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Abstract: The difficulty of adding external excitation and the asynchronous data collection from the
industrial robot operation limited the online parameter identification of industrial robots. In this
regard, this study proposes an identification method that only uses the amplitude of the frequency
response function (FRF) of the system to identify robot joint torsional stiffness and dynamic parame-
ters. The error criterion function shows that this method is feasible and comparable to applying the
complete frequency response for identification. The Levenberg–Marquardt (L-M) algorithm is used
to find the global optimal value of the error criterion function. In addition, an operational excitation
method is proposed to excite the system. The speed profile is set as a triangle wave to excite the
system using rectangular wave electromagnetic torques. The simulation results show that using
the amplitude of the FRF to identify parameters applies to asynchronous data. The experiments on
a single-degree-of-freedom articulated arm test bench show that the motion excitation method is
effective, and both stiffness and inertia are identifiable.

Keywords: torsional stiffness; frequency-response function amplitude; robot joint; motion excitation;
parameter identification

1. Introduction

Servo systems have become wildly used with the development of industry and tech-
nology, particularly in high-end medical equipment, new energy, robots, CNC machine
tools, and other fields [1,2]. Due to the fatigue of the mechanical part of the actual sys-
tem, the stiffness of the shaft system declines, and the performance of the transmission
mechanism reduces as the running time increases. Thus, the introduction of greater motion
error in the system is inevitable [3,4]. Therefore, changes in the shaft system stiffness can
reflect the operating status of the system and are essential indicators of the performance
evaluation and prediction of the transmission system [5–7]. Identifying the stiffness of the
shaft system during operation is crucial to predict an early failure of an industrial robot [8].

Parameter identification is typically used to estimate the parameters of a mathematical
model based on the input and output information of a particular system [9]. The parameter
identification in the servo drive system includes two aspects: internal parameter identi-
fication and external parameter identification [10,11]. For the dual inertia system with
nonlinear characteristics, Beineke [12] proposed two identification methods for external
mechanical parameters: standard minimum root mean square and four-step instrumental
variable method. They extracted the speed response of the motor at different stages for
the dual inertia system with nonlinear characteristics and identified the parameters cor-
responding to each stage. The identification results were compared with the traditional
neural network, self-organizing mapping, and classic frequency domain analysis methods.
Villwock and Pacas [13,14] proposed a non-parametric identification method to obtain the
resonant frequency of the dual inertia elastic system directly. In the identification process,
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the pseudo-random binary signal (PRBS) signal was used as an additional disturbance
of the stator current to excite the system, while the Welch method was used to obtain
frequency response. The measurement results showed that Welch method was extraor-
dinarily suitable for identification. The research of a three-mass-system pointed out that
the proposed identification method could resoundingly be applied to complex mechan-
ical systems. Zoubek and Pacas [15] calculated the FRF by implementing an adaptive
speed observer to replace the actual encoder. The proposed method could reliably identify
various dual inertia systems. However, the identification result could be affected by fac-
tors such as time-varying speed and load. In the field of robot parameter identification,
Zha et al. [16] proposed RLS-PSO algorithm combining Recursive Least Squares (RLS)
and Particle Swarm Optimization (PSO) for the parameter identification of lower limb
exoskeleton with emphasis on nonlinear mathematical model. RLS was used to define the
search space of each parameter, and then PSO was used to perform iterative optimization
in the defined search space. This method could eliminate the potential local minimum as
much as possible and improved the identification accuracy of parameters. Ostring [17]
analyzed the direct parameter identification method relying on three-inertia modeling
for the joints of the ABB IRB 1400 industrial robot. And compared the results with a
“black box” model structure identification method. It was found that the three-inertia
model could describe the dynamics of the robot well. Urrea [18] identified the dynamic
parameters of three-degree-of-freedom manipulator by using the parameter identification
algorithms of Least Square (LS), extended Kalman filter, Adaptive Linear Neuron (Adaline)
neural networks, Hopfield recurrent neural networks, and genetic algorithms, respectively.
The results showed that the LS method and Adaline method have the advantages of less
iterations, short calculation time, and high accuracy.

