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Abstract: Two important ions, K* and Na™, are unequally distributed across the contemporary
phospholipid-based cell membrane because modern cells evolved a series of sophisticated protein
channels and pumps to maintain ion gradients. The earliest life-like entities or protocells did not
possess either ion-tight membranes or ion pumps, which would result in the equilibration of the
intra-protocellular K*/Na* ratio with that in the external environment. Here, we show that the most
primitive protocell membranes composed of fatty acids, that were initially leaky, would eventually
become less ion permeable as their membranes evolved towards having increasing phospholipid
contents. Furthermore, these mixed fatty acid-phospholipid membranes selectively retain K* but
allow the passage of Na* out of the cell. The K*/Na™ selectivity of these mixed fatty acid-phospholipid
semipermeable membranes suggests that protocells at intermediate stages of evolution could have
acquired electrochemical K*/Na™ ion gradients in the absence of any macromolecular transport
machinery or pumps, thus potentially facilitating rudimentary protometabolism.
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1. Introduction

K* is the dominant ion in virtually all living cells and every mammalian cell has a high intra-cellular
K* content. Na* is the most prominent cation in extra-cellular fluid. The unequal distribution of
K*/Na* and their selective movement through the membrane are primarily responsible for generating
the resting membrane potential. In modern cells, this distribution of K*/Na* is mediated by K*/Na*
channels and K*/Na*-ATPase, an active transporter pumping ions against the gradient [1-3]. This
raises an interesting evolutionary question: did the high K*/Na™ ratio in the cytoplasm evolved actively
for functional reasons or was it a result of passive processes? According to the “chemistry conservation
principle” [4], the composition of the cellular cytosol is more conservative than that of the changing
external environment and could be a physiological fossil of early metabolism to retain information
of ancient environmental conditions. Based on this principle, it was previously suggested that the
high K*/Na* ratio of modern cells is a remnant of the first cells that evolved on Earth [5]. Taking
high K*/Na™ ratio as a key search criterion, it was suggested that the most suitable hatcheries for the
protocells were at inland geothermal fields with ponds of condensed and cooled geothermal vapor
having high K*/Na™ ratios [5]. However, using today’s cells to mirror primordial protocells or ancient
evolutionary habitats is questionable, because protocell membranes that were initially leaky could
have gradually evolved to be less permeable, and therefore, any modern environment that matches
this intra-cellular composition could be purely coincidental. Despite the discussion above, it is difficult
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to conclude that the high K*/Na* ratio is independent of the nature of the early environment, because
the transport of K*/Na* across the cell membrane is essential to many cell functions and was likely
present even in protocells [6].

The bottom-up assembly of a protocell, defined here as a membrane-bound prebiotic entity
capable of both self-replication and metabolism, has been a grand challenge in the Origins of Life
(OoL) field. It has been stated eloquently that “one cannot speak of a protocell type, but rather
a lineage of protocell systems that slowly evolved from simple self-assembled molecular systems
towards pre-cellular entities capable of self-sustenance and self-replication” [7]. In the present study,
the term “protocells” will be used to refer to simple lipid vesicles, intermediate evolutionary states,
and more complex pre-cellular entities. The most primitive cell membranes were likely formed from
single-chain amphiphiles (SCAs), such as fatty acids and their derivatives, that were present in the
prebiotic environment [8-15]. Membranes composed of short chain SCAs are leaky (reviewed in
15). The presence of high membrane permeability in the protocells would mean that they could
have prevented the potential damage induced by osmotic pressure but could not have retained and
accumulated K* over Na* and the small metabolites generated by primitive metabolism in their interior.
In the presence of phospholipids synthesized abiotically [16-20], mixed lipid membranes would have
formed in protocells at intermediate stages of evolution. The evolution of SCA lipid membranes to
mixed fatty acid-phospholipid and eventually to phospholipid-enriched membranes could have been
driven by environmental pressures, such as the presence of Mg?* ions in the environment [14,21].
It has been shown that divalent cations can selectively bind to fatty acids and abstract them from
mixed fatty acid-phospholipid membranes [14]. With increasing phospholipid content, the protocells
would have eventually become impermeable to ions. In the absence of complex protein-based ion
transport machinery across the membrane, the increasing presence of phospholipid in the membrane
could have been fatal for protocells, because there would have been no way to maintain osmotic and
electrical equilibria across the membranes. This could have served as an evolutionary pressure to
evolve ion-transport membrane proteins [22]. To address the issue of protocell membrane permeability
and stability from the most primitive to intermediate- and later-stage membrane compositions, we
were motivated to examine K* and Na* permeability across fatty acid, mixed fatty acid-phospholipid,
and phospholipid membranes.

