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Abstract: Exposure to ionizing radiation (IR) could affect the human brain and eyes leading to both
cognitive and visual impairments. The aim of this paper was to review and analyze the current
literature, and to comment on the ensuing findings in the light of our personal contributions in this
field. The review was carried out according to the PRISMA guidelines by searching PubMed, Scopus,
Embase, PsycINFO and Google Scholar English papers published from January 2000 to January
2020. The results showed that prenatally or childhood-exposed individuals are a particular target
group with a higher risk for possible radiation effects and neurodegenerative diseases. In adulthood
and medical/interventional radiologists, the most frequent IR-induced ophthalmic effects include
cataracts, glaucoma, optic neuropathy, retinopathy and angiopathy, sometimes associated with
specific neurocognitive deficits. According to available information that eye alterations may induce
or may be associated with brain dysfunctions and vice versa, we propose to label this relationship
“eye-brain axis”, as well as to deepen the diagnosis of eye pathologies as early and easily obtainable
markers of possible low dose IR-induced brain damage.

Keywords: ionizing radiation; brain; neurocognitive deficits; glaucoma; optic neuropathy; retinopathy;
angiopathy

1. Introduction

It is well recognized that the human brain and eyes are radiosensitive and radiovulnerable organs.
The eye lens is one of the most radiosensitive human tissues, and the retina is at risk for suffering from
severe consequences induced by ionizing radiation (IR), such as angiopathy and angiosclerosis [1].
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Interests concerning the effects of IR on eye structures are progressively increasing, given the evidence
that they are easily accessible, and particularly the retina, which is part of the brain, may represent
a reliable indicator of the actual conditions of the central nervous system (CNS). Therefore, it has
been proposed that targeting the eye might be useful in designing early detection strategies and the
prevention of radiotoxicity not only at its level, but also in the brain [2].

Although the notion of peculiar eye lens sensitivity to IR was already circulating for decades
(e.g., the first description of IR-induced cataract dates back to the end of the 19th century), only in
2012 did the International Commission on Radiological Protection (ICRP) note how “special attention
should be paid to the radiation effects in the lens of the eye and the cardiovascular system”. In addition,
taking into account new epidemiological data, the ICRP underlined that some tissue reactions were due
to threshold or lower doses than the previous ones [3]. As a result, cataract and circulatory diseases,
including those of the retina, were considered as tissue reactions of stochastic nature, with the threshold
considered to be 0.5 Gy, irrespective of the rate of dose delivery (i.e., acute, fractionated/protracted or
chronic exposure). Although, until now, the mechanisms of cataractogenesis and retina damage are
poorly understood, and much less is known about circulatory diseases induced by IR [4], the statement
of the ICRP is noteworthy for its warning concerning low IR doses.

Indeed, the issues of biological effects of low doses of IR are extremely timely, considering not
only the long-term effects of past atomic disasters, but also its increasing use and applications in
different medical specialties, which have considerably broadened the numbers of exposed subjects.
Not surprisingly, there are several studies reporting brain and ophthalmic IR in both patients and
interventional radiologists [5,6]. Therefore, the determination of the “real” prevalence and of the
biological basis of the brain and ophthalmic long-term effects in of low IR doses is another important
problem involving not only radiation medicine and radiobiology, but also other medical branches,
such as ophthalmology, neurology and psychiatry.

Given the scattered information in this field, the aim of this paper was to review the current
experimental, epidemiological, and clinical data on the IR-induced cerebro-ophthalmic effects amongst
in utero-exposed individuals, children and adults.

The review was carried out according to the PRISMA guidelines [7] by searching PubMed and
Google Scholar English papers published from January 2000 to January 2020. The keywords used and
combined with “Ionizing radiation” were “Brain”; “Eye”; “Ophthalmic effects”; “Cerebral effects”;
“Nuclear disasters”; “Interventional Radiology”. All the authors agreed to include in the review
conference abstracts, posters and case reports if published in an indexed journal. The following inclusion
criteria were adopted: studies carried out in clinical samples of adults and children/adolescents, and
reliable assessment of outcome measures.

