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Abstract: Proteins are made up of long chain of amino acids that perform a variety of functions
in different organisms. The activity of the proteins is determined by the nucleotide sequence
of their genes and by its 3D structure. In addition, it is essential for proteins to be destined to
their specific locations or compartments to perform their structure and functions. The challenge
of computational prediction of subcellular localization of proteins is addressed in various in silico
methods. In this review, we reviewed the progress in this field and offered a bird eye view consisting
of a comprehensive listing of tools, types of input features explored, machine learning approaches
employed, and evaluation matrices applied. We hope the review will be useful for the researchers
working in the field of protein localization predictions.

Keywords: protein localization; signal peptide-based method; sequence compositional
information-based method; machine learning based method; integrated method

1. Introduction

Proteins are localized into different cellular compartments and sub-compartments inside the cell.
Each subcellular compartment has a distinct well-defined function in the cell and has a characteristic
physicochemical environment, which drives proper functioning of the proteins. Each subcellular
compartment has a distinct, well defined function in the cell and is considered to have evolved from
the prokaryotic cell. Typical eukaryotic cells have two types of DNAs (i) chromosomal nuclear DNA
and (ii) organelle DNA, which is present in mitochondria and chloroplast while prokaryotic cells have
only single type of DNA called nucleoid. The nuclear DNA encodes the majority of proteins while
only a small number of proteins are encoded by organelle DNA. Eukaryotic cells can synthesize up to
100,000 different types of protein [1], which are destined for one or more predetermined subcellular
locations. Figure 1 depicts various protein localization prediction methods available for different
cellular compartments.

The protein synthesis occurs in the cytoplasm and then the newly synthesized proteins are further
transported to their destined compartment to execute their function. Protein must be targeted to
the right compartment in cells to perform their function and mis-localization of the proteins leads
to functional loss or disorder, which contributes to many human diseases including cardiovascular,
neurodegenerative disease and cancers [2,3]. Assigning subcellular localization for protein is a
significant step to elucidate its interaction partners and predict their functions or potential roles in
the cellular machinery [4]. There are a number of sequences that are deposited every year in the
UniProt Knowledgebase (UniProtKB) but only a few of them were manually annotated and reviewed
(UniProtKB/SwissProt), which explains the gap between the deposited sequence and annotated sequence
is increasing every year (Figure 2). Therefore, there is a need of computational methods to predict
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subcellular localization with high quality and accuracy, which is of great significance in understanding
cellular proteome and also helpful in designing the drug or targets. To date, many efforts have been
made in this regard. Based on different kinds of characteristics, several machine learning approaches
have been developed such as neural networks [5,6], hidden Markov models [7-9], support vector
machines [10-12], deep learning [13-15], random forest [16], and extreme gradient boosting [17] for
prediction of subcellular localization of proteins.

The purpose of this review is not only to make a complete list of protein localization prediction
methods but also describe those methods that imply significant developments in this field. In this review
we primarily focus on the eukaryotic prediction method however, some of the mentioned subcellular
localization prediction methods could be used for both the prokaryotic and eukaryotic cell. This review
focuses on (1) available computational methods for subcellular localization prediction, (2) different
algorithms used in the development of these methods, (3) various features used in prediction purposes,
and (4) future aspect and importance of subcellular localization in the biological field.
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Figure 1. Typical cell with different subcellular location and with available protein localization
prediction tools.
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Figure 2. Number of sequences deposited and manually annotated proteins in the UniProt database in
the last 10 years.

2. Experimental Approaches for Protein Localization

Several experimental methods are available for determining protein localization, but the most
common method is to label the protein of interest with fluorescent probes and then visualize the
distribution of the protein within cells under a fluorescence microscope such as immunofluorescence
microscopy, immunolocalization, mass spectrometry, co-expression of fluorescent proteins, and electron
microscopy. Fractionation based approach such as gradient centrifugation and 2D gel electrophoresis are
also a widely used method to experimentally establish the localization of a protein. These experimental
methods are relatively expensive and time consuming, which explains for a large information gap
existing between known protein and their location information. Consequently, various computational
methods have been developed to help fill this void. In this review, we focused only on the computational
approaches and tools for prediction of protein localization.

