Supplementary Information

Diurnal Regulation of In Vivo Localization and CO₂-Fixing Activity of Carboxysomes in *Synechococcus Elongatus* PCC 7942

Yaqi Sun ¹, Fang Huang ¹, Gregory F. Dykes ¹ and Lu-Ning Liu ^{1,*}

- ¹ Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
- * Correspondence: <u>luning.liu@liverpool.ac.uk</u> (L.-N.L.)

Strains Resistance		Description	Sources
RbcL-eYFP	Apramycin	Rubisco large subunit labelled with eYFP at the C-terminus	[1]
ΔkaiA	Spectinomycin	KaiA coding sequence replaced ectinomycin by spectinomycin resistant cassette	
∆ <i>kaiA</i> /RbcL-eYFP	Apramycin & Spectinomycin	Apramycin & Double mutant that was Spectinomycin & generated via two steps of transformation	
KaiA-eYFP	Apramycin	KaiA labelled with eYFP at the C- terminus	This work
RbcL-CFP	Kanamycin	Rubisco large subunit labelled with CFP at the C-terminus, served as competent cell for double mutant transformation	[2]
KaiA-eYFP/RbcL-CFP	YFP/RbcL-CFP Apramycin & Double mutant that was Kanamycin transformation		This work
pAM2195 Chloramphenico		<i>luxAB</i> & <i>luxCDE</i> with circadian- controlled <i>psbAI</i> promoter inserted at Neutral Insertion site II (NSII)	[3]

Table S1. Strains used in this work.

Table S2. Primers used in this work.

Primers	Gene Sequences (5'-3')	Description	
KaiA_F	GATCGCAGACAAAGTGAAGG	Amplify KaiA coding and	
KaiA_R		1500bp flanking	
		sequences	
KaiA_FP_F	<u>CTTTGTGAGATGTATCGACGGTCTATCCCACGA</u>	Amplify YFP & apramycin	
	<u>GAAACC</u> CTGCCGGGCCCGGAGCTGCC	resistant cassette with 39	
		bp homolog sequence	
KaiA_FP_R	<u>GAGAGAAATTGAGCCGAGCTTAAGACCTCCTTT</u>	(underlined) adjunct to	
	<u>ACCTTT</u> ATTCCGGGGATCCGTCGACC	KaiA stop codon for YFP	
		labelling	
KaiA_KO_F	TCTGTCTGCAGACTCAGTCCTGACAGGAGCGAC	Amplify spec cassette and	
	<u>TGCGTG</u> ATTCCGGGGGATCCGTCGACC	39 bp homolog sequence	
KaiA_KO_R	AGAAATTGAGCCGAGCTTAAGACCTCCTTTACCT	(underlined) to KaiA	
	TTTCATGTAGGCTGGAGCTGCTTC	flanking sequence for Knock-Out	
	<u></u>		
FKaiA KO	ATGAGCTGCAGTGCTAGG		
SEG		Screening segregation	
FKaiA FP	CCGATGTTCCAGTCACCA	status of KaiA mutant in	
SEG		cyanobacteria	
RKaiA	TTACGAGGGCTCATACGC		
FP/KO SEG			

pairwise <i>p</i> - value	WT DL light	<i>∆kaiA</i> DL Light	WT DL Dark	<i>∆kaiA</i> DL Dark	WT CL	∆kaiA CL
WT DL light	-	0.034*	0.117	0.660	0.992	0.971
<i>∆kaiA</i> DL Light	0.034*	-	0.692	0.779	0.332	0.419
WT DL Dark	0.117	0.692	-	1.000	0.869	0.938
<i>∆kaiA</i> DL Dark	0.660	0.779	1.000	-	0.975	0.991
WT CL	0.992	0.332	0.869	0.975	-	1.000
<i>∆kaiA</i> CL	0.971	0.419	0.938	0.991	1.000	-

Table S3. *P*-values of Tukey test on differences of maximum carbon fixation capacities listed in Figure 5.

Figure S1. The strategy of fluorescent proteins (FPs) fusion and knock-out (KO) using REDIRECT protocol. A fragment contains 800 bp upstream and downstream of the gene with or without gene plus fluorescent protein together with an antibiotic-resistant cassette (encoded in reverse orientation) in order to replace the genomic DNA fragment by homologous recombination. FRT indicates flippase recognition target which can be used to excise inserted cassette. *acc3IV* and *aadA* indicate apramycin and spectinomycin resistant genes respectively for YFP labelling and KO mutants. OriT indicates short sequence as the origin of transfer during bacterial conjugation.

Figure S2. Bioluminescence assays confirm the diurnal treatment and circadian control in the Syn7942 strain containing pAM2195. A. Time-lapse image montage of pAM2195 Syn7942 cells containing the luciferase reporter vector pAM2195, grown under CL switched from the dark period of DL with two-hour intervals. B. Quantification of bioluminescence intensities of the cells during the time course.

Figure S3. Cell dimensions of Syn7942 during DL. Average cell lengths (left) were similar within experimental error. Average cell widths (right) were comparable (n = 200 as cell counts for each timepoint). Error bars represent SD.

Figure S4. PCR screening of the segregation of *kaiA* mutants. The evaluation of segregation was performed by PCR using primers designed across the insertion/deletion sites (Table S2), where different sizes of band indicate non-insert or successful insertion/deletion respectively. For $\Delta kaiA$, the WT band size is 1045 bp and knockout band size is 1602 bp; For KaiA-eYFP, the WT band size is 282 bp and YFP full-segregation band size is 2408 bp. Only fully-segregated strains (shown as full, partial segregation shown as partial) were studied in this work.

Figure S5. Fluorescence images of the KaiA-eYFP/RbcL-CFP mutant show the distribution of carboxysomes and KaiA assemblies in Syn7942. A. Representitive confocal images were taken at D8H shown both carboxysomes (white arrows) and KaiA assemblies (red arrows). Scale bar = 1 μ m. B. Time-lapse images revealing the formation process of KaiA assemblies during the dark period (red arrows). Scale bar = 2 μ m.

Supplementary References

- 1. Sun, Y.; Wollman, A.J.M.; Huang, F.; Leake, M.C.; Liu, L.N. Single-organelle quantification reveals the stoichiometric and structural variability of carboxysomes dependent on the environment. *Plant Cell* **2019**, *31*, 1648–1664.
- Huang, F.; Vasieva, O.; Sun, Y.; Faulkner, M.; Dykes, G.F.; Zhao, Z.; Liu, L.N. Roles of RbcX in Carboxysome Biosynthesis in the Cyanobacterium *Synechococcus elongatus* PCC7942. *Plant Physiol* 2019, 179, 184–194, doi:10.1104/pp.18.01217.
- 3. Mackey, S.R.; Ditty, J.L.; Clerico, E.M.; Golden, S.S. Detection of rhythmic bioluminescence from luciferase reporters in cyanobacteria. *Methods Mol Biol* **2007**, *362*, 115–129, doi:10.1007/978-1-59745-257-1_8.