

Supplementary Material

Figure S1. Geologic map of Drummond Basin, showing the location of the Wobegong North sinters within the Conway Hydrothermal System, where the samples from this study were collected (modified from Walter et al. 1996).

Figure S2. SIMS analyses of a <10,000-year-old cyanobacterial microorganism (noted by red arrow) preserved in a hot spring deposit in Yellowstone National Park, showing similar elemental sequestration trends (notably Sr, Fe, Mg) as to what was observed in Drummond samples (see also Gangidine et al. 2020), but also displaying unique trends (e.g., Gallium).

Figure S3. Visual graph illustrating the same data as Figure 3 in the main text, with each background value (left point) attached to the fossil concentration (right point) to show the increased concentration in each fossil analyzed.

Figure S4 (1–16). The above photomicrographs show the 16 Drummond Basin microfossils analyzed in this study. The following pages show the SIMS images generated for each microfossil. Each panel shows a greyscale SIMS image for the noted element.

Mn

As

Mg

Mn

~3

Mn

As

As

Mn

~

Mg

Mn

As

Mn

AS

Mn

Mg

Mn

As

Si (Cs⁺)

Mn

As

Mn

As

Mn

As

Mg

Mn

Mg

Mn

Sr

Mg

Figure S5. XRF Heavy spectrum from Drummond Basin sample corresponding with Table 1 in the main text.

Figure S6. XRF Total spectra from Drummond Basin sample corresponding with Table 1 in the main text.

Figure S7. Drummond microfossil targeted by Raman analyses.

Figure S8. Non-baseline subtracted Raman spectrum from Drummond microfossil body (pictured in Figure S7), showing strong fluorescence.

Figure S9. Baseline subtracted Raman spectrum from Figure S8, showing quartz and kerogen. Smaller peaks are due to fluorescence.

Table S1										
Target Mass	Interference	MRP* needed	Comment							
C ¹⁵ N	¹³ C ¹⁴ N	4272	does not matter as it is still CN							
As	⁴⁶ Ca ²⁹ Si	8722	2 minor isotopes							
As	⁴⁸ Ca ²⁷ Al	6004	⁴⁸ Ca minor isotope							
As	⁴⁴ Ca ³⁰ SiH	4838	trimers rare, ³⁰ Si, ⁴⁴ Ca minor							
As	⁴⁶ Ca ²⁸ SiH	4447	trimers rare, ⁴⁶ Ca minor							
¹²⁰ Sn	⁴⁸ Ca ⁴⁴ Ca ²⁸ Si	6949	trimers rare, ⁴⁸ , ⁴⁵ Ca minor							
¹²⁰ Sn	⁴⁰ Ca ³	8311	trimers rare							
¹²⁰ Sn	⁴⁸ Ca ⁴⁴ Ca ²⁹ Si	6261	trimers rare, all minor isotopes							
⁶⁹ Ga	⁴⁰ Ca ²⁹ Si	5103	²⁹ Si minor							
⁶⁹ Ga	⁴² Ca ²⁷ Al	4727	⁴² Ca minor							
⁶⁹ Ga	⁴⁶ Ca ²³ Na	3855	⁴⁶ Ca minor							
⁸⁸ Sr	⁴⁴ Ca ²	16447	⁴⁴ Ca minor							
⁸⁸ Sr	⁴⁸ Ca ⁴⁰ Ca	9255	⁴⁸ Ca minor							
⁸⁸ Sr	⁴⁴ Ca ⁴³ CaH	5342	trimers rare, ⁴⁴ Ca ⁴³ Ca minor							
⁸⁸ Sr	³⁰ Si ²²⁸ Si	4664	trimers rare, ³⁰ Si minor							
⁸⁸ Sr	³⁰ Si ²⁹ Si ²	4158	trimers rare, ³⁰ Si 29Si minor							
⁸⁸ Sr	⁴² Ca ³⁰ Si ¹⁶ O	4054	trimers rare, ⁴² Ca 30Si minor							
⁸⁸ Sr	44Ca ²⁸ Si ¹⁶ O	4050	trimers rare, ⁴⁴ Ca minor							
⁸⁸ Sr	46Ca30Si12C	4026	trimers rare, ⁴⁶ Ca ³⁰ Si minor							
⁸⁸ Sr	⁴⁸ Ca ²⁸ Si ¹² C	3688	trimers rare, ⁴⁸ Ca minor							
⁸⁸ Sr	⁴³ Ca ²⁹ Si ¹⁶ O	3580	trimers rare, ⁴³ Ca ²⁹ Si minor							
⁸⁸ Sr	⁴⁴ Ca ²⁹ Si ¹⁵ N	3322	trimers rare, all minor							
⁸⁸ Sr	⁴⁴ Ca ²⁰ Si ¹⁴ N	3292	trimers rare, ⁴⁴ Ca ³⁰ Si minor							
⁸⁸ Sr	⁴⁶ Ca ²⁸ Si ¹⁴ N	3132	trimers rare, ⁴⁶ Ca minor							

Table S1. SIMS interferences and comments for various masses.