3. Computational Approaches for Protein Localization

With the rapid development of advanced genome sequencing methods, the complete genome
sequences are increasing day by day and the challenges for computational biologists are to
manage, analyze, and annotate this plethora of unprocessed raw biological data. To now,
a number of computational methods have been developed to solve this problem. While many have
attempted to explore uncharacterized protein information, others have used the whole proteome
sequence information to develop new machine learning algorithms for different things such as the
prediction of motifs, prediction of ligand binding sites, etc. Based on protein sequence information,
the computational method can be divided into the following categories: (1) sequence feature-based
methods, (2) homology-based methods, (3) protein domain and motif information-based methods,
(4) signal peptide-based methods, (5) non-sequence derived features-based methods, and (6) integrated
methods, which could use a combination of two or more methods.

3.1. Sequence Feature-Based Method

Sequence features are commonly used in localization prediction since some differences in
the sequence features are empirically known to be correlated with different localization sites.
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Nishikawa and Ooi [18] first noted the correlation of amino acid composition to its biological and
functional character in 1982. After that in 1983 Nakashima developed the first sequence-based
method for subcellular localization [19]. They used amino acid composition to discriminate between
intracellular and extracellular proteins. Later several research groups successfully used amino acid
composition as a tool for subcellular localization predictions [16,20,21].

In sequence feature-based methods, the complete sequence of proteins is transformed into a
numerical feature vector, which is then used to predict the subcellular location. There are different
types of sequence feature-based methods available: (i) amino acid composition based method, in which
the frequency of 20 different amino acids is calculated but it ignores the sequence order information
of each residue. (ii) Chou’s Pseudo amino acid composition (PseAAC) [22], which considers the
amino acid composition along with the potential interaction among the adjacent residues. This can
be further categorized into different modes of PseAAC such as the gene ontology mode, functional
domain mode and sequential evolution mode. (iii) Hybrid method, which allows the integration of
different parameters or features for the prediction and usually results in an increased the prediction
performance [4].

3.2. Homology Based Method

This is the most common way to predict the uncharacterized protein on the basis of the presence
of homologous sequences of known function with an assumption that function is evolutionarily
conserved [23]. This approach first identifies for homologous sequences in the proteins with known
subcellular location and then extrapolates to predict the location of unknown proteins, hence this
approach is also known as “Annotation by Homology Transfer”. Homology is a qualitative term,
which attributes evolutionary relationships among different protein sequences. Orthologous proteins
also typically have similar sequences and thus similar subcellular localization patterns. Proteins with a
highly similar sequence correlate well with the cellular localization site while those with dissimilar
sequences indicate that they are distant and may or may not be colocalized. In 2002, Nair and Rost [24]
showed the correlation between sequence similarity with subcellular localization. They considered 11
different compartments and observed sequence conservation among the major compartments. BLAST,
PSI-BLAST, and hidden Markov models (HMM) are routinely used for searching homologous sequences.
The limitation of homology-based methods is more pronounced in cases where no homology is found
between the query sequence and the annotated proteins sequence. Additionally, it is known that a
single amino acid substitution in localization signals can change the localization of a protein [25-27].
Thus, sequence homology is a noncausal feature for the localization prediction and should be used
with caution when applied to nonnative sequences or in case when homology is less [28].

3.3. Functional Motifs, Domains, and other Signatures Based Method

Proteins have evolved in different compartments, which limit their interactions with other proteins
and ultimately impact their functions. Some of these proteins preserved some sequential or structural
patterns or motifs. Though not all of these motifs and domains are specific to subcellular localization,
many preferentially occur in some specific compartments and such domains can be used to predict
the localization of any proteins. Studying proteins at a domain/motif level allows more accurate
functional inference [29]. In 2002, Mott et al. [30] first used 300 Simple Modular Architecture Research
Tool (SMART) domains to predict three subcellular locations viz secreted, cytoplasm, and nucleus.
After that, several works have been used for the protein motif and domains as features for protein
localization predictions [31,32].