All the authors equally contributed in identifying potential information specific to this topic
among the titles and abstracts of the publications. The first selection excluded 2234 titles because:
(a) duplicates arose; (b) they did not concern the scope of the paper; (c) they were not informative
enough. The second selection excluded 512 abstracts after being read and reviewed, as the information
reported did not fulfill the scope of our paper and/or the presented information did not seem relevant
to the discussed topic. Subsequently, 116 articles were excluded after being completely read and
evaluated, as they did not provide enough information and/or resulted sufficiently in line with our
review. Finally, 91 papers were included in the present review (Figure 1).
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The data were discussed and integrated with the findings gathered by the authors after the accident
at the Chernobyl Nuclear Power Plant (NPP) and their proposal which they called eye-brain axis.

1.1. Ophthalmic Effects in Irradiated Children and Individuals Exposed in Utero

The available literature indicated that subjects exposed prenatally and during childhood to IR
are a particular target group with a higher risk for possible acute and long-term IR effects including
neurodegenerative diseases.

For children with brain tumors, craniospinal irradiation poses a significant risk for cataract
development for more than two years [8]. It is also well established that repetitive head computerized
tomography (CT) scans may enhance risks of IR-induced lens opacification. A study showed that
during brain CT scanning, the mean dose for the eye lens was 10.5 ± 3.3, 29.9 ± 8.6 and 34.2 ± 14.9 mGy
in children aged 0.8–1 years, 2.0–4.9 years and 5.5–15.5 years, respectively [9]. According to us,
such values would require special measures to be taken in order to reduce the possible eye effects.
For instance, the combination of topogram-based tube current modulation and barium sulfate or
bismuth antimony shields were shown to reduce lens doses by 12.2% and 27.2%, respectively [10].
Even gantry tilting and patient set-up seem to significantly affect eye lens dose [9]. Such simple
measures, such as modifying the neck position, shortening the scanning range and reducing the tube
potential could decrease the dose to the lens by 89% [11].

The results of the so-called “Pittsburgh Project and the Ukrainian-American Chernobyl Ocular
Study” (UACOS) showed a significantly higher frequency of posterior subcapsular opacities of the
lens following IR, especially in the children irradiated with doses higher than 400 mG [12–14]. Data
from monitoring children undergoing long-term low-intensity IR exposure in Taiwan confirmed these
findings [15].

Prolonged (eight years) observation of the eyes among 461 children living in one of the
radiation-contaminated areas following the Chernobyl disaster showed soft opacities in the subcapsular
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layers of the lens, similar to those changes identified in atomic bomb survivors. The opacities were
significantly higher in the most exposed than in the less exposed subjects (18.97% vs. 9.3%, p < 0.05) [16].

As far as effects of in utero irradiation data, with their unique history of exposure to extensive
nuclear testing between 1946 and 1958, the descendants of Marshall Island residents are a typical and
dramatic, albeit small, example. The retrospective cohort study of resident women with at least one
singleton live birth between 1997 and 2013 in northwest Arkansas using state birth certificate data
linked to data from the Arkansas Reproductive Health Monitoring System, a state-wide birth defects
registry was performed in order to evaluate the rates of different birth defects. Marshallese infants had
higher rates of congenital cataracts (and of truncus arteriosus defect), with Public Risk of 9.3; 95% [17].