2. Materials and Methods

2.1. Materials

Phospholipids (1,2-diheptanoyl-sn-glycero-3-phosphocholine (C7:0, DHPC), 1,2-Dioleoyl-sn-
glycero-3-phosphocholine (C18:1, DOPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
(C16:0-C18:1, POPC) and single-chain fatty acids (oleic acid (C18:1, OA) and erucic acid (C22:1, EA))
were obtained from Avanti Polar Lipids® (Figure 1). Potassium-binding benzofuran isophthalate
(PBFI) tetra-ammonium salt and sodium-binding benzofuran isophthalate (SBFI) tetra-ammonium salts
were obtained from Invitrogen (Thermo Fisher Scientific, Waltham, MA, USA). Valinomycin, monensin,
pyranine, and calcein were obtained from Sigma-Aldrich (St. Louis, MO, USA). Unless otherwise
specified, all other chemicals were purchased from Sigma-Aldrich at the highest available purity and
used without further purification. All solutions were prepared with ultrapure deionized water with a
resistivity of 18.2 MQ.cm (Barnstead™ GenPure™ xCAD Plus, Thermo Scientific, Rockford, IL, USA).
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Figure 1. Structures of the various fatty acids and phospholipids used in the present study: (a) decanoic
acid, DA; (b) oleic acid, OA; (c) erucic acid, EA; (d) 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine,
POPC; and (e) 1,2-dioleoyl-sn-glycerol-3-phosphocholine, DOPC.

2.2. Vesicle Preparation and Characterization

Fatty acids, phospholipids, and mixed lipids were dissolved in chloroform. The lipids were dried
using a stream of nitrogen gas for over 3 h to yield a thin film on the walls of glass tubes. Lipid films
were subsequently rehydrated by vigorous vortexing and sonicated with a solution of dyes (calcein
(20 mM), PBFl/pyranine (100/50 uM), or SBFI/pyranine (100/50 upM)) in 50 mM bicine buffer (pH 8.5).
The pH of the buffer was adjusted with trimethylamine (TEA) to pH 8.5. Afterwards, samples were
briefly sonicated and vortexed. After brief sonication, the samples were freeze-thawed five times to
ensure greater encapsulation of the dyes. Thereafter, the vesicle suspensions were gently agitated
by end-over-end rotation overnight prior to use, in order to ensure that the vesicles remained stable.
The suspension of vesicles was allowed to tumble overnight and then subjected to low pressure-size
exclusion chromatography (in a 10 cm X 1 cm column) to separate the dye-encapsulating vesicles
from the un-encapsulated free dye. The column was filled with Sephadex G-50 medium beads
(Sigma Aldrich, St. Louis, MO, USA)). The mobile phase was a 50 mM bicine/TEA buffer at pH 8.5.
Fractions were collected using a fraction collector (FC204, Gilson) in a 96-well plate. Fluorescence
was measured in a microplate reader (Synergy H1, BioTek Instruments, Winooski, VI, USA) and the
fractions containing vesicles were pooled (Figure S1). Vesicle size was measured by dynamic light
scattering (Zetasizer Nano ZS, Malvern). Images of the vesicles were taken on a IX51 Epifluorescence
Microscope (Olympus Co., Japan) equipped with a fluorescent light source and filters. All vesicles
were used between 4 and 24 h after purification.