These motifs are not just limited to sequence patterns, but also extended to the structural
information. There are a couple of tools such as PROSITE [33] and MEME [34] that employed this
feature to use for protein localization. While the structure is not available for a big chunk of protein
sequences, this gap is filled by several proteins structure predictions servers, like I-TASSER and
C-I-TASSER servers [35]
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3.4. Signal Peptide Based Method

Signal peptides are short amino acid sequences in the amino terminus of the newly synthesized
proteins and are found in all organisms including bacteria, archaea, and eukaryotes. The function
of the signal peptide is to enable the transport machinery to translocate the proteins to different
subcellular locations. They are present in secretory proteins and in transmembrane proteins and the
protein residing in different eukaryotic organelles have different types of signal peptide sequences [36].
The signal peptide is followed by a stretch of amino acids that form the cleavage site recognized by
peptidases and the signal peptide is removed after translocation, except in the case of transmembrane
proteins. In case of transmembrane proteins, this signal peptide serves as signal anchor sequences.
The importance of various signal peptide sequences in proteins in their subcellular localization has led
to attempts to predict the subcellular location on the basis of the signal peptide present in proteins.
The prediction of the signal peptide involves two main tasks: (1) discriminating between the signal
peptide and signal anchor sequences and (2) also predicting the position of the signal peptide cleavage
site [37]. The major challenge in signal peptide prediction is discriminating between true signal
sequences and other hydrophobic regions. In addition to it, the accurate prediction of the cleavage
site is also very important due to the high variability of the signal sequence length and the absence of
sequence motifs that unambiguously mark the position of the cutting site [38]. A number of prediction
methods are available that recognize and predict the subcellular location on the basis of signal peptides
(Table 1). SignalP was the first publicly available method [15] and there are many versions available,
which were developed based on different methods. Version-1 [39] was based on artificial neural
networks, while version-2 [40] was based on hidden Markow models, version-3 [41] has an improved
cleavage site prediction, version-4 [42] has improved discrimination of signal peptides and TM helices,
and version-5 [38] is a deep neural network-based method combined with a conditional random field

classification and an optimized transfer learning for improved signal peptide prediction.

Table 1. Some useful signal peptide-based methods.

Method Tools Used Perlf/(l);ltrrliz;nce Locations/Organism Availability Year
convolutional and MCC. precision Cram- Aogt}iljee%ac teria http://www.cbs.
SignalP-5.0*  recurrent (LSTM) neural ‘P P . * dtu.dk/services/ 2019
networks and recall Gram-negative SignalP/
Bacteria and Eukarya
recurrent neural Precision. recall mitochondrial, http://www.cbs.
TargetP 2.0 * networks (RNNs) Fl-score, MCC ’ chloroplastic, secretory ~ dtu.dk/services/ 2019
network ! pathway TargetP/
Eukaryotes, htps:
. Convolutional neural MCC, precision, Gram-positive and . )
SigUNet network recall, F1 measure Gram-negative /I glthub.C()m/ 2019
4 mbilab/SigUNet
bacteria
Eukaryotes,
DeepSi Convolutional Neural Pl\cj[scijtiC\;eFIa{ljtee Gram-positive bacteria https://deepsig. 2018
polg Networks . d ! n and Gram-negative biocomp.unibo.it
precision and reca bacteria
Accuracy, Recall, . . e
SChloro SVM Precision, F1-score, szLX ccilrlr?ll;(;};tlrfetgts blgitoprr{/; Cxl;rfggl ¢ 2017
and MCC ) ' '
combination of neural http:
networks, Markov Eukaryotic subcellular ~ //bioinformatics.
PredSL chains, scoring matrices Accuracy location biol.uoa.gr/ 2006
(PrediSi), and HMMs, PredSL/
o S-score and the http:
TatP HMMf;ttxl;;ilsneural C-score, Y-score, bacteria //www.cbs.dtu. 2005

D-score

dk/services/TatP/
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Table 1. Cont.

Method Tools Used Perlf/clyzrr\;nce Locations/Organism Availability Year

http://www.cbs.
dtu.dk/services/ 1999
ChloroP/

* There are different versions of the software available, but here we mentioned only the recent one.

MCC, sensitivity, chloroplast transit

ChloroP Neural network s -
specificity peptides

The signal peptide-based method is a good approach to predict the proteins that contain the signal
peptide, but it has some drawbacks, which make these methods not able to be applied for proteome
scale prediction. (i) Not all proteins contain signal peptides. There are many proteins that do not
have any reported signal peptide sequence and despite this are still translocated to their respective
subcellular location. (ii) Many proteins follow the “piggyback import” mechanism during protein
translocation, which means these proteins do not have any specific signal peptide for the localization,
but they interact and bind to different proteins that have a signal peptide for translocation and then are
co-imported to specific target locations [43,44].