The problem of intrauterine brain or ocular damage as a result of the Chernobyl disaster is
still controversial, although some studies reported that children exposed in utero showed some
eye malformations and/or alterations in visual information processing. The most common eye
malformations observed were congenital cataracts and retinal angiopathy. The prevalence of congenital
cataracts was significantly higher than in the comparison group (2.0% vs. 0.89%), especially if the
pregnant mothers received individual total effective doses of 75 mSv or higher (RR = 6.22, 95%) [18–23].
Pathological changes of eye vessels at the basis of retinal angiopathy were also widely observed in
irradiated vs. the control groups with figures of 176.7%� ± 15.8%� vs. 51.98%� ± 7.81%�. In those
subjects irradiated in utero the average thickness of the retina in foveola, as measured by tomography
in the long-term period was indeed significantly more robust, than in control subjects (197.75 ± 5.48 µm
181 ± 5.01 µm, p < 0.05) [24,25]) [19,23].

The alterations of visual information processing were mainly detected by visual evoked potentials
(VEPs). The VEPs to checkerboard reversal pattern took the form of high-amplitude (up to 30.7 µV)
biphasic potential with latencies for components P100 of 42–152 ms, for N145 75–245 ms and for
P200 115–302 ms, respectively (the so-called, “vertex-potential”). Paroxysmal (epileptiform) states
represented the clinical equivalents of the pathological “vertex-potential”, perhaps suggesting limbic
system irritation. The second feature of VEP was an interhemispheric shift of the maximum of visual
information processing from the right, as observed in non-irradiated children (and assumed to be
normal) to the left dominant hemisphere. In our opinion, the decreased spectral θ-power, especially in
the left fronto-temporal area, as well as the increase in spectralβ-power lateralized to the left hemisphere
might be also considered as qEEG markers of prenatal irradiation. Taken together, these abnormalities
seem to suggest the left hemisphere is more sensitive to in-utero radiation exposure [26–31].

1.2. Ophthalmic Radiation Effects in Adults

IR-induced (cerebro)-ophthalmic effects in adulthood include cataract, glaucoma, optic neuropathy,
retinal angiopathy and dry-eye syndrome.

1.2.1. Cataract

A cataract is an age-related and common opacity of the transparent crystalline. Different types
of cataracts are the main cause of blindness worldwide, and the second most common reason for
visual impairment after uncorrected refractive errors [32,33]. Cataracts are classified anatomically
into nuclear, cortical and posterior subcapsular (PSC) subtypes [34]. The cataract is a well-known
IR-induced effect in humans and animals. The PSC subtype is the most common cataract associated
with IR exposure [32,33], followed by cortical ones [35].

However, there is a limited understanding of the processes leading to cataract formation after IR
exposure. It has been proposed that IR provokes damage of germinative zone-dividing cells, at least in
the PSCC subtype, resembling a cancer-like pathology of the lens [36]. Further, increased concentrations
of reactive oxygen/nitrogen species (ROS and RNS) in human lens epithelial cells have been detected,
together with a demonstrated dose-dependent relationship at higher IR doses (>0.5 Gy) [37].

Minor evidence suggests an inverse relationship between lens irradiation dose and cataracts
latency [38]. The acute threshold for radiation-induced cataracts of 0.5 Gy was derived from two
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papers on atomic bomb cataracts assessed after 55–57 years from the exposure: the first paper provided
thresholds of 0.6 Gy for cortical cataracts and 0.7 Gy for PSC opacities [39]. The second study reported
increased cataract prevalence with a dose of 1 Gy at an odds ratio (OR) of 1.39, as well as a threshold
of 0.1 Gy for cataract surgery prevalence, according to the data obtained from 3761 atomic bomb
survivors [40].

