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Abstract: (1) Background: Trauma is a very common experience in contact sports; however, there is an
absence of data regarding the effect of athletes wearing mouthguards (MG) associated with ankylosed
maxillary central incisor during a traumatic impact. (2) Methods: To evaluate the stress distribution
in the bone and teeth in this situation, models of maxillary central incisor were created containing
cortical bone, trabecular bone, soft tissue, root dentin, enamel, periodontal ligament, and antagonist
teeth were modeled. One model received a MG with 4-mm thickness. Both models were subdivided
into finite elements. The frictionless contacts were used and a nonlinear dynamic impact analysis
was performed in which a rigid object hit the model at 1 m·s−1. For each model, an ankylosed
periodontal ligament was simulated totaling 4 different situations. The results were presented in
von-Mises stress maps. (3) Results: A higher stress concentration in teeth and bone was observed
for the model without a MG and with ankylosed tooth (19.5 and 37.3 MPa, respectively); the most
promising mechanical response was calculated for patients with healthy periodontal ligament and
MG in position (1.8 and 7.8 MPa, respectively). (4) Conclusions: The MG’s use is beneficial for healthy
and ankylosed teeth, since it acts by dampening the generated stresses in bone, dentin, enamel and
periodontal ligament. However, patients with ankylosed tooth are more prone to root fracture even
when the MG is in position compared to a healthy tooth.
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1. Introduction

Ankylosis is the replacement resorption process of periodontal ligament (PDL) after dental trauma,
which typically led to a direct contact between alveolar bone and root dentin [1]. Usually, the tooth
avulsion is reported as one of the main causes of dentoalveolar ankylosis. However, it also occurs
after an aggressive trauma without avulsion, surgical endodontic treatments, and intentional tooth
replantation [2–4]. The ankylosis can present a progressive behavior, with continuous root external
resorptions or internal resorptions, leading to the tooth loss [1,2,4]. From the biomechanical point
of view, the dentoalveolar ankylosis is related to the prognosis of the tooth modifying the biological
aspects and the mechanical response against chewing forces [5]. A previous study reported that
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the ankylosed tooth and the surrounding alveolar bone show an inferior biomechanical behavior
with higher stress magnitude, suggesting a higher risk of failure during the incidence of masticatory
loads [5].

During the dental trauma, the majority of injuries involves the anterior teeth and usually affects
only the tooth that suffered the impact [6,7]. It is well reported that during a trauma, the biomechanical
response from maxillofacial structures involves the enamel, root dentin, periodontal ligament,
and surrounding bone at the load dissipation [8]. However, the mechanical response of an ankylosed
tooth was not reported yet. The cause of root resorption of a dentoalveolar ankylosis tooth was not
completely investigated; therefore, the present study hypothesized that a maxillofacial traumatic
impact involving a central incisor affected by dentoalveolar ankylosis could cause a higher stress
concentration than a health incisor with PDL. This hypothesis is based on situations with dental
implants, for example, where the absence of PDL generates a different stress pattern with higher
magnitude than a natural tooth [5].

Basketball, football, hockey, martial arts, and boxing are some examples of contact sports that
present a high risk of dental injuries [9]. The maxillofacial trauma in athletes frequently occurs in
younger patients during contact sports activities. However, dental trauma in sports differs from other
dental trauma, as it is possible to easily prevent by the use of mouthguards [10]. In addition, awareness
of the importance of mouthguards did not mean its usage by the athletes, except by hockey players [10].
In this sense, the literature is very concise regarding the preventive effect of mouthguard device to
reduce the incidence of maxillofacial injuries during contact activities [4,7–16].

Three types of mouthguard are available: boil-and-bite, stock, and custom-made. The boil-and-bite
mouthguard is made by a thermoplastic material that should be heated in hot water and then formed
in the mouth by pressure. The stock type is prefabricated and cheaper than the other two, similar to
“plastic trays” that fit over the teeth without contact all the faces. The custom-made type is individual
and made on a model of the patient’s mouth [10–16]. The beneficial effect of the mouthguard use is
even more notable when a custom-made mouthguard device is selected, because it precisely fits the
patient arch, reducing the stress during an impact [13]. In addition, custom-made mouthguards show
superior mechanical performance, protection, retention, comfort, fit, ease of speech, and breathing
than stock mouthguards [17]. However, even with a mouthguard in position, some stress will occur in
the maxillofacial structures and can induce mechanical complications [11,16].