3.5. Non-Sequence Derived Features

A variety of non-sequence derived features have been used to predict subcellular localization.
For example, LOC3D [45], which used the structural information for identification and prediction of
proteins subcellular locations. There are a number of non-sequence derived features that have been
used in an automated classifiers including immunohistochemistry [3,46,47], fluorescence microscopy
image [48,49], protein—protein interaction (PPI) data [50], expression data [51], and recommendation
systems [52].

3.6. Integrated Method

The different strategies for predicting protein localization have their own strengths and weaknesses.
To enhance the performance of prediction methods, it is important to combine multi-characteristic
strategies, which give more complete information to understand the relationship between protein
localization with its sequence, structure, physicochemical properties, and function. Hence a combination
of different input vectors and different tools will be the successful strategy in protein subcellular
localization prediction. Many methods have successfully utilized the combination of protein features
to enhance the performance of protein subcellular localization predictions. The Protein Subcellular
Localization Prediction Tool (PSORT) family method is one of the integrated methods, which contains
several tools for localization prediction. The family includes a number of tools: (i) PSORT [53], the first
integrated method of the PSORT family (http://psort.org) for the plant and bacterial protein, (ii) PSORT
II [54] for yeast and animal proteins, (iii) iPSORT [55] for N-terminal sorting signals for plant or
non-plants; (iv) PSORTDb [56-58] for bacterial and archaeal proteins, and (v) WoLF PSORT [59] for
eukaryotic proteins including plants, animals, and fungi.