2.3. Calcein Leakage Assay

The stabilities of vesicles of different compositions were assessed by quantifying the leakage of
calcein [23]. The kinetics of the release of calcein were monitored for 24 h (at an excitation/emission
wavelength of 495/530 nm).

The percentage of encapsulation was calculated according to the following Equation (1):

ion (%) — _F=Fo
Encapsulation (%) = 100 x (1 F o Fo) (1)

where F; is the fluorescence at time t, F is the fluorescence at time zero, and F; is the fluorescence after

the addition of Triton X-100. The leakage (%) is the 100-encapsulation %.

2.4. Kt and Na*t Calibration and Measurements

The PBFI molecule is a crown ether compound, linked via its nitrogen atoms to K* and to
benzofuran fluorophore-bearing isophthalate groups as additional ligating centers. For calibration, the
excitation spectra of PBFI (1 uM) at different K* concentrations were first obtained.
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According to the law of mass action, PBFI binds to K* according to:
Kq,app = ([PBFI] x [K*])/ [KPBFI] )

where Kq 4pp is the apparent dissociation constant.
Since the fluorescence of the KPBFI complex is higher than that of free PBFI, fluorescence increases
as the concentration of KPBFI increases (Figure S2), according to Equation (3):

Fx = Fy + 7 x [KPBFI] )

where Fj and Fy are, respectively, the fluorescence of the dye in the absence or presence of K*, and vy is
a constant.
Therefore, the binding isotherm, in terms of fluorescence, is:

f = (Fk - Fo)/(Fmax - FO) = [KJr]/(Kd/aPP + [K+]) (4)

where Fray is the fluorescence of PBFI in the presence of a saturating K* concentration. We define
parameter f as (Fx — Fo)/(Fmax — Fo), and using the Scatchard plot, the slope should be (—1/Kd,app)-

Using the bicine/TEA bulffer at different pH values (pH 6.75-9), we observed that the values of
Kd,appx " (4.01 £ 0.29 mM) and Kg appNa™ (5:99 + 0.51 mM) remained almost unaffected when the pH
was lower than 8.5 but higher than 6.75 (Figure S3 and Table S1).

Since the same K opp, values were determined for free PBFI in buffer as for encapsulated PBFI in
vesicles [24], we could use Equation (5) to calculate the concentration of intra-vesicular K* according
to:

[K*] = Kaapp/ ((Fon = Fi)/ (Fic — Fo)) )

Based on Fick’s law of diffusion, the uptake rate of K* (ds/dt) through the membrane into a vesicle
(volume V) can be represented as:

ds
T PxAXxAC 6)
and 4
S
dCin = 57 )

where P is the permeability coefficient, A is the surface area of vesicle, and AC is the difference in K*
concentration between the interior (Cj,) and exterior (Cex) compartments (Cex — Cip).
The two equations can be simplified as:
dC;, PA

dt = V(Cex - Cin) 8)

After integration, the concentration of K* in vesicle Cj ) after time t can be expressed as:

Cex — Cin(t)

c._C, o [PAt/V] 9)

where Cj is the concentration of K* in vesicle at t = 0 and Cex is constant because of the large
exterior volume.
Therefore, the permeability coefficient can be calculated according to Equation (10):

Cin Cin
p- ln(l - “)) - iln(1 - “)) (10)
Cex

where V, A, and 1, respectively, are the volume, area, and radius of the vesicle. This procedure is also
used to calculate the Na™ permeability coefficient using SBFI.
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2.5. K* and Na* Permeability Experiments

PBFI and SBFI are molecules that fluoresce upon binding K* and Na*, respectively (Figure S2).
Valinomycin and monensin are K* and Na*-selective molecules, respectively, that can bind and
transport these ions across the membrane. Vesicles were prepared with encapsulated PBFl/pyranine
or SBFl/pyranine. Twenty millimolar KCI or NaCl and a specific ion transporter (valinomycin or
monensin) were added to the exterior of the vesicles, and the fluorescence intensity change of PBFI or
SBFI (Excitation/Emission = ~336/506 nm) inside the vesicle was measured as a function of time, for up
to 100 min. Valinomycin and monensin were used, respectively, as positive controls for K™ and Na*
ion permeability.