Regarding the mouthguards’ manufacturing, polymers are, unquestionably, the appropriate
class of materials for the production of mouthguards [18]. Nowadays, ethylene vinyl acetate (EVA)
copolymer is the most common polymer used for it. Polyolefin, polyvinyl chloride, polyurethane,
acrylic resin, silicone rubbers, and even polyetheretherketone are some examples of materials evaluated
in the past as possible to be used; however, none of them behaves as well as EVA for this indication [18].
In the future, the computer-aided design and computer-aided technology as subtractive manufacturing
process [19] and the 3D-impression as additive manufacture [18] will provide new possibilities
of materials usage and design for mouthguard definition and customization [18,19]. Until then,
the custom-made process with EVA continues to be the gold-standard.

The use of finite element analysis (FEA) is a reliable method for assessing strain and stress under
load incidence in complex structures through numerical models. Since it is difficult to replicate a
maxillofacial trauma in situ, FEA seems to be a pertinent method to identify the potential regions of
structural failure during an impact [8,20]. In many cases in medicine and dentistry, where research
on the trauma mechanics caused by impact, the results obtained from the FEA are the only available
data [21]. This method can also assist in interpreting the biological tissues responses that are affected by
the traumatic event [8,20]. Different from the in vitro studies, the FEA allows to observe the mechanical
response of each separate structure that compound the traumatized region, identifying how the load
will be dissipate through the model. The literature reports that the stress cushion efficiency of the
mouthguards vary according to the different thicknesses and impact directions [21], which also justify
the use of a numerical simulation to standardize the load application between the different models
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allowing to compare a similar trauma with and without mouthguard use. Despite the fact that the
first reports of using FEA to study mouthguards apply a static structural analysis [22], nowadays the
computer-aided engineering software constant update and knowledge about the different structure’s
mechanical properties and boundary conditions allow the use of dynamic impact [23,24].

The information regarding whether a patient with a dentoalveolar ankylosed tooth can be properly
protected from traumas when wearing a mouthguard is not available in the scientific literature
nowadays. Based on this, the present study aimed to investigate the influence of dentoalveolar
ankylosis on a central incisor and the surrounding structures during a dental trauma, and to evaluate
the effect of the mouthguard use to reduce the stress magnitude on these structures. The null hypothesis
was that there would be no difference for the stresses generated on the dental surface, regardless of the
periodontal ligament health and the MG usage.

2. Materials and Methods

This study was conducted using a 3-dimensional (3D) finite element analysis (FEA) and a
computer-aided engineering software (ANSYS 19.2; ANSYS Inc, Houston, TX, USA) to perform a
dynamic structural mechanical analysis. Schematic illustrations of the performed procedures are
shown in Figure 1.
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Figure 1. Three-dimensional models simulated in the present study according to: (a) absence
of mouthguard, (b) presence of custom-made mouthguard, (c) ankylosed tooth, and (d) healthy
periodontal ligament.

For the modeling process, a 3D mathematical model simulating an intact maxillary incisor tooth
with supporting tissues was created using computer aided design (CAD) software (Rhinoceros version
4.0 SR8; McNeel North America, Seattle, WA, USA). The model was composed of periodontal
ligament and cortical bone with a 0.3- and 1.0-mm thickness, respectively, and medullary bone,
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enamel, and dentin. In the lateral view, the bone was divided into cortical and medullar sections
and then, separated into two juxtaposed geometries, and the hard lamina was modeled following the
root anatomy [25]. After that, an custom-made mouthguard model was created based on previous
reports [11,13,16] involving 4-mm thickness [15,20], reported as the ideal thickness for this device.
For the present study, the mouthguard model was sectioned using cutplanes to be limited to the incisor
region following the previous studies’ methodologies. A 35-mm diameter sphere model was created to
simulate an impact in the maxillofacial region during the simulation [11,15].