A major inconvenience for parameter identification is asynchronous input and output
signals for a servo drive system. Electromagnetic torque and motor speed are used as
input and output signals for the identification. The torque can be calculated from the line
current, which is analog, while the speed from the motor encoder can be obtained during
operation, which is digital. Thus, it is challenging to acquire the two signals synchronously.
In addition, the phase of the FRF is coupled with the acquisition time delay, affecting the
outcome of the identification process. Therefore, it is worth studying to accurately identify
the system parameters under the condition of asynchronous data.

In the system identification process, the selection of the excitation signal is crucial.
Bazanellaa [19] pointed out that the amount of information required for identification
depends on the amount of information with the closed-loop internal feedback of the actual
system and the amount of information added to the data. The external multi-frequency
signal (such as PRBS excitation signals) could make the system complete accurate identifi-
cation in a short time, but it was not a necessary condition for successful identification. In
addition, adding an excitation signal to the operational servo mechanical system will cause
the system to run unstable and affect its working state.

The traditional identification method of frequency domain uses the FRF for identifi-
cation, which is only suitable for synchronous data. In addition, the traditional method
depends on the external excitation signal, which is difficult to implement in the operation
of an industrial robot. In order to evaluate the rigidity of the joint servo system of industrial
robots in operation, the identification of the system shaft stiffness under the condition of
operational excitation and asynchronous sampling of input and output is studied. An
identification method based on the amplitude of the FRF is proposed, and an operational
excitation method is used to excite the system. This research provides a valuable reference
for condition monitoring of the joint in actual industrial applications.

2. Dynamic Modeling of the Robot Joint with Single Degree of Freedom

In this study, only one axis motion of the industrial robot is considered. The typical
industrial robot joint is composed of a permanent magnet synchronous motor (PMSM), a
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speed reducer, and an arm, as shown in Figure 1. In the figure, Te is electromagnetic torque,
ωm is motor speed, Tl is the load torque, and ωl is the rotating speed of the articulated arm.
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Figure 1. The schematic diagram of a single joint of an industrial robot.

The joint structure of the robot is complex. Moreover, identifying each structural
parameter is challenging. However, a robot joint can be equivalent to an identifiable dual
inertia model. Equations (1) and (2) can be used to calculate the equivalent stiffness and
equivalent load inertia of the joint.

K =
1

1
K1

+ 1
K2

. . . + 1
Kn

(1)

Jl =
JL

i2
(2)

where K1, K2, · · ·, Kn are the stiffness of each part, or a series of parts, of the shaft. K is the
equivalent joint stiffness. JL and Jl are the actual load inertia and equivalent load inertia,
respectively. i is the reduction ratio.

The double inertia model of the system can be obtained, as shown in Figure 2.
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Figure 2. Dual-mass models of the robot joint.
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The mechanical dynamics of the system can be written as follows:

Jm
..
θm + bm

.
θm = Te − Ts,

Jl
..
θl + bl

.
θl = Ts − Tl ,

Ts = K(θm − θl) + C(
.
θm −

.
θl),

ωm =
.
θm,

ωl =
.
θl ,

Tl = FL cos θl


(3)

where Jm is the moment of inertia of the servo motor. bm and bl are the damping of the
motor and the swing, respectively. θm and θl are the position angle of the motor shaft and
articulated arm, respectively. Ts is the shaft torque, C is the damping of the shaft, F is
the gravity of the swing arm, and L is the distance from the shaft to the line of action of
the load.

According to Equation (3), the transfer function from the electromagnetic torque to
motor speed can be obtained as follows:

H(s) =
ωm

Te
=

Jls2 + (C + bl)s + K
Jm Jls3 + (JmC + JlC + Jlbm + Jmbl)s2+

(JmK + JlK + Cbm + Cbl + bmbl)s + K(bm + bl)

(4)

Equation (4) shows that the motor speed feedback introduces conjugate zeros and con-
jugate poles to the closed-loop system, which will lead to mechanical resonance. Through
the conjugate zeros and the conjugate pole presented in Equation (4), the anti-resonance
frequency (ARF) ωARF and the natural torsional frequency (NTF) ωNTF can be derived. If
bm = 0, bl = 0, and C = 0 are assumed, the ωARF and ωNTF can be expressed as follows:

ωARF =

√
K
Jl

(5)

ωNTF =

√
(Jm + Jl)K

Jl Jm
(6)

Since the value of inertia changes by a very small amount in the long-time operation,
the stiffness determines the change of the resonance frequencies of the system.