3. Results

3.1. Calcein Leakage Assay

We first examined the stability of various SCAs and phospholipid membranes using the calcein
leakage assay. Since the permeation rates and translocation mechanisms of ions through membranes
are functions of membrane thickness [6], we first used a short-chain fatty acid (C10, DA, decanoic
acid) and its corresponding alcohol (DOH, decanol) to form vesicles in a 2:1 ratio (Figure S3). This
prebiotically plausible membrane could feature high intrinsic ion permeability, allowing non-facilitated
membrane transport [25]. However, we found that the DA/DOH vesicles were not stable and started
to allow the the fluorescent dyes to leak out, even during the preparation and separation in 50 mM
bicine buffer (pH 8.5). The SCAs with longer alkyl chains, such as OA (C18:1) and EA (C22:1), as well
as phospholipids such as DOPC (C18:1) and POPC (C16:0-C18:1), were also tested for their stability.
The calcein leakage assay results show that vesicles formed with longer single-chain fatty acids or
phospholipids are fairly stable over 24 h, retaining >97% of the encapsulated fluorescent calcein dye
(Figure S3).

3.2. K* Permeability of Pure Fatty Acid and Pure Phospholipid Membranes

Next, we investigated the dynamics of K* passage across these more stable OA, EA, DOPC, and
POPC membranes (Figure 2). Valinomycin, a natural, lipid-soluble peptide that selectively binds K*
and facilitates its transfer across the lipid membrane, was added into the vesicles as a positive control
for K*-permeability. After addition of 20 mM KCl to the exterior of the vesicles, the single-chain
fatty-acid vesicles showed a peak at about 10-20 min followed by a decrease and quasi-steady state,
in the presence and absence of valinomycin, which implies that these vesicles are permeable to K*.
In contrast, the K* concentration increased smoothly with time and reached a steady-state plateau
for the phospholipid systems and permeability was much lower in the absence of valinomycin. The
fluctuations in the fatty acid system reflect the greater leakiness and instability of the fatty acid
membranes compared to the phospholipid membranes.



Life 2020, 10, 39 6 of 10

0 20 40 60 80 100

Time (min)
.. (oA y (c)EA (d) POPC ... (eyDOPC
591 a7\ 59 : 09 1 35
49 f L“ - \ 07 4 :
E “ | i 4 | ‘
3.9 4 914 .
E ) 05
4 29 1
19 4 —e—vesicles 19 031
Vesicles + K+
0.9 4 —e—\esicles + K+ + Valinomycin 0.9 0.1 4
0.1 0.1 1
0 20 40 60 80 100 0 50 100 01 § 20 40 60 80 100

Time (min)

Figure 2. The permeability of K* across various lipid membranes. (a) A comparison of fatty acid versus
phospholipid membranes; (b—e) Permeability in the absence and presence of valinomycin, a K*-ion
transporter, across membranes, as a positive control.

The kinetic data permitted us to use Fick’s Law to approximate the permeability coefficients of
these membranes with respect to K* (Equation (10)). In the absence of valinomycin, the measured
apparent permeability coefficients for phospholipid vesicles were ~10713 (m/s), close to values reported
previously [26], which means that these membranes were impermeable to K*. The single-chain fatty-acid
vesicles exhibited a 10-fold higher permeability to K* as compared to the phospholipid vesicles.

