

Vibration Displacement at Node-6
[mm]

Vibration Displacement at Node-38
[mm]

0 0.0141 0.0113
5 0.0128 0.0088

10 0.0117 0.0064

Table 11. The vibration accelerations at Node-6 and -38 under different external forces.

External Force
[N]

Vibration Acceleration at Node-6
[mm/s2]

Vibration Acceleration at Node-38
[mm/s2]

0 0.9149 × 103 0.8221 × 103

5 0.8058 × 103 0.6072 × 103

10 0.7129 × 103 0.4305 × 103

3.2. Experimental Verification

The experimental setup is shown in Figure 15. The measured rotor was placed on
a dynamic balancing machine driven by a belt, and the original rollers support on both
sides were refitted into two fixed bearings. The four single-stage rotors in Figure 4 were
assembled according to the three assembly sequences (optimal, worst and default) obtained
in Section 3.1.3, respectively. Then, the corresponding three vibration tests were carried
out on the assembled four-stage rotor system at the rotational speed of 3000 rpm. The
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sensitivity of the velocity sensors in Figure 15 are all 20 mv/mm/m. The eight channel
signal collector was manufactured by National Instruments Co., Ltd. (Austin, TX, USA).
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The experimental results verified the effectiveness of assembly optimization to a cer-
tain extent. However, unlike the simulation results, the maximum vibration velocities un-
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applied a slight preload evenly distributed force to the rotor, which generates friction to 
drive the rotor to rotate, and this preload was closer to the right bearing, which may in-
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Figure 15. Experimental setup.

The vibration velocity curves of the left bearing under the optimal assembly, worst
assembly and default assembly are shown in Figures 16–18, respectively, and that of the
right bearing under the same assembly conditions are shown in Figures 19–21. From
Table 12, the maximum vibration velocities at the bearings in the four-stage rotor system
under the optimal assembly, worst assembly and default assembly are 20.2505, 66.5348
and 37.1793 mm/s, respectively. The maximum vibration velocity under the optimal
assembly is reduced by 69.6% and 45.5% compared with that under the worst assembly and
default assembly, respectively. Although the reduction rate of the vibration velocities at the
bearings after optimized assembly is lower than the simulation results, the optimization
effect is still significant. The difference in support stiffness may cause the difference between
the simulated and measured vibration velocities. It can be seen from the simulation results
in Section 3.1.4 that the actual support stiffness in the experiments may be slightly lower
than that in the simulations.
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Figure 16. The vibration velocity curves of the left bearing under the optimal assembly. (a) X−direction; (b) Y−direction; 
(c) resultant velocity. 
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Figure 17. The vibration velocity curves of the left bearing under the worst assembly. (a) X−direction; (b) Y−direction; (c) 
resultant velocity. 

   
(a) (b) (c) 

Figure 18. The vibration velocity curves of the left bearing under the default assembly. (a) X−direction; (b) Y−direction; (c) 
resultant velocity. 
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Figure 19. The vibration velocity curves of the right bearing under the optimal assembly. (a) X−direction; (b) Y−direction; 
(c) resultant velocity. 

Figure 16. The vibration velocity curves of the left bearing under the optimal assembly. (a) X−direction; (b) Y−direction;
(c) resultant velocity.
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Figure 16. The vibration velocity curves of the left bearing under the optimal assembly. (a) X−direction; (b) Y−direction; 
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Figure 17. The vibration velocity curves of the left bearing under the worst assembly. (a) X−direction; (b) Y−direction; (c) 
resultant velocity. 
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Figure 18. The vibration velocity curves of the left bearing under the default assembly. (a) X−direction; (b) Y−direction; (c) 
resultant velocity. 
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Figure 19. The vibration velocity curves of the right bearing under the optimal assembly. (a) X−direction; (b) Y−direction; 
(c) resultant velocity. 

Figure 17. The vibration velocity curves of the left bearing under the worst assembly. (a) X−direction; (b) Y−direction;
(c) resultant velocity.
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Figure 18. The vibration velocity curves of the left bearing under the default assembly. (a) X−direction; (b) Y−direction; (c) 
resultant velocity. 

   
(a) (b) (c) 

Figure 19. The vibration velocity curves of the right bearing under the optimal assembly. (a) X−direction; (b) Y−direction; 
(c) resultant velocity. 

Figure 18. The vibration velocity curves of the left bearing under the default assembly. (a) X−direction; (b) Y−direction;
(c) resultant velocity.
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Figure 19. The vibration velocity curves of the right bearing under the optimal assembly. (a) X−direction; (b) Y−direction;
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Figure 20. The vibration velocity curves of the right bearing under the worst assembly. (a) X−direction; (b) Y−direction; (c) 
resultant velocity. 
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Figure 21. The vibration velocity curves of the right bearing under the default assembly. (a) X−direction; (b) Y−direction; 
(c) resultant velocity. 

Table 12. The vibration velocities at the left and right bearings. 