3. Proposed Parameter Identification Method
3.1. The Excitation Signal of the Swing Movement

The direct closed-loop identification setup shown in Figure 3 is considered, where
C(s) is the linear transfer function of the controller, P(s) is the transfer function of the drive
system, u(t) is the system input, and y(t) is the system output. ωr is the reference rotating
speed. The novelty of the identification setup is that it does not use external excitation
signal because it uses operational excitation.
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Figure 3. Block diagram of closed loop speed control of robot.

The identification accuracy depends heavily on the excitation signal, which should
cover the frequency components contained in the system. The most used excitation signals
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are swept-frequency signals and PRBS [20,21]. The excitation signal is superimposed on the
torque reference obtained from the speed controller as the input signal to excite the system.
However, if the frequency band of the torque itself is wide enough, and the signal strength
in the frequency band is large enough, the system can also be excited. Therefore, we
considered the electromagnetic torque generated by the reciprocating motion of industrial
robots as system’s excitation.

The commonly used speed profile of reciprocating motion of robot joints is the trape-
zoidal curve. The trapezoidal curve divides the entire movement process into three stages:
constant acceleration, constant speed, and constant deceleration [22]. When the motion
period is short and the maximum speed is not reached, the trapezoidal curve becomes a
triangular wave. For this case, the electromagnetic torque corresponds to a rectangular
wave. The frequency spectrum of a rectangular wave is wideband, which can achieve a
similar effect to the external excitation.

3.2. Calculation of the Electromagnetic Torque

Torque sensors cannot be implemented to measure torque in industrial robot joints.
Thus, the electromagnetic torque is typically calculated from the line current. In this regard,
it is necessary to perform a coordinate transformation in the alternating current (AC) motor
physical model to obtain the relationship between the electromagnetic torque and the line
current [23].

Coordinate transformation follows the principle of constant power before and after
transformation, mainly including the following two forms:

(1) Clarke transformation can be written as follows:

[
iα

iβ

]
=

√
2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

] iA
iB
iC

 = C3s/2s

 iA
iB
iC

 (7)

(2) Park transformation can be written as follows:[
id
iq

]
=

[
cos θ sin θ
− sin θ cos θ

][
iα

iβ

]
= C2s/sr

[
iα
iβ

]
(8)

where iA, iB, iC are three-phase alternating currents. iα and iβ are two-phase alternating
current in the two-phase stationary coordinate system αβ. id and iq are two direct currents
in the two-phase rotating coordinate system dq. C3s/2s is the Clarke transformation matrix,
while C2s/2r is the Park transformation matrix. θ represents the electrical angle.

After the coordinate transformation, the decoupling of torque components is per-
formed, and the PMSM mathematical model in the dq coordinate system is obtained. The
torque equation can be written as follows:

Te =
3
2

p
[
ϕdiq − ϕqid

]
(9)

If id is controlled to be zero, PMSM is decoupled, and the torque of PMSM can be
written as follows [24,25]:

Te = ktiq (10)

where ϕd and ϕq are the d and q axis components of the stator flux linkage, p is the number
of pole pairs, and kt is the torque constant.

For id = 0, iq is equal to the peak value of the line current [26]. As the load torque
varies with the position angle, the peak of the line current varies accordingly. As the line
current is an analytical signal, its peak curve can be detected as the envelope using Hilbert
transform (HT). The modulus of the analyzed signal is the instantaneous amplitude or
envelope of the signal [27].
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Assuming that the measured line current is ia(t), and its HT is denoted as h[ia(t)],
then iq(t) and Te(t) can be obtained as follows:

iq(t) = |h[ia(t)]| =
∣∣∣∣ 1
π

∫ ∞

−∞

ia(τ)

t− τ
dτ

∣∣∣∣ (11)

Te(t) = ktiq(t) (12)

3.3. Error Criterion Function of the Identification Method of the Amplitude of the FRF

In the operation of the industrial robot, it is difficult for conventional signal acquisition
cards to meet the sampling rate requirements when analog sampling is used due to the high
accuracy of the encoder. A better way to obtain the speed is to read the encoder data from
the driver. This type of signal is digital, which is different from the signal type of current.
Thus, the input and the output data are asynchronous, causing deviations in the phase-
frequency characteristics of the system, which makes it impossible to identify the system
accurately by frequency response. However, the amplitude-frequency characteristics are
not affected; therefore, this study proposes a method for parameter identification using the
amplitude of the FRF. The following analyzes the identification performance of this method.