The geometries were exported in Standard for the Exchange of Product Data (STEP) format to a
computer aided engineering (CAE) software (ANSYS 19.2, ANSYS Inc. Houston, TX, USA). In sequence,
the meshes were generated through the convergence test until obtaining a finite number of nodes
and elements for the models. The materials were considered isotropic, homogeneous, and linearly
elastic and the mechanical properties used in the simulation are summarized in Table 1 [8,18,24–29].
The solids presented perfectly bonded contacts, except the mouthguard that was considered frictionless.
For models with dentoalveolar ankylosis, the PDL space was substituted with cortical bone, resulting in
direct contact between the root dentin and the cortical bone, as reported by a previous FEA simulation
of this condition [5].

Table 1. Mechanical properties of the materials used in the computational analysis.

Material/Structure Elastic Modulus (MPa) Poisson Ratio Density (g·cm−3)

Enamel [24] 84,100 0.30 2.14

Dentin [26] 18,600 0.30 2.97

Periodontal Ligament [27] 50 0.45 0.95

Cortical Bone [28] 13,700 0.33 2.00

Cancellous Bone [28] 1400 0.31 0.70

Soft Tissue [29] 1.8 0.30 0.95

EVA [8,20] 18,000 0.30 0.95

Steel [8,20] 200,000 0.30 7.80

A dynamic impact analysis was performed using a single-step implicit dynamic contact analysis.
Boundary conditions defined a rigid impact object (steel sphere) hitting the tooth surface at 1.0 m·s−1

initial velocity in the X direction (Figure 2). The impact object was unrestrained in its path after this
initial velocity was applied. No gravitational or air-friction forces were modeled, and recoil of the
impact object was determined by its inertia and the impact contact responses. The base surface of
the maxillary bone was restricted in X, Y, and Z directions [8]. In this study, the stress distribution
was analyzed using the von-Mises Stress criteria. Shock absorption capability was defined as the
percentage of the stress peak and compared to that of the model without a mouthguard for healthy
and ankylosed PDL.
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3. Results

The calculated stress can be visualized using a colorimetric scale where blue indicates the
lowest stress values and red represents the highest stress values. The results in the maxillofacial
structures were determined using the von-Mises stress criteria, correlating tensile and compressive
areas. The von-Mises equivalent stress distribution for the different models (with and without MTG,
and with and without ankylosed tooth) at the peak of the impact are shown in Figures 3–6.
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Figure 3. Von-Mises stress distribution in the full model after the impact in different situations:
(a) Without mouthguard and with healthy periodontal dental ligament (PDL), (b) without mouthguard
and ankylosed tooth, (c) with mouthguard and with healthy PDL, and (d) with mouthguard and
ankylosed tooth.
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Figure 4. Von-Mises stress distribution in the periodontal dental ligament (PDL) and bone tissue after the
impact in different situations: (a) Without mouthguard and with healthy PDL, (b) without mouthguard
and ankylosed tooth, (c) with mouthguard and with healthy PDL, and (d) with mouthguard and
ankylosed tooth.

For the PDL tissue, the qualitative stress comparison showed that the highest stress concentrations
were at the palatal side and at the cervical buccal region for both models without MG (Figures 3 and 4).
However, the higher magnitude was calculated for the ankylosed tooth without MG (Figure 3). It is
possible to observe that, for the PDL tissue, the ankylosed tooth with MG in position was still presenting
the higher stress concentration than the healthy tooth without this device in position at the impact
momentum. Observing the quantitative results for each model, the highest stress magnitude (37.3 MPa)
occurred in the situation without mouthguard and ankylosed tooth (Figure 3b), followed by the model
with mouthguard and ankylosed tooth (12.5 MPa). For the same impact simulation, the healthy
PDL models with and without mouthguard showed the lowest stress at the surrounding tissue
(1.8 and 1.9 MPa, respectively).
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Figure 5. Sagittal view of the Von-Mises stress distribution in the tooth structure after the impact
in different situations: (a) Without mouthguard and with healthy PDL, (b) without mouthguard
and ankylosed tooth, (c) with mouthguard and with healthy PDL, and (d) with mouthguard and
ankylosed tooth.