3.3. K* and Na* Permeability of Mixed Fatty Acid-Phospholipid Membranes

We examined the permeability of mixed fatty acid/phospholipid vesicles with increasing
phospholipid concentration to K* and Na*, by monitoring the changes in intravesicular ion
concentrations as ions permeated from the extravesicular solution into the vesicles. It was found
that OA/DOPC (1:1) vesicles are permeable to K*, as shown by the similar fluorescence profile of
the K*-specific PBFI indicator with or without valinomycin (Figure 3 and Figure S4). Similarly, this
OA/DOPC (1:1) composition is also permeable to Na* in the presence or absence of the Na*-specific
ionophore, monensin (Figure 3 and Figure S5). By contrast, OA/DOPC (1:10) membranes are not
permeable to either K* or Na™. The decreased permeability of vesicle membranes could be explained
by the intrinsically lower fluidity of phospholipids compared to single-chain fatty-acids [27]. However,
OA/DOPC (1:5) vesicles discriminate towards Na* over K*, and are more permeable to Na* but
relatively less permeable to K* (Figure 3, Figures S4 and S5).
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Figure 3. The permeability to (a) K* and (b) Na* of various mixed OA/DOPC membranes in the
absence of ionophores, normalized to the respective concentrations in the presence of ionophores. The
ionophore for K* is valinomycin and the ionophore for Na* is monensin.

These results are also seen in Table 1, where the concentrations of Nat and K* normalized to those
obtained in the presence of their respective ionophores are almost equal for the OA/DOPC (1:1) system,
whereas the values for Na* are smaller than those for K* in the OA/DOPC (1:10 system). However,
the ionophore-normalized concentration of Na* is greater than the corresponding value for K* in the
OA/DOPC (1:5) system, indicating a greater permeation of Na* than of K* across the membrane. The
differences in the concentrations of K* and Na™* (Table 1) also show that the OA/DOPC (1:5) vesicles
exhibit a 10-fold higher permeability to Na* than to K*.

Table 1. The concentrations of Na* or K* cations normalized to those obtained in the presence of the
ionophores inside mixed vesicles at specific time points.

Time (min) OA/DOPC (1:1) (mM) OA/DOPC (1:5) (mM) OA/DOPC (1:10) (mM)
Na* K* Nat K* Nat K*
2 1.1 1.05 2.07 0.48 0.36 0.5
10 1.05 0.83 1.52 0.48 0.21 0.42
24 0.95 0.8 0.97 0.46 0.29 0.42
60 0.92 0.93 0.65 0.53 0.39 0.5
100 1.02 0.97 0.78 0.58 0.39 0.5
Error bars are between 0.01-0.07. After 60 min, concentration of both Na* and K* have almost reached plateau (see
Figure 3).

We also investigated the effect of K™ and Na* on the stability of the vesicles to determine if
osmostic pressure affected the permeability measurements by influencing membrane structure. The
vesicle stability was estimated by determining the size of vesicles at different salt concentrations
(Table S2). No differences were found in the sizes of the vesicles up to 75 mM NaCl or KCl], indicating
no osmotic pressure effects. The vesicles remained intact and did not rupture or change in structure
due to the presence of the salts. Therefore, the difference in ion permeability kinetics was mainly due
to intrinsic differences in the membrane between the various mixed lipid compositions.

4. Discussion

The data above show that pure fatty acid membranes and fatty acid-phospholipid membranes at
relatively low phospholipid ratios (1:1) are permeable to both Na* and K*. At relatively high ratios
(1:10) of phospholipid content, the membranes are relatively impermeable to both ions. At a specific
intermediate value of fatty acid to phospholipid (1:5), the membranes show greater permeability to
Nat than to K*. Here, we attempt to address the mechanism behind these observations. At low
phospholipid content in the mixed lipid system, the properties of the membrane are dominated by the
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behavior of the fatty acids, which are known to form highly permeable membranes because of their
greater fluidity. The fatty acid head group can bind cations and transport them across the membrane by
the lipid molecule flip-flop mechanism or by local defects or transient pores in the membrane [28-30].
To address the selectivity for Na* and K* at an intermediate OA/DOPC ratio, the radii of hydrated
and non-hydrated ions at the membrane interface have to be considered. The hydration shell of
Na* (0.45 nm) is larger than the hydration shell of K* (0.3 nm) [31]. In addition, the Na™ hydration
shell, formed by three water molecules, is quite stable, while the K* ion cannot attract the water
molecules and can only perturb the water structure in its immediate neighborhood [32]. Therefore, the
hydrated Na* ion should be less permeable by simple size exclusion. To realize a greater permeability
of Na* over K* at the intermediate OA/DOPC ratio of 1:5, we speculate that OA must be able to
dehydrate the cations [33,34]. The smaller size of the dehydrated Na* ion compared to K* then allows
it to permeate through the membrane by the flip-flop mechanism, local defects, or transient pore
mechanisms. Furthermore, Na* has been shown to initiate the deprotonation of the carboxylic acids of
fatty acids, even under neutral pH conditions [35]. The deprotonated headgroups could act to bind the
ions. This energetically favorable binding interaction could balance the energy lost in the removal of
the water molecules from the ion and would also be entropically favored because of the release of water
molecules from the solvation sheath of the ion. At the OA/DOPC ratio of 1:10, there is an insufficient
concentration of OA in the membrane to permit either ion to be dehydrated and transported across
the membrane, while there is a sufficiently high phospholipid concentration to make the membrane
relatively impermeable to both ions.