In direct closed-loop identification setups, the transfer function in Equation (4) can
also be written as follows:

y(s)
u(s)

=
b1s2 + b2s + b3

s3 + a1s2 + a2s + a3
(13)

where 

b1 = 1
Jm

b2 = C + bl
Jm Jl

b3 = K
Jm Jl

a1 = (Jm + Jl)C + Jlbm + Jmbl
Jm Jl

a2 = (Jm + Jl)K + (bm + bl)C + bmbl
Jm Jl

a3 = K(bm + bl)
Jm Jl

(14)

The corresponding FRF is

H(ω) =

(
b3 − b1ω2) + jb2ω

(a3 − a1ω2) + j(a2ω−ω3)
=

R1(ω) + I1(ω)j
R2(ω) + I2(ω)j

(15)

When using the FRF for identification, the error between the frequency response

estimate
∧
H(ω) and the actual frequency response H(ω) is

e(ω) =
∧
H(ω)− H(ω) = Re(ω) + Im(ω)j− R1(ω) + I1(ω)

R2(ω) + I2(ω)
(16)

The generalized error criterion function can be written as follows:

Ew =
N

∑
i=1
‖ew(ωi)‖

2

=
N

∑
i=1
‖[R2(ωi) + I2(ωi)j]e(ωi)‖

2

(17)

The function can be written further as

Ew =
N

∑
i=1

{
[Re(ωi)R2(ωi)− Im(ωi)I2(ωi)− R1(ωi)]

2+

[Re(ωi)I2(ωi) + Im(ωi)R2(ωi)− I1(ωi)]
2

}
(18)

Equation (18) makes the error criterion function linear with respect to the parameter
space, which simplifies the solution of the parameters. Supposing that a parameter b1
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minimizes the error criterion function, the partial derivative of the error criterion function
with respect to b1 is zero.

∂Ew

∂b1
= 2ωi

2
[

Re(a3 − a1ωi
2)− Im(a2ωi −ωi

3)− b3 + b1ωi
2
]
= 0 (19)

b1 =
b3 −

[
Re(a3 − a1ωi

2)− Im(a2ωi −ωi
3)
]

ωi
2 (20)

When only the amplitude of the FRF is used for identification, the amplitude of the

FRF estimate
∣∣∣∣ ∧H(ω)

∣∣∣∣ and the actual amplitude of the FRF |H(ω)| should be equal in the

absence of error.

∣∣∣∣ ∧H(ω)

∣∣∣∣− |H(ω)| =
√

Re(ω)2 + Im(ω)2 −

√
R1(ω)2 + I1(ω)2√
R2(ω)2 + I2(ω)2

= 0 (21)

Moreover,√
[Re(ω)R2(ω)]2 + [Im(ω)I2(ω)]2 + [Re(ω)I2(ω)]2 + [Im(ω)R2(ω)]2

=
√

R1(ω)2 + I1(ω)2
(22)

Squaring both sides simultaneously

[Re(ω)R2(ω)]2 + [Im(ω)I2(ω)]2 + [Re(ω)I2(ω)]2 + [Im(ω)R2(ω)]2

= R1(ω)2 + I1(ω)2 (23)

The root of the error function is removed by considering the error. The generalized
error criterion function can be written as follows:

Ea =
N

∑
i=1


(
[Re(ωi)R2(ωi)]

2 + [Im(ωi)I2(ωi)]
2 − R1(ωi)

2
)2

+(
[Re(ωi)I2(ωi)]

2 + [Im(ωi)R2(ωi)]
2 − I1(ωi)

2
)2

 (24)

The partial derivative of the error criterion function Ea with respect to b1 is

∂Ea

∂b1
= 4ωi

2
[
[Re(a3 − a1ωi)]

2 +
[

Im(a2ωi −ωi
3)
]2
−
(

b3 − b1ωi
2
)2
]
= 0 (25)

b1 =
b3 −

√
[Re(a3 − a1ωi)]

2 + [Im(a2ωi −ωi
3)]

2

ωi
2 (26)

Comparing Equation (26) with Equation (20), the results obtained by the two equations
differ. However, by transforming Equation (20), the following equation can be obtained:

b1 =
b3 −

√
[Re(a3 − a1ωi)]