A similar approach was taken by many researchers where they integrated biological or empirical
sequence features correlated with subcellular location with a variety of machine-learning algorithm
such as KNN, SVM, and deep learning: MultiLoc, integration of the phylogenetic profile and GO
terms of retrieved homologues such as MultiLoc2, CELLO2.5, SherLoc2, YLoc, iLoc-Euk, Loctree3,
DeepLoc, etc. People are also integrating different computational tools for predicting subcellular
localization. The Bologna Unified Subcellular Component Annotator (BUSCA) [60] is an example of
such an integrated tool where the author combines methods for identifying signal and transit peptides
(DeepSig and TPpred3), GPl-anchoes (PredGPI), and transmembrane domains (ENSEMBLE3.0 and
BetAware) with tools for discriminating subcellular localization of both globular and membrane
proteins (BaCelLo, MemLoci, and SChloro). This integrated method performs better than the other
methods based on single feature approaches. There are a number of recently developed subcellular
localization methods available, which are used by a wide range of researchers (Table 2 and Table S1).
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Table 2. List of subcellular localization methods.
Method Tools Used Performance Matrix Feature Based Locations/Organism Availability Year
. . . https://github.com/
DeepPred-SubMito Convolutional Accuracy, MCC Sequence information M.1tochondr.1al and . jinyinping/DeepPred- 2020
neural network submitochondrial proteins L
SubMito.git
Extreme gradient Sel?eisllst;wgls,ifig/eecfaltcéty https://github.cony
SubMito-XGBoost cme g P ’ Sequence information Submitochondrial proteins QUST-AIBBDRC/ 2020
boosting (XGBoost) MCC, F1-measure, .
.. SubMito-XGBoost/
precision
Sensitivity, Specificit htp:
mRNALoc SVM Y 9P Y Sequence information eukaryotic //proteininformatics. 2020
Accuracy, MCC
org/mkumar/mrnaloc
. Sensitivity, Specificity, s
SCLpred-EMS Convolutional neural False positive rate, Sequence information endomembrane system and http://dlstllldeep.ucd. 2020
network MCC secretory pathway ie/SCLpred2/
Integrated method of . Sequence mfo.r mathn, i,
DeepSig, TPpred3, Precision, recall, signal and tran§1t p'e ptlges, Gran}—posmve', http://busca.biocomp.
BUSCA PredGPI, BetAware Fl-score, MCC glyCFgI})lgsfrii{giyﬁ351t01 gram—nega;xle;,l:lmgb plant, unibo.it 2018
and ENSEMBLE3.0 s and.
transmembrane domains
http:
. Sensitivity, Specificity, Sequence and domain Mitochondrial and //proteininformatics.
SubMitoPred SVM Accuracy, MCC information submitochondrial proteins org/mkumar/ 2018
submitopred/
ML-GKR (multi-label =~ Coverage, Accuracy, , 22 different subcellular http:
. Gene Ontology and Chou'’s o . o
pLoc-mEuk Gaussian kernel Absolute true, localizations of eukaryotic /fwww.jci-bioinfo.cn/ 2018
. s general PseAAC .
regression) classifier Absolute false proteins pLoc-mEuk/
http:
Sensitivity, Specificity, . . . //proteininformatics.
ERPred SVM Accuracy, MCC Sequence information, ER Proteins org/mkumarferpred/ 2017
index.html
deep recurrent neural . . 10 different location of http://www.cbs.dtu.
DeeplLoc networks Accuracy, MCC Sequence information eukaryotic proteins dk/services/DeepLoc 2017
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Method Tools Used Performance Matrix Feature Based Locations/Organism Availability Year
http:
SubNucPred SVM Sensitivity, Specificity, Sequgnce and.domam Nuclear and s.ubnuclear //proteininformatics. 2014
Accuracy, MCC information protein org/mkumar/
subnucpred/
Accuracy, recall, 18 classes for eukaryotes, in )
LocTree3 SVM and homology standard deviation, Homology-based, Gene six for bacteria and in three http:// W.WW'FOSHab' 2014
Ontology org/services/loctree3
standard error for archaea
PlantLoc localization motif accuracy locf'ihzatlon.motlf 11 different loce?tlon of plant http://cal.tongji.edu. 2013
search information proteins cn/PlantLoc/
iLoc-Cell, package
of predictors for
subcellular
locatlops of proteins. . Different subcellular location
It includes Accuracy, Precision, of Human. animals. plants 2011
iLoc-Hum, multi-label learning, =~ Recall, Absolute-true = Sequence information, gene eukar’ otic Vir,ul:; ’ http://wwwjci- 2012’
iLoc-Animal, multi-label KNN rate, Absolute-false ontology, PSSM, youe, ¥ ! bioinfo.cn/iLoc-Cell ’
. gram-positive, 2013
iLoc-Plant, rate, Am-neeatives
iLoc-Euk, & &
iLoc-Virus,
iLoc-Gpos,
iLoc-Gneg
. e . . . . . http:
Sensitivity, specificity, Sequence information, cytosolic and mitochondrial . .
MARSpred SVM Accuracy, MCC PSSM aminoacyl tRNA synthetase J[www.imtech.res.in/ 2012
raghava/marspred/
Sensitivity, specificity, primary sequence and four classes for animals and http:
SCLPred Neural Network False positive rate, multiple sequence fungi and five classes for . P 2011
. //distill.ucd.ie/distill/
MCC alignments plants
Sensitivity, specificity, . . . ..
! Sequence information, subcellular localization of http://bioinfo3.noble.
AtSubP SVM error rate, MCC, ROC PSSM Arabidopsis org/AtSubP 2010

curve
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Method Tools Used Performance Matrix Feature Based Locations/Organism Availability Year
OET-KNN ene ontology information
(Optimized s functior%gl domain ’ eukaryotic proteins amon http://www.csbio sjtu.
Euk-mPLoc 2.0 Evidence-Theoretic accuracy . . . youe p ong edu.cn/bioinf/euk- 2010
) information, and sequential the following 22 locations .
K-Nearest Neighbor) . . . multi-2/
classifiers evolutionary information
Precision. recall Different subcellular location http://www.psort.ore/
PSORTb SVM ’ ’ Sequence information of Gram-negative, b P 018 2010
accuracy, MCC or psortb
Gram-positive, archaea
naive Bayes alongside overall accuracy, Sequences information, animal, fungal and plant www.multiloc.org/
YLoc entropy-based . . 2010
discrefization Fl-score GO-term and motif proteins YLoc
evidence-theoretic overall accurac Sequences information htp:
SubChlo K-nearest neighbor accurac Y q (PseAAC) chloroplast proteins //bioinfo.au.tsinghua. 2009
(ET-KNN) algorithm y ’ edu.cn/subchlo
https://abi-services.
MultiLoc2 SVM Sensitivity, specifiity,  phylogenetic profiles and Plant, Animal, Fungal mnformatiicun’ 2009
v, gene ontology terms uebingen.de/
multiloc2/webloc.cgi
AAlIndexLoc SVM Sensitivity, specificity, Sequ.ence mfgrmahon a1.1d Animal, Fungal and plants http://aaindexloc.bii. 2008
Accuracy, MCC physicochemical properties a-star.edu.sg
Cell-PLoc package
of predictors for
subcellular
locations of proteins. 22 subcellular location of
p
It includes . . eukaryotic, human, plant, http:
KNN or OET-KN Accuracy and F1 GO and functional domain s .
Euk-mPLoc, . . . Gram-positive bacterial, //chou.med.harvard. 2008
algorithm score information