In the immediate aftermath of the Chernobyl disaster, 226 cases of specific IR cataracts were
recorded, while 179 cases were observed in the long term. The greatest number of cases of cataracts
was diagnosed eight/nine years after IR exposure, but new cases continue to be detected one even after
29 years following radiation exposure [41] (a typical example is depicted in Figure 2). In agreement
with the literature, we established that the typical clinical picture of radiation cataract may arise
at doses considerably lower than 0.25 Gy, with the threshold for cortical or PSC cataracts being
of 0.34–0.5 Gy [41–43]. In addition, a complete ophthalmologic examination of 53 acute radiation
sickness (ARS) convalescents exposed to high IR doses demonstrated that 39 showed a combination of
involutional and radiation cataracts.
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T. Babenko from the National Research Center for Radiation Medicine of the National Academy of
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In any case, currently, there is still much uncertainty and controversy regarding the relationship
among cataract development, dose protraction and latency period, as well as the stochastic versus
deterministic nature of IR-induced cataracts [44]. Therefore, a long-term monitoring of irradiated
patients with cataracts, as well as a thorough analysis of different factors acting on the lens, are strongly
needed in order to determine which class of phenomena the radiation cataracts can be attributed to.

1.2.2. Glaucoma

A meshwork of cells lying at the junction of the iris and the cornea is responsible for aqueous
drainage. Failure of this drainage causes glaucoma, a disorder in which high levels of intraocular
pressure (IOP) reduce the blood supply to the eye and eventually destruct the structures in and around
the optic nerve that causes clinically significant visual dysfunctions, and eventually blindness [45].

The possible relationship between IR and glaucoma was first reported among Japanese atomic
bomb survivors, at a percentage of around 10% [46,47].

Our data showed that Chernobyl clean-up workers have a significantly higher risk of involutive
changes of the anterior chamber angle (ACA) (trabecular zone sclerosis, pigment deposition and
exfoliative particles in it, narrowing of the venous sinus of the sclera, as well as the tendency to ACA
constriction in some areas), as compared with the control group (RR = 3.5, 1.27–9.5, χ2 = 7.48, p = 0.031).
According to us, such early onset of ACA morphological changes may lead to an increased incidence of
open-angle glaucoma in the long-term period [48]. In a cohort of the liquidators (4017 people) during
13 years of dynamic monitoring (18 years after the Chernobyl accident), glaucoma was diagnosed in
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28 patients (6.97 per 1000 persons of the group monitored): the annual incidence was, thus, 0.54 per
1000 persons, with a growth of incidence as the IR dose increases to 0.25 Gy [49].

The prevalence of glaucoma among 449 inhabitants of zones of tightened radio environmental
control was 6.68 per 1000 people, higher than that in the Kyiv region (4.12 per 1000 people) [50]. Further,
when re-examining 434 persons who had been working at transforming the NPP into an ecologically
safe system in 2009–2011, the primary incidence of glaucoma was shown to be 13.82 per 1000 people,
significantly higher than that of all Ukrainian population (0.65 per 1000 people, or 0.07%) [50].