2 + [Im(a2ωi −ωi
3)]

2 − 2Re(a3 − a1ωi)Im(a2ωi −ωi
3)

ωi
2 (27)

The difference between Equations (26) and (27) is

L = 2Re(a3 − a1ωi)Im(a2ωi −ωi
3) (28)

According to Equation (14), when the damping C, b1, and b2 are zero, L is zero. The
damping in the actual system is difficult to identify accurately through parameter identifi-
cation. Typically, the damping parameters are ignored under various complex working



Machines 2021, 9, 204 8 of 16

conditions [28]. Therefore, when the damping can be neglected, parameter identification
using the amplitude of the FRF is equivalent to that using the frequency response.

3.4. Calculation of the Frequency Response Function

Generally, the FRF of the system input signal x(t) and output signal y(t) is given by
the ratio between the spectral density function Gxy(ω) and Gxx(ω) as follows:

H(ω) =
Gxy(ω)

Gxx(ω)
= |H(ω)|ejφ(ω) (29)

where H(ω) is the FRF of the system, Gxy(ω) is the cross-power spectral density of the
input x(t) and output y(t), and Gxx(ω) is the self-power spectral density of the input
signal x(t).

3.5. Levenberg-Marquardt Algorithm

Section 3.3 introduced the error criterion function, and this section uses the L-M
algorithm to iterate on it to find the optimal value.

Error function:

E(x) =
n

∑
k=1

ek(x) (30)

For Newton’s law, the iterative formula is:

xk+1 = xk + ∆x (31)

∆x = −[∇2E(x)]
−1•∇E(x) (32)

where ek(x) is the error, n is the total number of points in the identification frequency
domain window, and x are the parameters to be identified. xk is the input vector at the k-th
iteration, and xk+1 is the input vector at the (k+1)-th iteration. ∇E(x) and ∇2E(x) are the
gradient and the Hessian matrix of the error criterion function E(x) respectively.

∇E(x) = JT(x)e(x) (33)

∇2E(x) = JT(x)J(x) + S(x) (34)

In the above two formulas, S(x) =
n
∑

k=1

[
ek(x)∇2ek(x)

]
, J is the Jacobian matrix, namely:

J(x) =


∂e1(x)

∂x1

∂e1(x)
∂x2

. . . ∂e1(x)
∂xn

∂e2(x)
∂x1

∂e2(x)
∂x2

. . . ∂e2(x)
∂xn

. . . . . . . . . . . .
∂en(x)

∂x1

∂en(x)
∂x2

. . . ∂en(x)
∂xn

 (35)

The calculation method of the Gauss-Newton method is:

∆x = [JT(x)J(x)]
−1

J(x)e(x) (36)

The L-M algorithm is an improved form, namely:

∆x = [JT(x)J(x) + µI]
−1

J(x)e(x) (37)

where I is the identity matrix. µ is the damping coefficient, and µ needs to be adjusted
during each iteration: When L decreases quickly, a smaller µ value is used. At this time,
the method is similar to the Gauss–Newton method. When L decreases slowly, the µ value
is increased, and the method is similar to the gradient method [29].
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Figure 4 shows the flowchart of the parameter identification process, which can be
summarized as follows:

(1) The dynamic model of a single robot joint is established.
(2) The speed command signal is set as a triangle wave so that the electromagnetic torque

follows a rectangular window to excite the system.
(3) The current signal and the motor encoder signal are collected to calculate the electro-

magnetic torque and the motor speed.
(4) The ratio between the cross-power spectrum of input and output signals and the

self-power spectrum of input signals is calculated to obtain the amplitude of the FRF.
(5) The L-M optimization algorithm is used to fit the experimental and theoretical ampli-

tude of the FRF to minimize the error.
(6) The shaft stiffness is identified from the amplitude of the FRF.
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Figure 4. Identification method flowchart.

4. Simulations

According to the dynamic equations of the single joint degree of freedom system
introduced in Section 1, a simulation model of the articulated arm motion was built. The
parameters used in the simulation correspond to the actual parameters of the test bench,
the structure of the test bench and its parameters are described in detail in Section 5.1. The
joint stiffness is the equivalent stiffness of the coupling stiffness and the reducer stiffness in
series, and the value is 891 N·m/rad.The inertia of the motor side is the sum of the inertia
of the motor and the inertia of the reducer, and the value is 0.003027 kg·m2. The equivalent
inertia on the load side is 0.00748 kg·m2.