	þ	rr.).3).3).5	L.2	7.7	3	6.().3).4).3).3).3).4).2).5).4	
Sr	kgrour	ш		0	0	С 1	2 C	1	2 C		0	U G	0		0	0	U (0	
	Bac	Con	5.3	5.8	11.(23.(13.)	8.8	14.3	3.1	7.5	4.6	5.6	5.7	6.0	3.5	9.9	3.5	
	sil	Err.	0.2	0.2	0.2	0.3	0.3	0.3	0.2	0.3	0.7	0.5	1.1	0.2	0.2	0.4	0.3	0.3	
	Fos	Conc.	17.6	13.9	18.1	32.3	24.8	9.9	19.9	19.0	25.6	26.0	24.5	11.3	8.7	16.8	10.3	9.8	
Fe	punc	Err.	1.6	3.5	7.7	11.5	20.1	5.5	11.3	1.8	2.2	15.1	2.4	3.5	3.4	3.9	3.8	3.0	
	Backgr	Conc.	74.7	135.7	283.4	510.2	967.5	161.7	349.2	89.9	107.3	354.7	203.5	150.5	149.1	143.8	165.3	107.9	
		Err.	4.7	4.4	4.6	12.9	23.6	2.2	7.6	2.4	5.6	16.8	11.3	5.3	3.2	14.4	5.5	4.5	
	Fossi	Conc.	260.5	211.7	299.4	736.0	1225.8	289.6	426.0	325.6	282.6	844.1	595.6	260.7	307.7	1605.6	305.0	403.2	
Mn	pun	Err.	0.2	0.2	0.4	1.7	0.5	0.5	0.7	0.2	0.4	0.3	0.4	0.4	0.4	0.4	0.5	0.4	
	Backgrou	Conc.	2.6	2.7	6.3	16.7	6.7	5.1	9.2	2.6	6.1	6.2	7.4	4.7	5.5	5.5	5.0	3.2	
	_	Err.	0.2	0.1	0.2	0.3	0.3	0.3	0.3	0.2	0.7	1.0	1.2	0.4	0.2	0.7	0.4	0.3	
	Fossi	Conc.	13.7	8.5	12.2	21.8	19.2	7.1	15.7	10.2	23.4	43.1	37.1	16.3	9.4	38.5	14.5	10.4	sil rred from
P	Background	Err.	9.1	18.4	26.7	22.8	9.1	27.8	15.0	10.3	19.8	113.9	50.5	57.7	49.8	46.2	52.0	57.7	microfos che fossil vas measu
		Conc.	1117.4	940.6	1767.4	1364.2	684.2	1682.6	1058.6	1197.5	1966.8	2622.5	1645.4	2213.5	2471.5	1361.5	2395.0	1639.4	ody of the ne body of t entration v
		Err.	41.4	31.1	29.5	25.0	27.1	27.4	60.8	18.6	27.4	112.3	65.8	70.5	57.9	92.7	57.9	63.3	with the k ed with th the conc
	Fossil	onc.	565.6	409.6	055.1	936.1	570.3	991.6	265.6	140.7	989.4	492.5	127.3	439.4	536.6	881.6	740.4	536.4	sponding , t associat
	٩		2	9 2,	30 0	52	2	52	5	3.	56	2	8 .4	ň	5(48		5	ls corres pple, no of the :
Mg	ground ^t	Err	0.7	0.0	1.0	0.6	0.6	0.6	0.0	2.3	1.6	3.1	1.8	1.9	2.0	0.7	2.0	2.0	il signal Ich sam million er-pixel
	Backg	Conc.	39.3	20.6	30.9	14.7	13.6	15.1	14.2	36.0	56.4	90.5	54.8	56.1	71.4	23.3	106.8	66.2	lementa rix of ea rts-per-i isson-pe
	Fossil ^a	Err. ^d	0.6	1.4	1.1	0.3	1.1	9.0	0.7	0.9	3.5	6.9	5.8	4.8	4.4	4.6	3.4	3.3	ents of el ilica mat on in pai s the Poi
		Conc. ^c	73.2	67.0	64.3	52.1	57.0	59.5	33.9	56.2	142.7	322.3	233.8	184.9	160.5	228.3	160.7	151.1	Teasurem€ Ind = the s oncentrati or, which i
		Sample	1	2	m	4	ß	9	7	ø	б	10	11	12	13	14	15	16	^a Fossil = n ^b Backgrou ^c Conc. = c ^d Err. = Err

Table S2. Elemental data for 16 fossil samples and the surrounding mineral matrix (background) plotted in Figure 3 of the main text.

End of Supplementary Material