Today, the use for medical purposes of X-ray represents the most frequent way of exposure
to IR for the human brain and eye. According to different studies, the percentage of vascular
glaucoma in individuals exposed to high dose-rate radiotherapy to the eye ranges between 7% and
48% [51–55]. These findings, suggesting the contribution of possible IR-induced small ocular vessels
to the development of post-radiation normal-tension glaucoma (NTG), are strongly consistent with
epidemiological data which define radiation risks for cerebrovascular pathology at doses >0.1 Gy [56],
>0.15 Gy [57] and >0.25 Gy [58]. Interestingly, currently, some authors consider glaucoma a sort
of neurodegenerative disease, as they postulate that there might exist a brain component that is
independent from the eye damage and that would play an etiological role in its development [59].
Diffusion tensor imaging (DTI) indices, specifically in the optic tracts, optic nerves and optic radiations,
result in changes in patients with primary open-angle glaucoma (POAG). POAG causes, or is associated
with, microstructural changes (decrease in fiber numbers, FN) involving brain regions associated with
vision (BA19), depression (BA10/BA46/BA25) and memory (BA29), which supports the concept that
POAG may affect neuroanatomical connections in the human brain not only within, but also beyond
the visual pathways [60]. Similar findings were reported in normal-tension glaucoma (NTG), as DTI
detected white matter damage (WM) in the four regions associated with visual and visual-related
functions, specifically in bilateral posterior thalamus, bilateral sagittal striatum, bilateral cingulum
hippocampus and bilateral fornix/stria terminalis. Moreover, DTI parameters in those brain areas
turned out to correlate with such specific glaucoma indices, such as the mean deviation of the visual
field and retinal nerve fiber layer thickness, and occurred before detectable visual field loss [61].
The primary visual cortex also exhibited more severe functional deficits than higher-order visual
brain areas in glaucoma [62]. It was hypothesized, therefore, that glaucoma deterioration is already
present in the eye and the brain before substantial vision loss can be detected clinically using current
testing methods. In Japanese NTG patients, DTI revealed white matter degeneration even in the
corpus callosum: this would suggest the presence of neurodegeneration that cannot be explained
on the basis of propagated retinal and pre-geniculate damage [59]. In glaucoma, which is typically
not considered a demyelinating disease, there was an increment in radial diffusivity within the optic
radiations, which was confirmed by the topographically linked delay of visual evoked potential latency,
a functional measure of demyelination [63]. Demyelination is believed to be the biological marker
of the delayed radiation therapy damage, which typically begins six months and later after finishing
the treatment course, is characterized by steady cognitive impairment and radiographically visible
neuropathological changes, and it is considered to be irreversible and progressive [64,65]. Some
reports mentioned the disruption of two measures of semantic memory, namely the postencoding
retrieval from long-term memory of words auditorily presented and recognition of a large set of
nameable pictures, indicating an impairment of higher perception and memory in auditory and visual
modalities. A radiation therapy-related disruption of glial mitosis, especially of oligodendrocytes,
may lead to temporary demyelination, and has been described to account for the already-mentioned
neurocognitive deficits [66–68]. Interestingly, an increased incidence of multiple sclerosis, a genuine
demyelinating disease, was described in 2005–2010 in the North-West Ukraine regions, mainly affected
by the Chernobyl accident fallouts. Specifically, the highest level was revealed in Western (71.8 per
100,000) and central (59.0 per 100,000) areas of Ukraine in comparison with 18.0–44.0 per 100,000 in
South-Eastern areas. It is reasonable that exposure to radionuclides accounts for a higher incidence
of multiple sclerosis in these most affected areas after the disaster, and that demyelinating and
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degenerative processes in the brain and eye structures may result from or be a long-term consequence
of IR [69].

1.3. Optic Neuropathy, Angiopathy and Chorioretinal Dystrophies

1.3.1. Optic Neuropathy

Radiation-induced optic neuropathy (RION) is a form of delayed radionecrosis of the anterior
visual pathways, which develops within months to years after external cranial irradiation, and
provokes severe and irreversible vision loss. High-resolution MRI of the optic nerves usually
demonstrates enhancement of a discrete segment of the intracranial prechiasmatic optic nerve, often
with accompanying expansion and T2 hyperintensity [70]. In a retrospective study comparing RION
cases with matched control subjects, 13 RION patients (for a total of 18 eyes) had received doses below
published “safe” thresholds (<55 Gy; <8–10 Gy for stereotactic radiosurgery) [71]. Similarly, a case of
optic neuropathy and retinopathy was reported following IR dose traditionally thought to be safe in
a 44-year-old female patient after receiving proton beam radiotherapy (20 Gy dose delivered in two
10 Gy fractions) on the left eye for a uveal metastasis of lung cancer [72].

1.3.2. Angiopathy and Angiosclerosis of the Retina

Angiopathy of the retina is the eye pathology emerging several years following the IR exposure.
The age of the irradiated individuals and the time of staying under risk are the major risk of retinal
angiopathy, while the contribution of IR dose is smaller [24,73].