The speed command was set as a triangular wave to excite the system using rectan-
gular wave electromagnetic torques. The top speed was 1000 r/min, and the movement
period was 0.4 s, and the total simulation time was set to 2 s.

The amplitude of the FRF and the phase of the FRF of the system are performed using
synchronous data and asynchronous data, respectively, as shown in the Figure 5. According
to Equations (5) and (6), the theoretical resonance frequencies ARF and ATF of the system
are calculated as ωARF = 54.96 Hz, ωNTF = 102.39 Hz. The two frequencies are consistent
with the resonance frequency obtained by the simulation model in Figure 5, which shows
the accuracy of the simulation model. The amplitude frequency characteristics obtained by
asynchronous data and synchronous data are the same. However, the asynchronous data
has a phase shift.
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Data in the range of 0–500 Hz in the FRF and the amplitude of the FRF, respectively,
were used to identify the stiffness of the shaft system using the L-M optimization algorithm.
Firstly, the conventional identification method based on the FRF was used to identify
the synchronous data. In this case, the identification result is 866.13 N·m/rad and the
error is 2.79%, the identification accuracy is satisfactory. However, for asynchronous data,
identification result of the identification method based on the FRF is 654.67 N·m/rad and
the error reaches 26.52%. The result is unacceptable, it shows that the FRF is not applicable
for asynchronous data.

However, the identification method of the amplitude of the FRF obtains accurate
results for asynchronous data. The stiffness identification result is 859.13 N·m/rad and
the error is 3.49%. Table 1 shows the stiffness identification results of the three cases. It
proves that the proposed method can avoid phase error, and it is feasible and comparable
to applying the complete frequency response for identification.

Table 1. Stiffness identification result of the synchronous and asynchronous data.

Data True Value
(N·m/rad)

Identification Result
(N·m/rad) Error (%)

FRF of the synchronous data 891 866.13 2.79
FRF of the asynchronous data 891 654.67 26.52

amplitude of FRF of the
asynchronous data 891 859.93 3.49

5. Experimental Identification
5.1. Experimental System

A single-degree-of-freedom articulated arm test bench was built to simulate the
motion of an industrial robot single joint. The entire setup is shown in Figure 6. The
transmission system comprises a speed reducer and a shaft. Moreover, the elastic coupling
is connected in series with the shaft and the speed reducer. The PLC model is a SIEMENS
1212c connected to the driver to control the motor motion. An oscilloscope is used to obtain
the encoder signal from the driver. The current sensor is placed on one of the power lines,
and the NI9234 acquisition card is used to collect the line current data. The input and
output data collected are asynchronous. The specific parameters of the test bench are listed
in Table 2.
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Figure 6. Single degree of freedom articulated arm test bench.

Table 2. Parameters of the experimental system.

Parameter Value

PMSM rated power 2.3 KW
PMSM torque constant 3 N·m/A

Moment of inertia of PMSM 2.77× 10−3 kg·m2

Moment of inertia of reducer 2.57× 10−4 kg·m2

Reduction ratio 10 : 1
Articulated arm mass 5 kg

Articulated arm length 75 cm
Moment of inertia of articulated arm 0.748 k·m2

Reducer stiffness 89595 N·m/rad
Elastic coupling stiffness 900 N·m/rad

During the experiment, the triangular wave was set as the command speed to pro-
duce the electromagnetic torque as a rectangular wave to excite the system. Two motion
conditions were set, and the acceleration time and deceleration time of the first group were
both set to 0.5 s. Furthermore, the acceleration time and deceleration time of the second
group were both set to 0.2 s. In these two conditions, the joint arm swings back and forth
120 degrees in each motion cycle.

5.2. The Impact of the Acceleration Time on Excitation

The electromagnetic torque is obtained by multiplying the envelope of the current
and the motor torque constant. The motor encoder signal is processed to obtain the motor
speed. Because the current signal and the motor encoder signal are collected separately
and have different sampling rates, it is necessary to resample the sampling rate of the two
signals through interpolation so that they are consistent. Figure 7 shows the input signals
and the output signals of the test bench for an acceleration time of 0.5 s. Figure 8 shows the
frequency response of the system when the acceleration time is 0.5 s. No evident resonance
peaks are found on the amplitude and phase of the FRF, indicating that the system is not
sufficiently excited, and it is impossible to identify the parameters.
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Figure 8. Frequency response of the test bench with acceleration time of 0.5 s.