State Maximum of fl(γ) 
[mm/s] 

Maximum of fr(γ) 
[mm/s] 

Optimal assembly 20.2505 17.1042 
Worst assembly 66.5348 55.5799 

Default assembly 37.1793 32.4968 

4. Discussion 
The aero-engine is composed of multistage rotors, and its primary function is to re-

alize the pressurization of air step-by-step, thus providing an enormous power source. 
The vibration index of the multistage rotor system directly affects the safe operation and 
working efficiency of the aero-engine. However, the assembly process of the multistage 
rotor is complex. The traditional assembly process mainly depends on manual experi-
ences matching the assembly angles, which often needs repeated disassembly to meet the 
vibration index. The existing assembly optimization methods only optimize the concen-
tricity and unbalance of the multistage rotor, not directly optimize the vibration responses 
of the rotor. Therefore, to solve this problem, we established the direct relationship be-
tween the assembly angles of the rotors at each stage and the vibration responses of the 
rotor. The nodal vibration responses could be directly obtained by inputting the geometric 
and mass characteristic parameters of the rotor into the calculation model. In the simula-
tion, we took the maximum vibration velocities at the left and right bearings of a scaled 
high-pressure rotor system as the optimization objective, and obtained the optimal assem-
bly angles, making the maximum vibration velocities to the minimum. Although the op-
timization effect of the experiments was not as significant as that of the simulations, the 
vibration velocities at the bearings of the four-stage rotor could be significantly reduced 
by assembling according to the optimal assembly angles obtained by the simulation. As 

Figure 20. The vibration velocity curves of the right bearing under the worst assembly. (a) X−direction; (b) Y−direction;
(c) resultant velocity.
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Table 12. The vibration velocities at the left and right bearings.

State Maximum of fl(γ)
[mm/s]

Maximum of fr(γ)
[mm/s]

Optimal assembly 20.2505 17.1042
Worst assembly 66.5348 55.5799

Default assembly 37.1793 32.4968

The experimental results verified the effectiveness of assembly optimization to a
certain extent. However, unlike the simulation results, the maximum vibration velocities
under the worst and default assembly appeared at the left bearing. This is because the
belt applied a slight preload evenly distributed force to the rotor, which generates friction
to drive the rotor to rotate, and this preload was closer to the right bearing, which may
inhibit the vibration at the right bearing. Therefore, the vibration response at right bearing
is significantly affected by the external force than that at left bearing.

4. Discussion

The aero-engine is composed of multistage rotors, and its primary function is to
realize the pressurization of air step-by-step, thus providing an enormous power source.
The vibration index of the multistage rotor system directly affects the safe operation and
working efficiency of the aero-engine. However, the assembly process of the multistage
rotor is complex. The traditional assembly process mainly depends on manual experiences
matching the assembly angles, which often needs repeated disassembly to meet the vibra-
tion index. The existing assembly optimization methods only optimize the concentricity
and unbalance of the multistage rotor, not directly optimize the vibration responses of the
rotor. Therefore, to solve this problem, we established the direct relationship between the
assembly angles of the rotors at each stage and the vibration responses of the rotor. The
nodal vibration responses could be directly obtained by inputting the geometric and mass
characteristic parameters of the rotor into the calculation model. In the simulation, we took
the maximum vibration velocities at the left and right bearings of a scaled high-pressure
rotor system as the optimization objective, and obtained the optimal assembly angles,
making the maximum vibration velocities to the minimum. Although the optimization
effect of the experiments was not as significant as that of the simulations, the vibration ve-
locities at the bearings of the four-stage rotor could be significantly reduced by assembling
according to the optimal assembly angles obtained by the simulation. As each test needs to
be reassembled and clamped, the absolute consistency of the boundary conditions for each
test cannot be fully guaranteed. Moreover, the support stiffness used in the simulation
was also challenging to be entirely consistent with the actual support stiffness, which can
only ensure that the boundary conditions of the three simulations and experiments are
consistent. In the follow-up research, we plan to use a coupling drive instead of a belt-drive,
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which can eliminate the interference of the belt preload on the one hand, and investigate
the suppression effect of the assembly optimization method proposed in this study on rotor
vibration at higher rotational speed on the other hand.

5. Conclusions

In this study, we proposed a vibration suppression method for the multistage rotor of
an aero-engine based on assembly optimization. The main contributions of this study can
be summarized as follows:

1. The mathematical relationship between the assembly angles of the rotors at all stages
and the nodal vibration responses was established by combining the error transfer
model of the geometric and mass eccentricities with the dynamics model of the
multistage rotor system.

2. An optimization function was developed, which takes the assembly angles as the
optimization variables and the maximum vibration velocity at the bearings as the
optimization objective. Then, the optimal assembly angles that can minimize the
maximum vibration velocity at the bearings were calculated in the simulation.

3. The experimental results showed that the maximum vibration velocity at the bearings
of the four-stage rotor system under the optimal assembly was reduced by 69.6% and
45.5% compared with that under the worst assembly and default assembly.
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Appendix A

Table A1. The dimensional parameters of each element in the finite element model.

Element ln [mm] Dn [mm] dn [mm]

1 2 20 0
2 16.5 33 0
3 5 33 0
4 3.5 33 0
5 8 35 0
6 5 35 0
7 2 39 0
8 2 42 0
9 26 42 27
10 24 42 27
11 3 58 36
12 3 58 0
13 8 82 0
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Element ln [mm] Dn [mm] dn [mm]

14 15 192 0
15 5 82 0
16 3 82 0
17 3.5 82 54
18 24 82 72
19 50 82 72
20 3.5 102 72
21 3 110 72
22 7 110 74
23 19.5 82 74
24 3.5 82 56
25 3 128 56
26 10 128 48
27 34 128 112
28 46 128 112
29 7 128 48
30 5 128 50
31 3 128 33
32 6.5 68 33
33 30 42 33
34 20.5 42 33
35 11 42 0
36 2 39 0
37 5 35 0
38 8 35 0
39 3.5 33 0
40 5 33 0
41 16.5 33 0
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