One of our studies revealed a significant increase of retinal angiopathy and angiosclerosis in
a cohort of liquidators of the Chernobyl NPP accident (314.8 ± 14.5 per 1000 people in 1993 and
911.9 ± 19.7 per 1000 people in 2004). The relative risk of angiopathy, in comparison with a control
group, was 2.6 for a dose up to 0.05 Gy, 2.75 for doses ranging from 0.05 to 0.099 Gy, 2.86 for doses
between 0.1 and 0.249 Gy and 2.93 for a dose of 0.25 Gy or higher. In several liquidators who were
initially diagnosed with angiopathy and followed up, a transformation of angiopathy into angiosclerosis
was noted: walls of arteries became thicker, the lumen of vessels decreased and the caliber became
uneven (Figures 3 and 4). That is why the prevalence of the retina angiosclerosis increased considerably
by time, mainly in relatively young age groups [24,73,74].
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Figure 3. Retinal abnormalities in the irradiated group detected with Optical Coherence Tomography
(OCT) (a), as compared with non-exposed control subjects (b) (by courtesy of P. Fedirko and T. Babenko
from the National Research Center for Radiation Medicine of the National Academy of Medical Sciences
of Ukraine (NRCRM) Kyiv, Ukraine, copyright of co-authors [16,20].
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1.3.3. Chorioretinal Dystrophies

The most common kind of retinal pathology in irradiated people is central chorioretinal dystrophy
(macular). The data of cohort research and mathematical modeling made it possible to establish
that the risk of macular dystrophy mainly depends on the age of irradiated people at the moment
of examination, staying under risk for a long time and IR dose [41,73,75]. In one of our studies of
an optical coherence tomography of the macular zone in convalescents of acute radiation sickness in
the long-term period (25 years following the Chernobyl accident), the subjects with acute radiation
sickness were divided into two subgroups: (1) patients with the established diagnosis of macular retinal
degenerations; (2) patients with no pathological changes in the macular zone. The results showed
that the general architecture of the retina of the two subgroups was similar, as they both presented
a statistically reliable increase in retinal thickness in the foveola, in comparison with non-irradiated
control subjects [75,76]. We also considered that change of retinal thickness in the macular zone could
be the cause of metamorphopsia development (a curvature of a form and the sizes of objects).

1.4. Dry-Eye Syndrome

Dry-eye syndrome is another possible cerebro-ophthalmic effect that may develop in patients
who receive whole-brain radiotherapy as late toxicity, although in general practice, dose to the lacrimal
gland is not constrained (maximum constraint <40 Gy), although it would require to be taken care in
order to prevent it [77]. In the study of 213 meningioma patients receiving radiotherapy between 2000
and 2013, 15 dry-eye (7%) cases were found at a median dose to affected lachrymal glands of 1.47 Gy
and a median dose to affected lenses of 1.05 Gy [78].

To summarize, although meager, available data suggest that IR is an essential factor able to trigger
damage and degeneration of different eye structures, as well as of visual pathways in the CNS, while
impairing significantly not only visual function per se, but also a higher level of visual and perhaps
other information processes [79].

1.5. Ophthalmic IR Effects in Interventional Radiology

In the last decades, the worldwide development of interventional radiology was great, providing
significant human health benefits, but also increasing the radiation exposure in the patients and in the
health workers, up to become the largest artificial source of IR [80–82]. Nowadays, it is applied by
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several medical figures, including cardiologists, vascular surgeons, neuroradiologists, orthopedists and
urologists, since it includes all activities using radiological or radionuclide devices for diagnostic and
therapeutic purposes [81]. As already mentioned, although eyes and the brain are the most vulnerable
organs, the protection provided is generally insufficient, as the protection of the ocular lenses by leaded
glasses may be incomplete and that of the brain by radio-absorbent surgical cap minimal [83,84]. As a
result, the eye-damaging effects of IR are one of the main health problems in interventional radiology.
The most radiosensitive ocular component is the lens: therefore, the most common consequence of
eyes IR exposure in interventional radiology operators is the lens opacity, which can progress up to
cataracts [79,85,86]. Several data demonstrated a higher frequency of early lens opacity and cataracts in
these workers [87–90], especially among interventional cardiology [88,91–94]. A recent study indicated
that around 25% of interventional cardiologists might be at risk of developing an early radio-induced
cataract [88]. Although in the early stages of lens opacity the vision may be intact, such condition
tends to worsen progressively with the increase of the doses and the time exposure, up to causing
impaired vision, which requires surgery [79,85,86]. Thus, radio-induced lens alterations should not
be undervalued, even because they are associated with a severe impact on professional proficiency,
quality of life and career span [3,79,85,86,95–99].