Then, the acceleration time is set to 0.2 s, and the torque and speed obtained are shown
in Figure 9. The amplitude and the phase of the FRF of the system are obtained, as shown
in Figures 10 and 11. Evident resonance can be observed in the two Figures.
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Figure 12 shows the power spectrum of the electromagnetic torque at 0.2 s and 0.5 s
acceleration time. The power spectrum of the two types of electromagnetic torque has a
wide enough frequency band. However, the intensity decreases with increasing frequency.
At the position of resonance frequency, the intensity of the two types of excitation signals is
not significant. The amplitude is approximately −170 dB when the acceleration time is 0.5
s, and the amplitude is approximately −100 dB when the acceleration time is 0.2 s. The
success of the latter excites the system, indicating that the shorter the reciprocating time,
the stronger the excitation signal, and the easier it is to excite the system.
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5.3. Parameter Identification

The FRF and the amplitude of the FRF of the system with an acceleration time of
0.2 s were used for identification respectively, including the frequency range of 0–500
Hz. Because the torsional stiffness was our focus, we only identified stiffness first and
considered that inertias were known. The identification results of the two methods are
shown in Table 3. Since the data collected in the experiment are asynchronous, there is
phase deviation in the FRF. Therefore, when the traditional identification method based on
FRF is used, the identification error reaches 37.93%. The proposed identification method
is based on the amplitude of the FRF, which avoids phase error and obtains accurate
identification results. The identified value is 851.9 N·m/rad, and the error is 4.49%.

Table 3. Stiffness identification results of the FRF and the amplitude of FRF.

Data True Value
(N·m/rad)

Identification Result
(N·m/rad) Error (%)

FRF of the asynchronous data 891 1229 37.93
amplitude of FRF of the

asynchronous data 891 851.9 4.49

The effectiveness of the method was tested for multiple unknowns. In this regard, the
two inertia parameters were regarded as unknowns and identified along with torsional
stiffness. The results are listed in Table 4. As seen in the table, the identification accuracy of
torsional stiffness declines when the unknown parameters increase compared with that
of the simulation; the error of the torsional stiffness reaches 9.39%. Thus, simultaneously
identifying multiple parameters increases the calculation error. In contrast, the identifica-
tion errors of the three parameters are all below 10%, indicating that not only the stiffness
can be identified. However, motor inertia and load inertia can also be identified.

Table 4. Identification results of the three parameters.

Parameter True Value Initial Value Initial Error
(%)

Identification
Result

Identification
Error (%)

K(N·m/rad) 891 100 88.78 807.34 9.39
Jm(kg·m2) 0.003027 0.001 66.96 0.00292 3.53
Jl(kg·m2) 0.00748 0.005 33.16 0.00676 9.57

Figure 10 shows the spectrum of the amplitude of the FRF generated by the exper-
imental and identified data. As seen in the Figure, the identified resonance frequencies
agree well with the experimental resonance frequencies when only the locations of the
anti-resonance and resonance frequencies are considered. However, note that a certain
difference exists between the identified amplitude and the experimental amplitude. The
reason is the damping effect that is neglected in the identification, and there is noise
interference in the experiment.
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Figure 11 shows the spectrum of the phase of the FRF generated by the experimental
and identified data. When the input and output data of the experiment are asynchronous,
although the resonance frequency can be identified, the phase of the FRF of the experimental
data and the identification data have a substantial deviation. Therefore, the phase of the
FRF leads to identification errors when the input and output data are asynchronous.
Nevertheless, the identification method of the amplitude of the FRF avoids the phase error,
which can replace the identification method based on the FRF.

6. Conclusions

In this study, aiming at identifying the torsional stiffness of industrial robot joints,
we proposed an operational identification method. The novelty of this method relies on
using motion excitation to excite the system and the amplitude of the FRF for parameter
identification. The proposed method can function without affecting the normal working
state of the robot. The experiments and simulations showed the effectiveness of the
proposed method. More importantly, the stiffness, motor inertia, and load inertia could
be identified. The future work will focus on further enriching the identifiable parameters,
including the identification of electrical parameters.
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