Life 2020, 10, 294 9 of 14Life 2020, 10, x FOR PEER REVIEW 8 of 12 

 

 

Figure 6. Buccal view of the Von-Mises stress distribution in the tooth structure after the impact in 

different situations: (a) Without mouthguard and with healthy PDL, (b) without mouthguard and 

ankylosed tooth, (c) with mouthguard and with healthy PDL, and (d) with mouthguard and 

ankylosed tooth.  

Figure 6. Buccal view of the Von-Mises stress distribution in the tooth structure after the impact
in different situations: (a) Without mouthguard and with healthy PDL, (b) without mouthguard
and ankylosed tooth, (c) with mouthguard and with healthy PDL, and (d) with mouthguard and
ankylosed tooth.
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Regarding the dental structure, the von-Mises maps showed that all the models presented some
injury in the buccal face. However, the impact without the MG promoted the worst mechanical response
for root dentin and enamel (Figures 5 and 6). In a sagittal view, the model with the ankylosed tooth and
without MG showed the highest stress magnitude for the root at buccal face (Figure 5). The presence
of MG is able to reduce the stress concentration for the root dentin in a healthy tooth without visible
difference for the enamel tissue; however, for an ankylosed tooth, the stress concentration in both
tissues can be attenuated with the MG use (Figure 6). Similar to the PDL tissue, the ankylosed tooth
with MG still presented a mechanical behavior that is worse than the healthy tissue without MG,
suggesting that, even with this device in position, patients with ankylosed tooth are more prone to
suffer injury during contact sport. Observing the quantitative results for each model, the highest stress
magnitude (22.5 MPa) occurred in the situation without mouthguard and ankylosed tooth (Figure 4b),
followed by the model with mouthguard (Figure 4b), and ankylosed tooth (19.5 MPa) in the enamel
tissue. For the root dentin, the stress peak was 19.1 MPa without MG and 4.6 MPa with MG for
ankylosed PDL. Similar to the previous results, the healthy PDL models with and without mouthguard
showed the lowest stress at the root dentin (7.8 and 12.4 MPa, respectively).

4. Discussion

The aim of this study was to investigate the influence of dentoalveolar ankylosis on a central
incisor and in the surrounding structures during dental trauma, and the effect of mouthguard use in
reducing the stress magnitude on the involved structures. The results show that the presence of MG
causes a decrease in the stress magnitude in the evaluated structures for both PDL and ankylosed
tooth. Therefore, the hypothesis was confirmed.

Different contact sports activities have a high risk of maxillofacial injuries due to falls, collisions
with players, hard surfaces, or solid objects [30]. Although often aware of the benefits of using a
MG, the sport practitioner do not always use it [31–33]. The most reported reasons for not using a
MG are the difficulty in breathing, discomfort, talking, or swallowing [31,32]. Similar to previous
studies [11,13,15,32], the present report reinforces the need to inform athletes and coaches about
craniofacial injuries and the benefits of using a MG during a contact sport activity. The prevalence
of orofacial trauma in contact sports practitioners in the Federal District of Brazil is high and most
athletes do not use a mouthguard regularly, and some of them do not know about its importance [32].

Although the presence of the MG is important regardless the patient’s occlusion type [32],
the present study simulated a condition with the antagonist incisors contacting the bottom surface
of the MG. This condition was designed to properly simulate the MG use, since the presence of the
antagonist tooth can modify the biomechanical response during the impact. A previous study evaluated
the influence of dentoalveolar ankylosis on a single-rooted tooth and the surrounding alveolar bone
structures in the biomechanical standpoint using FEA [5]. The authors noted that ankylosed teeth
are likely to receive excessive loads during the mastication compared with teeth with normal PDL,
justifying the higher stress magnitude in the root dentin and bone. The present study corroborated with
this previous study showing a higher stress magnitude for the ankylosed tooth, complementing the
previous findings since a dental trauma was simulated and not the chewing forces. It is important to
note that the MG use can be beneficial for patients with ankylosed tooth reducing the stress magnitude.
However, the generated stress magnitudes for the ankylosed tooth were still higher than the healthy
condition, even when unprotected.

According to Jang et al., 2016 [5], a secondary trauma generates bone stress mainly concentrated
on the lingual bone crest in tooth with dentoalveolar ankylosis, which might be associated with alveolar
bone fracture. However, the authors considered a trauma caused by the antagonist tooth. Based on
this, the present study suggests that a trauma caused by an extra-oral object can also increase the risk
of tooth and bone fracture.