Several studies have proposed that the origin of life was at the surface of the Earth in “warm little
ponds” such as geothermal pools [5,36-38]. In these environments, the salinity of the solutions is greater
than the salinity of freshwater that may constitute neighboring surface run-off or neighboring streams
or lakes. Most geochemical solutions have a higher Na* than K* content. When a protocell membrane
first self-assembles from the environment, the intra-protocellular solution composition is the same as
that of the environment. If a protocell self-assembled in a geothermal pool-like environment, then
there would be an initially higher concentration of salts (compared to in the neighboring freshwater) in
the intra-protocellular volume, with a K*/Na* ratio <1. If the protocell was transported by surface
runoff following a rainstorm to a freshwater stream or lake, the extra-protocellular volume would
have a lower salinity than the intra-protocellular volume. The concentration gradient across the
membrane would promote the permeation of both ions out of the vesicle across the membrane. For the
population of protocells with fatty acid/phospholipid ratios in the intermediate range, Na* ions would
permeate more quickly than K* ions, thus resulting in a net intra-protocellular K*/Na™ ratio >1. Thus,
an electrochemical gradient would be established across the membrane that could be harvested for
use in rudimentary protometabolism. As protocells evolved towards more phospholipid-enriched
membrane compositions [14], the decreasing permeability would have acted as an environmental
selection pressure to evolve ion channels and pumps.

5. Conclusions

We have shown that mixed fatty acid/phospholipid membranes of specific compositions show
preferential permeability to Na™ over K™ without complex ion channels. The ion selectivity of specific
mixed fatty acid/phospholipid membranes could have served as a mechanism for enabling weak
protometabolism in protocells at intermediate stages of evolution in the absence of complex ion
channels or pumps in the membrane.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-1729/10/4/39/s1,
Figure S1: A representative column purification of a sample of PBFI-pyranine-loaded vesicles (OA/DOPC (1:5));
Figure S2. Fluorescence spectra showing the increase in the fluorescence intensity of PBFI and Pyranine with
change in pH and binding of K* with PBFL; Figure S3. Calcein leakage assay to determine stability (permeability)
of membranes of various lipids; Figure S4. Permeability of K* across mixed OA/DOPC membranes in the absence
(a) and presence (e) of ionophore: comparison of various OA/DOPC compositions. (b)-(d) permeability in the
absence and presence of valinomycin, a K*-ion transporter across membranes, as a positive control for OA/DOPC
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ratios of 1:1 (b); (1:5) (c) and (1:10) (d); Figure S5. Permeability of Na* across mixed OA/DOPC membranes in the
(a) absence and (e) presence of ionophore: comparison of various OA/DOPC compositions. (b)-(d) permeability
in the absence and presence of monensin, a Na*-ion transporter across membranes, as a positive control for
OA/DOPC ratios of 1:1 (b); (1:5) (c) and (1:10) (d); Table S1: The dissociation constant, Ky, for calculating the
concentration of intra-vesicular Na* or K*; Table S2: Effect of Na* and K on the size of vesicles to determine if
osmotic pressure affects vesicle size by changing membrane structure.
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