Hum-mPLoc,
Plant-PLoc,
Gpos-PLoc,
Gneg-PLoc,
Virus-PLoc

Gram-negative bacterial and
viral proteins

edu/bioinf/Cell-PLoc
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SVM-GO, k-NN-GO . . . http://iclab.life.nctu.
ProLoc-GO and fuzzy k-NN-GO MCC GO term information eukaryotic, human, edu.tw/prolocgo 2008
ProLoc SVM Accuracy physmochg mlcal subnuclear localizations https//iclab.life.nctu. 2007
composition edu.tw/proloc
http:
Sensitivity, specificity, . . . . //www-bs.informatik.
SherLoc SVM MCC Sequence information eukaryotic proteins uni-tuebingen.de/ 2007
Services/SherLoc/
Sensitivity, specificit htp:
MitPred SVM Y, Sp Y Sequence information Mitochondrial proteins //www.imtech.res.in/ 2006
Accuracy, MCC :
raghava/mitpred/
Coverage,
Normalized Accuracy,
BaCelLo SVM geometric average Sequence information Plant, Animal, Fungal http ://'ww'w.blocomp ’ 2006
, overall accuracy, unibo.it/bacell/
Generalized
Correlation
http:
HSLpred SVM Acc;urg;y, MCC’ Sequence information Human Protein //www.imtech.res.in/ 2005
Reliability index
raghava/hslpred/
Accuracy, MCC ram-negative bacterial htp:
PSLpred SVM -uracy, ? ! Sequence information & gatv //www.imtech.res.in/ 2005
Reliability index proteins
raghava/pslpred/
Accuracy, MCC Sequence information and htp:
ESLpred SVM Reliability index PSSM eukaryotic proteins //www.imtech.res.in/ 2004

raghava/eslpred/
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http://www-bs.informatik.uni-tuebingen.de/Services/SherLoc/
http://www-bs.informatik.uni-tuebingen.de/Services/SherLoc/
http://www-bs.informatik.uni-tuebingen.de/Services/SherLoc/
http://www.imtech.res.in/raghava/mitpred/
http://www.imtech.res.in/raghava/mitpred/
http://www.imtech.res.in/raghava/mitpred/
http://www.biocomp.unibo.it/bacell/
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A number of machine learning methods have been successfully employed for protein subcellular
localization predictions using the sequence information for all the proteins with known subcellular
localization information to learn and develop a meaningful representation or representative model
of the biological data. In the machine learning, the biological data is first categorized into classes

based on the Figure 3, which represents the flowchart of a typical machine learning approach for

subcellular protein localization. The performance of machine learning model has to be tested using

various parameters. Below are a few parameters that are widely used to analyze machine learning
performances (Table 3).

Protein Sequence

Features Extraction [

‘Amino Acid Composition

Physico-chemical

Analyze Errors

Properties
Cross-Validation
‘ Motif Composition
Study the Train Machine pfam domain
. al omai
Problems Learning ‘ Composition

Performance
Evaluation

Prediction

Figure 3. Flowchart of the development of the machine learning algorithm for the prediction of

protein localization.

Table 3. List of commonly used metrics found in protein subcellular localization prediction.

Metric Explanation

Formula References

It is the ratio of the
number of correct
predictions to the total
Accuracy It works well if there are
an equal number of
samples belonging to
each class.

number of input samples.

TP + TN/(TP + FP + TN + EN) [61,62]

Proportion of negatives
that are correctly
identified

Specificity/True Negative Rate

TN/(TN + FP) [61,62]
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Table 3. Cont.