According to the International Association of Dental Traumatology guidelines for the management
of traumatic dental injuries [4], the rate of ankylosis and resorption varies considerably and can be
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unpredictable. The reasons that lead ankylosed tooth to start a continuous root external resorption
is not precisely determined [34]; however, previous authors reported that the injury induces root
resorption and may be mechanically induced by dental trauma, surgical procedures, and excessive
pressure of an impacted tooth or tumor [2]. Therefore, root resorption can occur without any further
stimulus and the bone is laid down instead of the root [2]. The present study suggests that the use of
MG in patients with ankylosed tooth should be encouraged during contact activities, especially to
avoid mechanical stimuli that could promote further unwanted bone response. Although there are no
longitudinal studies showing a higher prevalence of root fracture in ankylosed teeth, the present study
suggests that this consequence should be associated with this condition.

There are different types of mouthguards with varying ranges of protection and prices;
however, they are all made from polymers and share the same purpose: to absorb and dissipate
the impact energy resulting from the shocks [20]. Instead, the mechanical effect of custom-made device
is reported as superior and more prone to protect the athletes from injuries due to higher capability
to reduce the stress magnitude during an impact [13]. For that reason, the present study simulated
a perfectly fitted mouthguard, with uniform thickness and ideal position. However, during the
mouthguard manufacturing, in the clinical practice, the mouthguard thickness can be affected by the
processing which can affect its appropriate damping effect [12].

The beneficial effect of wearing the mouthguard for sound tooth has been already reported in the
literature using three-dimensional [11,13,14] and bi-dimensional analysis [8,16]. All of them showed a
reduced stress magnitude for dentin and enamel [8,11,13,14,18]. For bone tissue [8,11,13,20], the MG
can also reduce the stress peak at the impact momentum. The periodontal ligament can also present
a significant strain reduction when the MG is present [8]. The present study corroborated with all
of these previous statements, showing a stress magnitude decrease associated with the MG wearing.
For the ankylosed tooth, the MG use reduces the stress magnitude also; however, its biomechanical
behavior is still inferior to the sound PDL model.

The literature reports that 31% of orofacial injuries result from sports trauma and 50% are oral and
dental injuries. In athletes participating in contact sports, the prevalence of orofacial injuries is 39.1%;
however, the type of injury varies based on the sport played, level of competition, the participant’s
age, sex, and other factors [35,36]. For example, from professional handball players, 49% experienced
head and/or facial trauma and 22% of the participants reported dental injuries [36]. Almost 76% of
dental injuries resulted in complications afterward. Sixty-seven percent of the players knew that
mouthguards could prevent injuries, but only 28% used them regularly [36].

Some limitations of this study consisted on that the adjacent teeth were not present, the simulated
force was applied in the region described in the literature as the most common area related to
maxillofacial trauma; however, forces applied in other regions could generate different stress
magnitudes [11]. In addition, the mechanical properties were isotropic, which cannot be true for
the human tissue. The human tissue was based in an adult maxilla and complete formed central incisor;
however, the incidence of dental traumas are very high in children and teenager patients, that can present
different bone tissue disposition and mechanical properties as well different and apex formation stages.
The mechanical response considering the age relation should be further evaluated too. Another study
limitation was the absence of endodontically or prosthetically treatments in the simulated dental element
in response to these stresses [37]. Further studies evaluating these factors should be performed in
order to elucidate how a prosthetic treated tooth respond to the incidence of dental traumas and how
the dental surgeon can reduce the failure risk on it.

However, the results are valid since the limitations are common among the groups and the
proportionality observed in the results could possibly be repeated if these conditions were included in
further simulations. Different methods can also be applicable to study the mouthguards’ performance,
as the pendulum impact [38], since it can serve as complement for further studies regarding the
different mouthguard thickness and types.
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5. Conclusions

The MG use is beneficial for healthy and ankylosed teeth, since it acts by dampening the generated
stresses in bone, dentin, enamel and periodontal ligament. However, patients with ankylosed tooth
are more prone to root fracture.
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