In conclusion, it would be necessary to expand research studies on eyes and brain consequences
of interventional radiology, as well as on the radioprotection devices and safety procedures aiming to
contain these undesirable side effects. Indeed, although technology has provided major protective
benefits both to physicians (and patients), currently radioprotection protocols are still ineffective and
poorly uniform [83,85,86]. For this purpose, new predictive models of computational dosimetry could
be useful and implemented [100]. Furthermore, it would also be important to provide training courses
on radioprotection and workers’ safety for all interventional radiology workers, since they are often
lacking and not standardized [83,86].

2. Discussion

The data deriving from the current literature review, as well as from the findings gathered
from our personal experience facing the consequences of the Chernobyl NPP disaster, support the
notion of the peculiar radiosensitivity of the eye. We would like herein to propose our concept that
ophthalmic damage would be just a marker of more generalized brain damage, on the basis of what
we called "eye-brain axis”, as supported by evidence that the eye, specifically the retina, is just a brain
expansion. We also propose that the study of the human visual pathway might play an important role
in investigating the CNS in both physiological and pathological conditions [63].

The pupillary light reflex (PLR), a mechanism for light adaptation, is an evident example of the
connections between eyes and brain. Indeed, although PLR is often described as an immutable reflex,
it can be modulated by cognitive factors. In rhesus macaques, the microstimulation of the frontal eye
field in the prefrontal cortex was shown to modulate the gain of PLR, while adding complexity and
flexibility to a basic brainstem circuit [101]. In laboratory animals undergoing light deprivation (LD),
peculiar morphological changes of retinal ganglion cells (RGCs) [102] and layer five of pyramidal cells
of the primary visual [102], auditory [102] and motor cortex areas [103] were reported [102,103]. At the
same time, LD also caused a depressive phenotype [102,103]. Interestingly, depressive syndromes
are also one of the most frequent long-term effects of atomic bombings, nuclear testing and radiation
accidents [104,105]. Incidentally, it is noteworthy that in exposed subjects developing affective and
cognitive disorders, we could detect an association between IR and polymorphisms of the serotonin
transporter gene SLC6A4, being serotonin, the main neurotransmitter involved in depression [105].

Different data support the notion of our proposal of the eye-brain axis, and how the onset of
degenerative processes in one may influence those in the other. Elderly individuals without dementia
showed thicker retinal nerve fiber layer (RNFL) correlating with better MRI variables in visual
pathway regions and also in areas typically affected by Alzheimer’s disease (AD) neurodegenerative
processes [106]. Furthermore, some evidence suggested that in healthy aging the thinner macular
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ganglion cell-inner plexiform layer might be associated with a lower gray matter volume [107]. Some
CNS neurodegenerative conditions can be accompanied by architectural and electro-physiological
abnormalities of the retina, hence supporting the usefulness of eye examination tools to early detection
of the neurodegenerative processes, such as in AD where visual deficits are common. By using diffusion
tensor imaging (DTI), a study demonstrated optic nerve WM alterations in AD, as compared with
control subjects [108]. Moreover, in posterior cortical atrophy, a variant of AD characterized by a
high-level of visual deficits like alexia and agnosia, structural MRI analysis indicated a great loss of
gray matter in the occipital and parietal cortices, lateralized to the hemisphere contralateral to the
visual loss [109].