Metric Explanation Formula References

It tells us how many of
Precision/Positive Predictive the correctly predicted
Value cases actually turned out
to be positive.

TP/(TP + FP) [61]

It tells us how many of

Recall/Sensitivity/True Positive ~ the actual positive cases
Rate we were able to predict

correctly with our model.

TP/(TP + FN) [61,62]

F1 score is the harmonic
mean between precision
and recall. Greater the F1
F1-Score score, better the F1 =2 * precision *
performance of the Recall/Precision + Recall
model. It tells how
precise the classifier is
and how robust it is.

It is defined as the
proportion of predicted
negatives, which are real
Negative Predictive Value negatives. It reflects the TN/(TN + FN) [64]
probability that a
predicted negative is a
true negative.

Number of incorrect
positive predictions
divided by the total
number of negatives.

False Positive Rate FP/(FP + TN) [61]

Note: TP, TN, FP, and FN represent true positive, true negative, false positive, and false negative respectively.

4.1. Support Vector Machine

Support vector machine (SVM) is a supervised machine learning tool, which is used for
classification and regression purposes for complex biological problems. It is based on statistical
learning theory and was developed by Vapnik in the year 1995 [65]. It can solve linear and non-linear
issues well for many problems such as subcellular localization prediction, different protein family
classification prediction. The objective of an SVM is to find a hyperplane in a N-dimensional space that
classifies the data into different classes with maximum margin. There are a number of protein subcellular
localization methods available that used SVM as a prediction tool [7,11,21,66]. For implementation of
SVM, people used different packages of SVM like SMV_light, LIBSVM, Caret in R, and Scikit-Learn
for python.

4.2. Random Forest

Random forest (RF) is an ensemble learning method for classification and regression analysis.
The key element of RF is to build multiple decision trees and merge them together to get a more
accurate and stable prediction. This is the most popular choice for bioinformaticians to analyze the
complex biological data. Apart from subcellular localization prediction [2], RF is applied in a variety of
problems such as gene expression classification [67,68], biomarker discovery [69-72], protein—protein
interaction [73,74], and cancer drug predictions [75-78].
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4.3. Neural Network and Deep Learning

The successes of neural networks have led to the development of various programming frameworks
to build and train neural network models. The traditional neural network architecture is the feed
forward neural network with one hidden layer, in which each input neuron is connected to each neuron
in the hidden layer and which is further connected to each neuron in the output layer. Apart from
the subcellular localization prediction [13,79], deep learning is successfully applied in many other
biological fields such as the prediction of splicing pattern prediction [80,81], protein secondary structure
prediction [82,83], different types of cancer and drug-target interactions [84-87], and the patterns in the
biomedical imaging datasets [88].

There are some popular python libraries, which implements deep learning such as PyTorch, Caffe,
TensorFlow, Theano, Keras, and Lasagne [89]. Keras is the most powerful and easy to use python
library for developing and evaluating deep learning models.

5. Importance and Future Aspects of Protein Subcellular Localization

Protein subcellular localization is getting more attention as the function of the protein requires
its localization to a destined compartment. With increase in genomics and proteomics sequencing
has led to the accumulation of a large number of sequences in different databases. We believe that
the computational methods developed using the integration of different sources of information will
be the key factor to resolve these issues. Most of the current prediction methods are feature based
methods, which used sequence information or physicochemical properties. The drawback of these
feature-based methods is that it does not utilize rich network information of the proteins such as
the gene co-expression network, genetic interaction, and metabolic network [90,91]. There are few
methods available that also use PPI [92] and the metabolic network [93] for protein localization
predictions. The proteins interacting with each other tend to localize within the same subcellular
compartments and thus, the PPI information could be useful in predicting subcellular localizations [25].
Additionally, it is important to explore more interacting partners information to develop a more
accurate localization prediction method. Another thing that we need to improve in development of
protein localization prediction methods is the basis of most of the methods is that a particular protein
can be destined to a single subcellular location, which lacks the capability to predict the proteins
present in multiple locations. More efforts are needed for development of protein localization methods
to address proteins present in multiple locations. There is still some room for major improvements in
the multicellular localization prediction with high reliability while in many ways the field still holds
interesting challenges for the bioinformatician.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-1729/10/12/347/s1,
Table S1: Comparative performance of available subcellular localization methods.
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