The reverse pattern is also consistent within the frame of hypothetical the eye-brain axis. In subjects
affected by age-related macular degeneration, retinal damage seems to be the main cause of the brain
WM degeneration that was observed in this condition. In particular, abnormalities were reported
in WM fascicles projecting to the primary visual cortex corresponding to the area of retinal damage
(fovea), with their magnitude being correlated with visual acuity loss [110]. In subjects with congenital
aniridia, the WM structure appeared altered not only in visual tracts, but also in different brain
structures belonging to the posterior visual pathways, such as bilateral optic tract, bilateral optic
radiation, forceps major and bilateral superior longitudinal fasciculus, as well as right posterior corona
radiata [111]. Further, degenerative processes were described not only in the retina, but also in the
brain optic radiation in retinitis pigmentosa (RP) [112].

After irradiation of retina cell culture in vitro at doses ranging from 1 up to 2 Gy, which is the
incidental dose received by the healthy retina per fraction when the standard treatment is delivered to
the brain, at day two, an evident loss of cell viability and βIII-tubulin immunostaining was evident,
while highlighting marked neuritic damage [2]. In eight patients who developed retinopathy following
plaque radiation treatment for choroidal melanoma, the average total retinal blood flow (TRBF) was
significantly lower, and retinal blood oxygen saturation indications were higher in the retinopathy eye,
compared with the other, which indicates alterations of retinal vascularization, similar to a rapidly
developing diabetic retinopathy [113].

Therefore, IR should be considered as an essential factor triggering damage and degeneration
in various eye structures and associated or not brain areas. Moreover, such radiation-induced
pathophysiological alterations may lead to secondary cognitive/neuropsychiatric effects, whose
thorough discussion is beyond the scope of the present paper. In any case, the study of human
visual pathway plays an important role in investigating neurodegeneration in CNS due to its unique
hierarchical architecture allowing tracing trans-synaptic degeneration, which is unlikely to be possible
in a whole-brain connectivity model [63]

3. Conclusions

The bulk of available information strongly indicates that the eye and brain are extremely
radiosensitive and radiovunerable organs. It is now evident that detrimental effects may occur at
their levels even at low and/or chronic IR doses. This is a recent concept eliciting several issues
that strongly challenge current research, clinical practice and safety for several medical workers,
and even raising novel questions concerning future space exploration. Indeed, cognitive and visual
disturbances, mainly retinal phosphenes, have been reported during space missions [114]. Retinal
phosphenes during space travel can alter perception, as the light is visible where there is no light and
are extremely dangerous in conditions requiring reliable processing of visual information [115,116].
Retinal phosphenes may induce overproduction of free radicals and great retinal lipid peroxidation,
with a consequent strong biophoton emission, which can really be perceived and interpreted by the
brain as bright flashes [115,117]. It was speculated that the effects of this type might also affect other
areas of the brain sensory system, as well as brain regions responsible for cognitive functions, hence
providing another support to our notion of the eye-brain axis [118].
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In conclusion, according to available information that eye alterations may induce or may be
associated with brain dysfunctions and vice versa, we propose that a deepening and more extensive
use of diagnosis of eye pathologies might represent early and easily obtainable markers of possible
low dose IR-induced brain damage.

Future studies of possible brain and ophthalmic IR effects in humans should be focused on
the search for specific morphological, visual, neurophysiological and neuropsychological markers
of higher visual perception processing disruption in a broader sense. Additional research is still
needed in the following areas: a comprehensive evaluation of the overall effects of IR on the
eye, dosimetry methodology and dose-sparing optimization techniques, additional high-quality
epidemiology studies and a basic understanding of the mechanisms leading to different eye disorders
and to their interactions with brain processes. It is also essential to implement follow-up studies
on medical and biophysical monitoring of various cohorts involved in radiation-related activities in
different contexts (atom industry workers, clean-up workers, persons irradiated in utero, interventional
radiologists, servicemen, astronauts, and so on).
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